用户名: 密码: 验证码:
声频调控对水培植物生长效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着Bio+X (Bio指生物学,x指物理学、工程学等其它科学)新思想、新科学的不断发展,工程学、物理学与植物学的多学科交叉与融合已经越来越受到国内外学术及工程界的重视。研究发现:适当的声波刺激对植物的生长与发育具有促进作用。这一研究结果为应用物理方法提高作物产量,减小传统化学农业由于化肥和农药的过量使用给生态环境带来的污染,实现生态农业的目标提供了一种新途径。然而,声波对植物生长的影响机制仍处于探索的初级阶段。相关的研究技术手段,专业的研究装备相对比较缺乏;声波对植物生长的影响机理在科学界还没有达到共识,理论支持不足。
     本文在对声波的产生与传递原理以及声波检测与控制的基本理论进行研究分析的基础上,研制了一套适宜植物-声频调控的实验系统,开发了相关的噪声屏蔽、声波发生及自适应校准技术,并提出了一种基于前馈补偿的闭环控制方法,实现了对设施环境中声波的模拟与控制。设计了一套声波刺激下的植物振动特性的测试平台。通过常见自然声的倍频程分析,得出各自然声的主要频率成分,并以此为基础,围绕探索不同可听声波对水培植物生长发育,吸收营养物质的变化规律,声波调控技术与自动控制技术在生产系统中的集成应用等方面开展了一系列的基础试验与应用研究工作,主要研究内容与结果如下:
     1.研制了一套适宜植物-声频调控的实验系统。对智能人工气候箱进行了分体式改造,植物培养箱与压缩机及循环风机分离,中间通过阻抗复合型消声器型结构导管进行隔音,使植物培养箱内部噪声比改造前降低了约28dB;开发了一套声波发生与控制系统,提出了一种基于前馈补偿的闭环控制方法,实现对设施环境中声波的自适应控制;对分别加载在人工气候箱中的纯音、组合频率声波、以及音乐声频等类型声波进行了测试,结果表明,不同类型的声波均达到了良好的校准作用。
     2.对植物野外生长环境中的几种常见的自然声进行分析得到:常见的鸟类晨鸣声的主频成分主要分布在2.0-4.1kHz;常见的蟋蟀和蝉鸣声的主频成分主要分布在3.0-4.0kHz;自然流水声及雨打荷叶声的主频成分主要分布在1.5-2.0kHz;通过对植物野外生长环境中各类声波特性的分析,发现2000Hz左右的频率是大多数植物野外生长环境中声波的主频中含有的频率成分。
     3.开展了声频调控对豆芽的发芽及生长、番茄的苗期生长等方面的研究工作。结果发现:声波处理可以缩短绿豆芽的发芽时间,随着声波强度及频率的增加,发芽时间呈现减小的趋势;不同声波对豆芽菜生长的影响不一样,声波对绿豆芽苗的茎部的生长有促进作用,但对其根部的生长有抑制作用。其中,声波频率在2.0kHz,90dB左右的声频对绿豆芽苗的生长影响最明显,可以提高豆芽的产量(茎部长度、鲜重等);特定频率的声波处理可以加快番茄对氮元素的吸收,但对磷元素的吸收无显著影响,其中2200Hz的声波处理的促进相对较为明显。
     4.提出了一种声频调控技术与自动控制技术集成应用于微藻工厂化生产的技术实现方案。开发了一个微藻自动化生产控制系统,并通过微藻栽培试验探索了采用声频调控技术提高微藻生产产量的可行性。结果得到:声波处理可以加快微藻的生长速度,提高微藻的生产产量,其中2000Hz为主频的声波对产量的提高作用最为明显;不同声波对单位微藻生物质的含油量(即含油率)无明显影响,但是声波处理提高了微藻单位体积的产油量(含油率×生物量浓度),其中以2200Hz为主频的声波作用最为明显。
With the continuous development of Bio+X science, multidisciplinary cross and integration among engineering, physics, and botany has been getting more and more attention by both engineering and academic community. Modern agriculture heavily relies on applications of fertilizers to promote plant growth and crop yield, but long-term fertilizer uses have brought severer environmental pollution. Reduction of chemical uses in crop production has been one of the major tasks for agricultural engineers. Recent studies have revealed that appropriate audible sound stimulation, a clean solution, has a great potential to improve plant growth and the quality of products. However, this new technology is still in the early stages of exploration. There was a lack of precise devices such as specialized research equipments and technical means to facilitate plant growth studies in the acoustic biology field. How plants sensing sound waves is still unknown. The mechanism of sound effects on plant growth haven't reached consensus in scientific community because of insufficient theoretical support.
