用户名: 密码: 验证码:
准噶尔盆地白家海凸起西山窑组一段低渗储层地质成因及优质储层分布规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白家海凸起位于准噶尔盆地腹部,为一SW向倾伏的鼻状凸起,是新疆石油分公司彩南油田作业区重要的勘探开发区块。该凸起构造高部位(彩9—彩10井区)西山窑组一段发育大型构造岩性油藏,储层总体表现为中孔、低渗(孔隙度平均值为14.6%,渗透率平均值为2.81×10-3μm2)的特点。目前该区块已进入高含水阶段的开发中后期;但因储层低渗的地质成因与优质储层分布的认识不清,导致了开发中难于理清油水分布规律,在压裂开发的增产措施中出现高含水,注采矛盾突出,制约了该油田高效开发。
     论文以层序地层学与储层沉积学理论指导,从岩心描述与测井资料的分析入手,结合地震与生产动态资料,系统开展了工区层序地层格架、构造特征、古地理背景、沉积相展布以及储层成岩作用等方面的研究;并结合典型井生产历史,深入分析了储层低渗的主要地质成因,预测了优质储层的分布,为该油区后续开发调整与滚动勘探开发的评价提供了可靠的地质依据。论文主要创新点与结论如下:
     (1)通过井震结合再现古地貌的研究,表明西山窑沉积时研究区为一SW向的宽缓型单斜,受北部与北东向沉积物源影响,区内发育了东(彩10井区)、西(彩9井区)两大沉积体系。西部为2个朵叶状三角洲,多以厚层砂体叠加连片分布为特点,单井平均累积厚度为23.1m左右,测井曲线常呈箱状,为多期水下分流河道和河口坝叠置而成;而东部为4个鸟足状三角洲,中-薄层砂体发育,砂体常呈孤立分布特征,单井平均累积厚度为10.3m左右,测井曲线多为钟型,主要由水下分流河道形成。
     (2)研究区西一段低渗储层的地质成因主要有三个方面,一为粒度细(均值3Φ)、塑性火山岩岩屑含量高(平均含量为17%),致使孔隙喉道的压实率明显大于孔隙部位;二为高岭石胶结物堵塞喉道明显;三是早成岩阶段,上覆煤层所产生的酸性水溶液加速了硅酸盐矿物和方解石矿物的溶解;由于这三个方面的综合影响,导致砂岩储层喉道迅速变细(喉道半径范围为0~5μm),从而极大降低了储层的渗透率,形成了中孔低渗的特点。
     (3)优质储层主要受沉积时的水动力条件控制,尤其是地形平缓部分水动力较强的各类水道(主河道、水下分支河道),其塑性颗粒含量少,物性好,为I类储层;而地形略有转折的部位多形成河口坝,其沉积速度和塑性颗粒含量均大于河道,致使其物性也较河道要差可定为II类优质储层。
     (4)优质储层平面分布受砂体规模、沉积微相类型、有效储层厚度控制,将三种控制因素叠合分析,预测了其分布区域;西部优质储层平面展布方向与水下分流河道主流向一致,形态呈条带状;而东部呈孤立状。
Baijiahai high is located in the centre of Junggar Basin. It is a nose-like high trendingsouthwest and one of the important exploratory and developmental blocks of Cainan oilfieldof PetroChina Xinjiang Oilfield Company. The large-scale structural and lithologic trapsystem was developed in1stmember of Xishanyao Formation in structural high part of theuplift (Cai9-Cai10well area). It is generally characterized by low-middle porosity and lowpermeability (the average porosity is14.6%and the average permeability is2.81×10-3μm2).The block has been in high water cut stage during the middle and later Period of OilfieldDevelopment. However, the knowledge of geological genesis of low permeability reservoirand distribution of high quality reservoir are not clear which makes it difficult to resolve theproblem of the oil-water distribution law in development. Furthermore, high water cut stageoccurs during fracturing development period presenting serious injection-productionproblem which restricts the efficient development of the oilfield.