     This dissertation summarized and analysed the principle of generation and transmission of audible sound and the basic theory of acoustic detection technology. An audio frequency controllable experiment system was developed, a self-adaptive control method was put forward to reduce distortion characteristics of sound waves in facilities closed environment, and a measurement system was designed to detect vibration characteristics of plant under the stimulation of audible sound. Common audible sounds from Nature were analysed to obtain main frequency components, and based on the results, a series of basic tests and applied studies including sound effect on the growth, development, and nutrients absorption of hydroponic plant, and the integrated application of acoustic control technology and automatic control technology in production system were done. The major contents and results in this dissertation are as follows:
     1. An audio frequency controllable experiment system was created for experimental studies of audible sound effects on plant growth. The compressor and circulation fan of intelligent artificial climate box were separated from the plant cultivation chamber, and linked through ventilating duct with sound insulation. The internal noise was reduced by28dB. A control system was developed for audible sound generating. A solution was proposed for improving audible sound output based on closed-loop feed-forward control method. Results showed that pure tones, combination sound of pure tones, and normal music can be produced with high output accuracy.
     2. Different nature sound collected from environment of wild plants growth was analyzed. Results showed that:the acoustic frequency composition in most of nuture audible sound contained sound frequency of2.0kHz. The main frequency composition was from1.5kHz to2.0kHz in most of wild birds'chirm, from3.0kHz to4.0kHz in most of crickets and cicadas' chirp, and from1.5kHz to2.0kHz in sound of trickling water and the sound of rain.
     3. Studies were carried out about the audible effect on the germination and growth of mung bean, the hydroponic Tomatoes' early growth and absorption of N, P and other nutrients, etc. Experimental results indicated that the sound wave can reduce the germination period of mung bean and the mung bean under treatments of sound with intensity around90dB and frequency around2000Hz significantly increased in growth. Audible sound treatment can promote the growth of mung bean differently for distinct frequency and intensity. The volume of nutrient solution, total nitrogen, total phosphorus absorbed by tomato was exponentially increased versus growth time. Regression equation of the general formula can be represented as:y=y=aebx (a>0, b>0), where b can reflect the differences in abilities to absorb nutrients. The ability to absorb N or water of the audible sound treatment groups (N: b=0.0653; Water:b=0.0778) was better than the control groups (N:b=0.0591; Water: b=0.0765), but there was no difference between the ability to absorb P of the audible sound treatment groups (b=0.0649) and the control groups (b=0.0643), which indicated that audible sound with certain frequency can accelerate tomoto's absorption of solution and N, but it have little effect on tomoto's absorption of P. Audible sound with main frequency of2200Hz was a better one than audible sound with other main frequencies.
     4. A technical proposal was made for Integration of plant acoustic control technology into an automated microalgae growth system for industrialized production. Test experiments were conducted to testify the automated microalgae growth system. The effect of the frequency of audible sound on biomass and algal oil production was examined. Results showed that audible sound with certain frequency can speed up the growth of microalgae and improve microalgae production. The mean biomass concentration of audible sound stimulation groups with main sound frequency of1100Hz,2200Hz, and3300Hz respectively increased by9.6%,35.5%, and10.7%than control groups. There was no distinct effect on increasing oil content in biomass of microalgae (PO) of after audible sound stimulation with main sound frequency of1100Hz,2200Hz, and3300Hz. However, the amount of oil production per unit volume of matured microalgae (PO) culture media increased through audible sound stimulation, and the maximum increase was about27.5%.
引文
Armstrong PR, MLStone, GHBrusewitz. Peach firmness determination using two different nondestructive Vibrational sensing instruments. Trans of the ASAE,1997,40(3):699-703.
    Aggio R, Obolonkin V, Villas-Boas S. Sonic vibration affects the metabolism of yeast cells growing in liquid culture:a metabolomic study. Metabolomics,2011,1-9.
    Abbott JA et al. Firmness measurement of stored'delicious'apples by sensory methods Magness-Taylor, and sonic transmission. J. Amer. Soc. Hort.1992,117(4):590-595.