     Under the guidance of sequence stratigraphy and reservoir sedimentology and throughthe analysis of core description, logging, seismic and production performance data, Isystematically study stratigraphic framework, structural feature, paleogeo graphy, faciesdistribution and reservoir diagenesis. By integrating with typical well production history,main geological genesis of low-permeability reservoir and distribution law of high-qualityreservoirs are deeply analysed which provide reliable basis for subsequent developmentadjustment, progressive evaluation of exploration and development of the oil region. Themain innovation and conclusion of the thesis are as follows:
     (1) Through the study of the palaeogeomorphology by analyzing well data and seismicdata, the results indicate the research area was a wide-gentle NW-trend homocline duringthe period of Xishanyao Formation. Two large-scale depositional systems were developed inthe East(Cai10-well area) and West(Cai9-well area) under the influence of sedimentsupply from the north and northeast source area.Two lobate–type deltas with thick layer ofsand bodies which stacked and distributed contiguously were formed in the west area.Owing to multiphase stacked braided subaqueous distributary channels, single well dataindicates the average cumulative thickness of sand was23.1m and is characterized bybox-shaped in common. In contrast, four birdfoot-type deltas were formed in the east. Thecharacteristics of sand bodies are moderate-thin layer of sand and isolated distribution.Single well data indicated average cumulative thickness was10.3m, and well logging curveshape is bell.
     (2) Three major aspects about geological origin of low permeability reservoirs in thestudy were obtained. Firstly, because of the fine particle size (mean3Φ) and high plastic volcanic debris content (average content of17%), the compaction rate of pore throats issignificantly greater than that of pore. Secondly, throats were plugged by kaolinite cementslargely. Thirdly, the acidic water solution generated from overlying coal seam acceleratesthe dissolution of silicate minerals. Due to the combined effects of these three aspects, thethroat of sandstone reservoirs rapidly becomes thinner (throat radius range from0to5μm),reducing the permeability of the reservoir greatly, and the reservoir is characterized bymoderate porosity and low permeability. Furthermore, the high reservoir irreducible watersaturation results in water flooded seriously during the early fracturing development stage,whereas oil production remained relatively stable in the later stage.
     (3) High quality reservoir is mainly controlled by the sedimentary hydrodynamiccondition; The strong hydrodynamic channels at gentle slope (main channel, subaqueousdistributary channel) are characterized by less plastic particles and good physical property.These channels belong to reservoir typeⅠ. Whereas the mouth bar are always formed atsites where gradients of slope are changing. The sedimentation rate, particle size and thecontent of plastic particles are larger than the channel sandstone which are classified asreservoir type II. The characteristics of reservoir of this type are poor physical property.
     (4) The high-quality reservoir are influenced and controlled by the scale of sand body,distribution of sedimentary facies and effective thickness of sandstone. According to theanalysis of these three controlling factors, the distribution of reservoir was predicted. Thedirection of reservoir distribution in the west is consistent with the direction of the mainsubaqueous distributary channel. The shape of the reservoir on flat surface in the west islike string whereas the shape of reservoir in the east is isolated.
引文
Barrell, J.. Criteria for the Recognition of Ancient Delta Deposits: By JosephBarrell.[Kopftitel.].1912: Geological Society of America.
    Blatt, H., G.V. Middleton, R.C. Murray. Origin of sedimentary rocks.1980.
    Brown, A.R.. Interpretation of three-dimensional seismic data. AAPG Memior,1999.42(3).
    Catuneanu, O., et al. Towards the standardization of sequence stratigraphy. Earth-ScienceReviews,2009.92(1-2): p.1-33.
    Charvin, K., et al. Characterization of Controls on High-Resolution StratigraphicArchitecture in Wave-Dominated Shoreface–Shelf Parasequences Using InverseNumerical Modeling. Journal of Sedimentary Research,2011.81(8): p.562-578.
    Coleman, J.M.,L. Wright. Modern river deltas: variability of processes and sand bodies.1975.
    Cross, T.A. and M.A. Lessenger, Sediment volume partitioning: rationale for stratigraphicmodel evaluation and high-resolution stratigraphic correlation. SequenceStratigraphy—Concepts and Application: Norwegian Petroleum Society, SpecialPublication,1998.8: p.171-195.
    Cross, T.A., M.R. Baler, M.A. Chapin. Application of high resolution sequence stratigraphyto reservoir analysis, in Subsurface Reservoir Characterization fro m OutcropObservations.1992: Paris. p.11-33.
    Cross, T.A.. Controls on coal distribution in transgressive-regressive cycles, UpperCretaceous, Western Interior, USA.1988.
    Cross, T.A.. Quantitative dynamic stratigraphy.1990: Prentice Hall.
    Diessel, C.F.. Coal-bearing depositional systems.1992: Springer Berlin et al.
    Fielding, C.. Upper delta plain lacustrine and fluviolacustrine facies from the Westphalianof the Durham coalfield, NE England. Sedimentology,2006.31(4): p.547-567.
    Fisher, W.L., et al. Delta systems in the exploration for oil and gas.1969.
    Fisher, W.L., J. McGowen. Depositional systems in Wilcox Group (Eocene) of Texas andtheir relation to occurrence of oil and gas. AAPG Bulletin,1969.53(1): p.30-54.
    Flint, S., J. Aitken, et al. Application of sequence stratigraphy to coal-bearing coastal plainsuccessions: implications for the UK Coal Measures. Geological Society, London,Special Publications,1995.82(1): p.1-16.
    Galloway, W.E.. GENETIC STRATIGRAPHIC SEQUENCES IN BASIN ANALYSIS.1.ARCHITECTURE AND GENESIS OF FLOODING-SURFACE BOUNDEDDEPOSITIONAL UNITS. Aapg Bulletin-American Association of PetroleumGeologists,1989.73(2): p.125-142.
    Galloway, W.E.. Process framework for describing the morphologic and stratigraphicevolution of deltaic depositional systems.1975.
    Gilbert, G.K.. The topographic features of lake shores.1948.
    Giosan, L., J.P. Bhattacharya, SEPM. River deltas: concepts, models, and examples.2005:SEPM (Society for Sedimentary Geology).
    Hamilton, D.S., N. Tadros. Utility of coal seams as genetic stratigraphic sequenceboundaries in nonmarine basins: an example from the Gunnedah Basin, Australia.AAPG Bulletin,1994.78(2): p.267-286.
    Hancock, G.S., R.S., Anderson. Numerical modeling of fluvial strath-terrace formation inresponse to oscillating climate. Geological Society of America Bulletin,2002.114(9):p.1131-1142.
    Hardy, S., R.L. Gawthorpe. Effects of variations in fault slip rate on sequence stratigraphyin fan deltas: Insights from numerical modeling. Geology,1998.26(10): p.911-914.
    Heller, P.L., C. Paola. Downstream changes in alluvial architecture: an exploration ofcontrols on channel-stacking patterns. Journal of Sedimentary Research,1996.66(2).
    Jol, H.M., D.G. Smith. Ground penetrating radar of northern lacustrine deltas. CanadianJournal of Earth Sciences,1991.28(12): p.1939-1947.
    Kettner, A.J., J.P. Syvitski, A. Corregiari. Modeling sediment dispersal for distributarychannels of the Po River, Italy.
    Kuehl, S.A., et al. Subaqueous delta of the Ganges-Brahmaputra river system. MarineGeology,1997.144(1): p.81-96.
    Lander, R.H., O. Walderhaug. Predicting porosity through simulating sandstonecompaction and quartz cementation. AAPG Bulletin,1999.83(3): p.433-449.
    Lee, K., et al., A ground-penetrating radar survey of a delta-front reservoir analog in theWall Creek Member, Frontier Formation, Wyoming. AAPG Bulletin,2005.89(9): p.1139-1155.
    Meier, M.K., D. Namjesnik, P.A. Maurice. Fractionation of aquatic natural organic matterupon sorption to goehite and kaolinite. Chemical geology,1999(157): p.275-284.
    Moysey, S., R.J. Knight, H.M. Jol. Texture-based classification of ground-penetrating radarimages. Geophysics,2006.71(6): p. K111-K118.
    Muto, T., R.J. Steel. Autogenic response of fluvial deltas to steady sea-level fall:Implications from flume-tank experiments. Geology,2004.32(5): p.401-404.
    Muto, T., R.J. Steel. Autostepping during the transgressive growth of deltas: Results fromflume experiments. Geology,2001.29(9): p.771-774.
    Nemec, W., et al.. Anatomy of collapsed and re-established delta front in Lower Cretaceousof Eastern Spitsbergen: gravitational sliding and sedimentation processes. AAPGBulletin,1988.72(4): p.454-476.