    Bochu W, Xin C, Zhen W, et al. Biological effect of sound field stimulation on paddy rice seeds. Colloids and Surfaces B:Biointerfaces,2003,32(1):29-34.
    Bochu W, Jiping S, Biao L, et al. Sound wave stimulation triggers the content change of the endogenous hormone of the Chrysanthemum mature callus. Colloids & Surfaces B: Biointerfaces,2004,37(3-4):107-112.
    Bochu W, Jin Z, Biao L, et al. Study of mRNA expression of Arabidopsis thaliana under stimulation using modified differential display RT-PCR with silver staining. Colloids and Surfaces B:Biointerfaces,2005,40(1):31-34.
    Coggin, Principe J. Detection and classification of insect Sound sinagrain silo using a neural network. IEEE International Neural Network Conference Proceeding. New York: Piscataway,1998,1760-1761.
    Creath K, Schwartz G E. Measuring effects of music, noise, and healing energy using a seed germination bioassay. Journal of Alternative and Complementary Medicine,2004,10(1): 113-122.
    Chow H W, Cheung N. Low cost displacement sensor at sub-micron precision based on 3*3 optical coupler for vibrating surface.2009, IEEE International Conference on Mechatronics, 1-6.
    Dai C Y, Wang B C, Wang J, et al. Effect of ultrasound stimulation on metabolic modulation of pyruvic acid.Colloids and Surfaces B-Biointerfaces,2004,36(2):101-104.
    Dai C Y, Wang B C, Zhou H, et al. Effect of low frequency ultrasonic stimulation on the secretion of siboflavin produces by Ecemothecium Ashbyii. Colloids and Surfaces B-Biointerfaces, 2004,34(1):7-11.
    Daniel J. Cosgrove. Wall extensibility:its nature, measurement and relationship to plant cell growth. New Phtol,1993,124:1-23.
    Erokhina LG, Shatilovich AV, Kaminskaya OP, Gilichinskii DA. The Absorption and Fluorescence Spectra of the Cyanobacterial Phycobionts of Cryptoendolithic Lichens in the High-Polar Regions of Antarctica. Microbiology,2002,71(5):601-607.
    Erokhina LG, Shatilovich AV, Kaminskaya OP, Gilichinskii DA. Spectral Properties of Ancient Green Algae from Antarctic Dry Valley Permafrost. Microbiology,2004,73(4):485-487.
    Hou T Z, Mooneyham R E. Applied studies of plant meridian system:I. The effect of agri-wave technology on yield and quality of tomato. American Journal of Chinese Medicine,1999, 27(1):1-10.
    Hou T Z, Luan J Y, Wang J Y, et al. Experimental evidence of a plant meridian system:III The sound characteristics of philodendron (Alocasia) and effects of acupuncture on those properties. The American Journal of Chinese Medicine,1994,22(3-4):205-214.
    Hou T Z, et al. Applied studies of the plant meridian system:II Agri-wave technology increase the yield and quality of spinach and lettuce and enhances the disease resistant properties of spinach. The American Journal of Chinese Medicine,1999,27(2):131-134.
    Huisman W H T, Attenborough K. Reverberation and attenuation in a pine forest. Journal of the Acoustical Society of America,1991,90(5):2664-2677.
    Hongbo S, Biao L, Bochu W, et al. A study on differentially expressed gene screening of Chrysanthemum plants under sound stress. Comptes Rendus Biologies,2008,331(5): 329-333.
    Ingber D. Integrins as mechanochemical transducers. Curr Opin Cell Biol,1991,3:841-848.
    Jeong M J, Shim C K, Lee J O, et al. Plant gene responses to frequency-specific sound signals. Molecular Breeding,2008,21(2):217-226.
    Jiang Shi-ren, Rao Hua-jun, Chen ze-jie, et al.. Effects of Sonic Waves at Different Frequencies on Propagation of Chlorella pyrenoidosa. Agricultural Science&Technology,2012,13(10): 2197-2201.
    Li Y. Y, Wang B. C, Long X. F, etal. Effects of sound field on the growth of Chrysanthemum callus. Colloids and Surfaces B:Biointerfaces,2002,24(3-4):321-326.
    Lee SJ, Kim S-B, Kin J-E, Kwon G-S, Yoon B-D, Oh H-M. Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Letters in Applied Microbiology,1998,27:14-18.
    Linskens H F, Martens M J M, Hendriksen H J G M, et al. The acoustic climate of plant communities. Oecologia,1976,23(3):165-177.