    Nemec, W., R. Steel. Fan Deltas––sedimentology and tectonic settings. Blackie, London,1988: p.1-444.
    Orton, G., A spectrum of Middle Ordovician fan deltas and braidplain deltas, North Wales: aconsequence of varying fluvial clastic input. Fan-deltas: Sedimentology and tectonicsettings. Blackie, Glasgow,1988: p.23-49.
    Orton G J, Reading H G. Variability of deltaic processes in terms of sediment supply, withparticular emphasis on grain size. Sedimentology,1993,40(3):475-512.
    Posamentier, H., M. Jervey, P. Vail. Eustatic controls on clastic deposition I—conceptualframework.1988.
    Ritchie, B.D., R.L. Gawthorpe, S. Hardy. Three-Dimensional Numerical Modeling ofDeltaic Depositional Sequences2: Influence of Local Controls. Journal of SedimentaryResearch,2004.74(2): p.221-238.
    Ritchie, B.D., R.L. Gawthorpe, S. Hardy. Three-Dimensional Numerical Modeling ofDeltaic Depositional Sequences1: Influence of the Rate and Magnitude of Sea-LevelChange. Journal of Sedimentary Research,2004.74(2): p.203-220.
    Ryer, T.A.. Transgressive‐Regressive Cycles and the Occurrence of Coal in Some UpperCretaceous Strata of Utah, USA. Sedimentology of Coal and Coal-Bearing Sequences,Int. Assoc. Sedimentologists, Spec. Publ,2009.7: p.217-227.
    Salman, B., H. Robert, B. Lander. A nomalously high porosity and permeability in deeplyburried sandstone reservoies: Origin and predictability. AAPG Bulletin,2002.86(2): p.1~328.
    Shao, L., et al. Coal in a carbonate sequence stratigraphic framework: the Upper PermianHeshan Formation in central Guangxi, southern China. Journal o f the GeologicalSociety,2003.160(2): p.285-298.
    Sheriff, R.E.. Limitations on resolution of seismic reflection and geologic detail derivablefrom them. AAPG Memior,1977.26.
    Vail P R, M.R.M.. Thompson S, Seismic stratigraphy and global changes of sea level (part3): Relative changes of sea level from coastal onlap.1997, Payton: AAPG Memoir.
    Van Wagoner, J., et al. An overview of the fundamentals of sequence stratigraphy and keydefinitions.1988.
    WAKSMAN, S.A., K.R. STEVENS. A critical study of the methods for determining thenature and abundance of soil organic matter. Soil Science,1930.30(2): p.97-116.
    WAKSMAN, S.A., K.R. STEVENS. Contribution to the chemical composition of peat: V.The role of microorganisms in peat formation and decomposition. Soil Science,1929.28(4): p.315.
    Walther, J.. Einleitung in die geologia historische Wissenschaft. Beobachtungen Uber DieBildung Der Gesteine Und ihrer ogranischen Einschlusse,1894.
    Wang, T., et al. Sequence Stratigraphy of the Jurassic Coal Measures in Northwestern China.Acta Geologica Sinica-English Edition,2012.86(3): p.769-778.
    Worden, R.H., M. Mayall, I.J. Evans. The Effect of Ductile-Lithic Sand Grains and QuartzCement on Porosity and Permeability in Oligocene and Lower Miocene Clastics, SouthChina Sea: Prediction of Reservoir Quality. AAPG Bulletin,2000.84(3): p.345-359.
    Xinghe, Y. Interaction between Downslope and Alongslope Processes on the Margins ofDaihai Lake, North China: Implication for Deltaic Sedimentation Models of LacustrineRift Basin. Acta Geologica Sinica‐English Edition,2012.86(4): p.932-948.
    鲍志东.准噶尔盆地侏罗系层序地层学研究.石油勘探与开发,2002(01): p.48-51.
    蔡忠贤,陈发景,贾振远.准噶尔盆地的类型和构造演化.地学前缘,2000(04): p.431-440.
    陈发景,汪新文,汪新伟.准噶尔盆地的原型和构造演化.地学前缘,2005(03): p.77-89.
    陈继华.准噶尔盆地莫西庄地区侏罗系储层低孔低渗成因分析.内蒙古石油化工,2010.36(009): p.188-190.