    Liu Y, Yoshikoshi A, Wang B, et al. Influence of ultrasonic stimulation on the growth and proliferation of Oryza sativa Nipponbare callus cells. Colloids and Surfaces B:Biointerfaces, 2003,27(4):287-293.
    Li B, Wei J, Wei X, et al. Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum. Colloids and Surfaces B:Biointerfaces,2008,63(2): 269-275
    Martens M J M, Severens P P J, Vanwissen H, et al. Acoustic reflection characteristics of deciduous plant leaves. Environmental and Experimental Botany,1985,25(3):285-292.
    Martens M J M, Michelsen A. Absorption of acoustic energy by plant leaves. Journal of the Acoustical Society of America,1981,69(1):303-306.
    MacCallum, Matthias Mauch, Austin Burt, et al. Evolution of music by public choice. PNAS, 2012,109(30):12081-12086.
    Price M A, Attenborough K, Heap N W. Sound attenuation through trees measurements and models. Journal of the Acoustical Society of America,1988,84(5):1836-1844.
    Qin Y. C, Lee W. C, etal. Biochemical and physiological changes in plants as a result of different sonic exposures. Ultrasonics,2003,41(5):407-411.
    Shao J P, Wang B C, Liu M S, et al. Optimal designs for sound wave stimulation on the growth conditions of Chrysanthemum callus. Colloids and surfaces B-Biointerfaces,2003,30(1-2): 93-98.
    Shaobin G, Wu Y, Li K, et al. A pilot study of the effect of audible sound on the growth of Escherichia coli. Colloids and Surfaces B:Biointerfaces,2010,78(2):367-371.
    Timothy M L, Philip M L. Mechanical signals in plant development:A new method for single cell studies. Developmental Biology,1997,181:246-256.
    Vick K W, WebbJC, Weaver B A, et al. Sound detection of stored-product insects that feed insid ekernels of grain. J Econ Entomol,1988,81:1489-1493.
    Wang B C, Zhao H C, Duan C R, et al. Effects of cell wall calcium on the growth of Chyrsanthemum callus under sound stimulation. Colloids and Surfaces B-Biointerfaces,2002, 25(3):189-195
    Wang X. J, Wang B. C, Jia Y, et al. Effect of sound wave on the synthesis of nucleic acid and protein in chrysanthemum. Colloids and Surfaces B:Biointerfaces,2003,29(2-3):99-102.
    Weinberger P, Measures M. Effects of the intensity of audible sound on the growth and development of rideau winter-wheat. Canadian Journal of Botany-Revue. Canadienne De Botanique,1979,57(9):1036-1039.
    Xiang Y. H, Zhao S. G, et al. Small vibration measurement based on laser Doppler. Structure & Environment Engineering,2009,36(6):50-54.
    Xiang J. W. Vibration test and analysis system of optical recording equipment based on Polytec laser Doppler vibrometer. Optical Technique,2007,33(Supp):108-109.
    Xiujuan W, Bochu W, Yi J, et al. Effect of sound stimulation on cell cycle of chrysanthemum (Gerbera jamesonii). Colloids and Surfaces B:Biointerfaces,2003,29(2-3):103-107.
    Xiujuan W, Bochu W, Yi J, et al. Effects of sound stimulation on protective enzyme activities and peroxidase isoenzymes of chrysanthemum. Colloids and Surfaces B:Biointerfaces,2003, 27(1):59-63.
    Yu-Chuan Q, Won-Chu L, Young-Cheol C, et al. Biochemical and physiological changes in plants as a result of different sonic exposures. Ultrasonics,2003,41(5):407-411.
    Yi J, Bochu W, Xiujuan W, et al. Effect of sound wave on the metabolism of chrysanthemum roots. Colloids and Surfaces B:Biointerfaces,2003(a),29(2-3):115-118.
    Yi J, Bochu W, Xiujuan W, et al. Effect of sound stimulation on roots growth and plasmalemma H+-ATPase activity of chrysanthemum (Gerbera jamesonii). Colloids and Surfaces B: Biointerfaces,2003b,27(1):65-69
    Yi J, Wang B C, Wang X J, et al. Influence of sound wave on the microstructure of plasmalemma of chrysanthemum roots. Colloids and Surfaces B-Biointerfaces,2003c,29(2-3):109-113
    Zhao H C, Wu J, Zheng L, et al. Effect of sound stimulation on Dendranthema morifolium callus growth. Colloids and Surfaces B:Biointerfaces,2003,29(2-3):143-147.