    陈新,孙中春,唐勇.准噶尔盆地莫北油田侏罗系储层低孔低渗成因分析.特种油气藏,2004(04): p.30-34+124.
    陈业全,王伟锋.准噶尔盆地构造演化与油气成藏特征.石油大学学报(自然科学版),2004(03): p.4-8+136.
    池英柳.可容纳空间概念在陆相断陷盆地层序分析中的应用——以渤海湾盆地下第三系为例.沉积学报,1998(04): p.8-13.
    邓宏文,王红亮,宁宁.沉积物体积分配原理——高分辨率层序地层学的理论基础.地学前缘,2000(04): p.305-313.
    邓宏文,王洪亮,李熙喆.层序地层地层基准面的识别、对比技术及应用.石油与天然气地质,1996(03): p.177-184.
    邓宏文,王洪亮,李熙喆.层序地层地层基准面的识别、对比技术及应用.石油与天然气地质,1996(03): p.177-184.
    邓宏文,祝永军,王红亮.高分辨率层序地层学:原理及应用.2002,北京:地质出版社.
    邓宏文.美国层序地层研究中的新学派──高分辨率层序地层学.石油与天然气地质,1995(02): p.89-97.
    邓宏文.中国陆源碎屑盆地层序地层与储层展布.石油与天然气地质,1999(02): p.12-18.
    邓胜徽.新疆北部的侏罗系.第八届国际侏罗系大会地层丛书, ed.沙金庚, et al. Vol.2.2010,北京:中国科技技术大学出版社.217.
    邓胜徽.中生代主要植物化石的古气候指示意义.古地理学报,2007(06): p.559-574.
    冯增昭.单因素分析多因素综合作图法——定量岩相古地理重建.古地理学报,2004(01): p.3-19.
    符俊辉,邓秀芹.西北地区侏罗纪升温事件及其形成机制(英文).西北大学学报(自然科学版),1999(04): p.338-342.
    符俊辉,邓秀芹.西北地区侏罗纪升温事件及其形成机制.西北地质科学,1999(01): p.10-14.
    符俊辉.西北地区侏罗纪地质事件及其在地层划分对比中的意义.沉积学报,1998(03):p.147-152.
    高善明.滦河三角洲滨岸沙体的形成和海岸线变迁.海洋学报(中文版),1980(04): p.102-114.
    顾家裕,方辉,贾进华.塔里木盆地库车坳陷白垩系辫状三角洲砂体成岩作用和储层特征.沉积学报,2001(04): p.517-523.
    顾家裕,郭彬程,张兴阳.中国陆相盆地层序地层格架及模式.石油勘探与开发,2005(05): p.11-15.
    顾家裕,张兴阳.陆相层序地层学进展与在油气勘探开发中的应用.石油与天然气地质,2004(05): p.484-490.
    顾家裕,张兴阳.中国西部陆内前陆盆地沉积特征与层序格架.沉积学报,2005(02): p.187-193.
    顾家裕.陆相盆地层序地层学格架概念及模式.石油勘探与开发,1995(04): p.6-10+108.
    关德师.松辽盆地下白垩统层序地层及沉积体系研究.2005,中国科学院研究生院(广州地球化学研究所).
    郭彦如.大型坳陷湖盆层序地层格架的研究方法体系——以鄂尔多斯盆地中生界延长组为例.沉积学报,2008(03): p.384-391.
    韩宝福,何国琦,王式洸.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质.中国科学(D辑:地球科学),1999(01): p.16-21.
    何登发,赵文智.中国西北地区沉积盆地动力学演化与含油气系统旋回.1999,北京:石油工业出版社.181.
    何登发.准噶尔盆地车排子-莫索湾古隆起的形成演化与成因机制.地学前缘,2008(04):p.42-55.
    何登发.准噶尔盆地古隆起的分布与基本特征.地质科学,2005(02): p.248-261+304.
    何登发.准噶尔盆地莫索湾凸起构造演化动力学.中国石油勘探,2005(01): p.22-33+2.
    何登发.准噶尔盆地中侏罗统西山窑组与头屯河组间不整合面特征及其油气勘探意义.古地理学报,2007(04): p.387-396.
    何国琦,陆书宁,李茂松.大型断裂系统在古板块研究中的意义──以中亚地区为例.高校地质学报,1995(01): p.1-10.