    Zhao H C, Zhu T, Wu J, et al. Role of protein kinase in the effect of sound stimulation on the PM H+-ATPase activity of Chrysanthemum callus. Colloids and Surfaces B-Biointerfaces,2002a, 26(4):335-340.
    Zhao H C, Wang B C, Liu B A, et al. The effects of sound stimulation on the permeability of K+ channel of Chrysanthemum Callus plasma. Colloids and Surfaces B-Biointerfaces,2002b, 26(4):329-333.
    陈欣.声波促进植物生长装置的研制及其在研究水稻种子对声波刺激的应激效应中的应用[硕士论文].重庆:重庆大学,2003.
    陈卓.声频处理对番茄生长发育的影响[硕士论文].北京:中国农业大学,2011.
    陈凌霄,吴传宇.植物声频控制技术在茶树栽培上的应用初探.农业机械,2008(26):68-69.
    杜功焕,朱哲民,龚秀芬.声学基础(第2版).南京:南京大学出版社,2001.
    段传人,王伯初,徐世荣.环境应力对植物次生代谢产物形成的作用.重庆大学学报(自然科学版),2003,26(10):67-71.
    戴航.定向植物声频发生器的研究[硕士论文].北京:中国农业大学,2011.
    冯元桢.生物力学.北京:科学出版社,1984.
    樊荣,周清,赵冬梅.植物声频控制技术对黄瓜叶绿素荧光特性的影响.西北农业学报,2010,19(1):194-197.
    国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002:104-180.
    侯天侦,李保明,王明亮,等.植物声频控制技术对棉花生产的影响.农业工程学报,2010,(6):170-174.
    侯天侦,李保明,滕光辉,等.植物声频控制技术的研究及应用进展.中国农业大学学报,2010,(1):106-110.
    侯天侦,李保明,滕光辉,等.植物声频控制技术在设施蔬菜生产中的应用.农业工程学报,2009(2):156-160.
    郝水源.发展物理农业实现生态农业.河套大学学报,2008(4):27-34.
    郝水源.植物声频对春小麦生长发育及质量、产量形成的影响[硕士论文].呼和浩特:内蒙古农业大学,2008.
    侯天侦,李保明,等.植物声频控制技术对棉花生产的影响.农业工程学报,2010,26(6):170-174.
    胡伟.物理农业无毒农业:环境安全型温室设计方法与关键装备.2009,来源:http://blog.sina.com.cn/s/blog_5efda9190100eldk.html黄睿.激光位移传感器及输出特性的研究[硕士论文].北京:北京交通大学,2010.
    姜仕仁,黄俊,陈劫.音乐声频对3种露地作物的应用试验研究.浙江科技学院学报,2010(4):253-257.
    姜仕仁,陈劫,黄俊.声频对豇豆生长和结实的影响.浙江科技学院学报,2010(1):8-11.
    姜仕仁,项小东.基于动物鸣声和音乐混合的声频助长器的开发.浙江科技学院学报,2011,(04):271-275.
    姜仕仁,黄俊.6种不同声频对豇豆苗期生长影响的研究.安徽农业科学,2011,(17):10223-10226.
    贾毅.声波刺激对菊花根系生长影响的实验研究[硕士论文].重庆:重庆大学,2002.
    李标.声波刺激对铁皮石斛生长代谢的影响及其相关基因表达和克隆研究[博士论文].重庆:重庆大学,2007.
    李志忠.蛋鸡发声特征识别技术研究与应用[博士论文].北京:中国农业大学,2008.
    刘贻尧,王伯初,赵虎成,等.植物对环境应力刺激的生物学效应.生物技术通讯,2000,(3):219-222.
    栾纪源.植物声频振动特性检测系统中音频刺激发生器的研制.北京生物医学工程,1994(4):216-219.
    栾纪源,侯天侦.植物声频振动特性检测仪的原理及其设计.科技通报,1995(5):266-271.
    栾纪源,侯天侦.植物声频振动特性检测仪的原理及其设计.科技通报,1995,11(5):266-267.
    李标,王伯初,梁亦龙,等.声波刺激对铁皮石斛组培苗多糖含量的影响.中药材,2006(7):645-647.
    李涛,侯月霞,等.流式细胞术分析强声波对植物细胞周期的影响.生物物理学报,2001,17(1):195-197.
    柳絮.提高蛋鸡产蛋量新方法.广西农学报,2008,4:53.
    祁丽荣,滕光辉,侯天侦,等.黄瓜幼苗自发声频率测定方法与试验.农业机械学报,2010(S1):263-267.
    祁丽荣.设施栽培植物自发振动特性及声频处理技术研究与应用[博士论文].北京:中国农业大学,2011.
    沈子威,孙克利,等.应用傅里叶红外光谱研究强声波作用下植物壁蛋白质二级结构变化.光子学报,1999,28(7):600-602.
    孙克利,席葆树,蔡国友,等.交变应力作用下烟草细胞热力学相行为的研究.生物物理学报,1999,(3):579-583.
    秦玉川,李杭周,崔荣哲,等.声波对蚜虫危害及大白菜生长影响的初步研究.中国农业大学学报,2001,(3):85-89.
    邵继平.声波刺激对菊花愈伤组织内源激素IAA和ABA动态变化的实验研究[硕士论文].重庆:重庆大学,2003.
    谭季姝.日光温室植物灌溉及声频控制系统的应用研究[硕士论文].北京:中国农业大学,2010.
    王宏江,王明亮,等.植物声频控制技术在棉花上的应用效果研究.新疆农业科学,2009,46(2):415-418.
    魏进民,李标,王伯初,等.声波刺激对铁皮石斛过氧化物酶同工酶基因表达的影响.应用声学,2008,(6):462-468.
    王伯初,张进,段传人,等.声波刺激对拟南芥基因表达的影响.重庆大学学报(自然科学版),2005(11):142-145.
    王在山,常丽荣.露地草霉应用植物声频控制技术.农业机械化与电气化,2004(1):28-29.
    王道红.声波对菊花基因差异表达影响的初步研究[硕士论文].重庆:重庆大学,2004.
    王秀娟.声波刺激对菊花遗传物质影响的实验研究[硕士论文].重庆:重庆大学,2002.
    王伯初,张小刚,黄文章,等.空间声场对水稻抗纹枯病的生理效应.自然科学进展,2009(10):1068-1075.
    王宏江,王明亮,黄维兵.植物声频控制技术在棉花上的应用效果研究.新疆农业科学,2009(2):415-418
    王书茂.西瓜成熟度无损检验的冲击振动方法.农业工程学报,1999,15(3):241-245.
    王明亮,徐猛.植物声频控制技术及其应用效果评价.新疆农垦科技,2010,5:8-10.
    王海,王辉林,钱彬森.单点激光三角测量系统不确定度评定.工具技术,2011,45(3):93-95.
    杨祥良.基于声波测温技术的电站锅炉受热面污染监测研究[博士论文].北京:华北电力大学,2010.
    禹盛苗,姜仕仁,朱练峰,等.声频控制技术对水稻生长发育、产量及品质的影响.农业工程学报,2013,29(2):141-147.
    阳小成,王伯初,段传人.声波刺激对中华猕猴桃ATP含量的影响.生物技术通讯,2003(2):123-126.
    阳小成,王伯初,叶梅.不同强度的声波对猕猴桃试管苗根系发育的影响.应用与环境生物学报,2004,(03):274-276
    阳小成,丁剑平,王伯初.不同频率的声波刺激对猕猴桃组培苗根系发育的影响.重庆大学学报(自然科学版),2007,(11):72-74.
    阳小成.环境应力对中华猕猴桃组织培养过程生物学效应的初步研究[博士论文].重庆:重庆大学,2002.
    周志艳,罗锡文,张扬等.农作物虫害的机器检测与监测技术研究进展.昆虫学报,2010,53(1):98-109.
    周清,曲英华,李保明,等.声频处理对草莓植株性状及叶片叶绿素荧光特性的影响.中国农业大学学报,2010,1:111-115.
    张溯云.声频刺激对黄瓜苗期自发声及离子吸收特性的影响[硕士论文].北京:中国农业大学,2011.
    赵虎成.声波刺激影响菊花愈伤组织生长的机理研究[博士论文].重庆:重庆大学,2001.
    张进.声波刺激对拟南芥生长影响的分子生物学初步研究[硕士论文].重庆:重庆大学,2004.
    詹姆斯-丹吉洛.用声音打通经络,吉林:吉林文史出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700