    何幼斌,王文广.沉积岩与沉积相.2007,北京:石油工业出版社.290.
    贺振建,刘宝军,王朴.准噶尔盆地中部4区块储层主控因素.油气地质与采收率,2007(02): p.54-56+114.
    侯伯刚.地震属性及其在储层预测中的影响因素.石油地球物理勘探,2004(05): p.553-558+574-496+628.
    侯明才,陈洪德,田景春.层序地层学的研究进展.矿物岩石,2001(03): p.128-134.
    纪友亮,冯建辉.东濮凹陷古近系的低位三角洲沉积.石油勘探与开发,2003(01): p.112-114.
    纪友亮.冀中坳陷饶阳凹陷古近系层序地层学及演化模式.古地理学报,2006(03): p.397-406.
    纪友亮.准噶尔盆地车-莫古隆起形成演化及对沉积相的控制作用.中国科学:地球科学,2010(10): p.1342-1355.
    贾承造.层序地层学研究新进展.石油勘探与开发,2002(05): p.1-4.
    姜在兴.层序地层学研究进展:国际层序地层学研讨会综述.地学前缘,2012(01): p.1-9.
    姜在兴.沉积体系及层序地层学研究现状及发展趋势.石油与天然气地质,2010(05): p.535-541+514.
    焦养泉.扇三角洲沉积体系及其与油气聚集关系.沉积学报,1998(01): p.70-75.
    康玉柱.准噶尔-吐哈盆地构造体系控油作用研究.2011,北京:地质出版社.244.
    匡立春.准噶尔盆地岩性油气藏勘探成果和方向.石油勘探与开发,2005.32(6): p.32-37.
    况军.准噶尔盆地腹部侏罗系砂体成因类型与储集性能.新疆石油地质,2005(02): p.145-147.
    况军.准噶尔盆地古隆起与油气勘探方向.新疆石油地质,2005(05): p.44-51.
    赖志云and周维,舌状三角洲和岛足状三角洲形成及演变的沉积模拟实验.沉积学报,1994.12(002): p.37-44.
    李本亮.断层相关褶皱理论与应用—以准噶尔盆地南缘地质构造为例.2010,北京:石油工业出版社.270.
    李道品.低渗透砂岩油田开发.1999,北京:石油工业出版社.
    李锦轶,肖序常.对新疆地壳结构与构造演化几个问题的简要评述.地质科学,1999(04):p.405-419.
    李锦轶.天山山脉地貌特征、地壳组成与地质演化.地质通报,2006(08): p.895-909.
    李丕龙.准噶尔盆地构造沉积与成藏.2010,北京:地质出版社.340.
    李胜利.利用鄂尔多斯盆地镇泾油田沉积微相展布与演化规律分析油田开发调整方向.地学前缘,2008.15(1).
    李思田,杨士恭,林畅松.论沉积盆地的等时地层格架和基本建造单元.沉积学报,1992(04): p.11-22.
    李思田.大型陆相盆地层序地层学研究──以鄂尔多斯中生代盆地为例.地学前缘,1995(04): p.133-136+148.
    李思田.含煤盆地层序地层分析的几个基本问题.煤田地质与勘探,1993(04): p.1-9.
    李思田.盆地分析与煤地质学研究.地学前缘,1999(S1): p.133-138.
    李亚萍.准噶尔盆地基底的探讨:来自原泥盆纪卡拉麦里组砂岩碎屑锆石的证据.岩石学报,2007(07): p.1577-1590.
    李燕,齐宇.准噶尔盆地永进油田特低渗储层分类评价研究.内蒙古石油化工,2012(11):p.115-118.
    李增学,余继峰,杜振川.含煤地层高分辨层序地层研究的现状与展望.山东科技大学学报(自然科学版),2001(04): p.8-12+18.
    李增学.鄂尔多斯盆地晚古生代含煤地层层序地层与海侵成煤特点.沉积学报,2006(06): p.834-840.
    梁全胜.断层垂向封闭性定量研究方法及其在准噶尔盆地白家海凸起东道海子断裂带应用.现代地质,2008(05): p.803-809.
    林畅松.沉积盆地的层序和沉积充填结构及过程响应.沉积学报,2009(05): p.849-862.
    林畅松.库车坳陷白垩纪沉积层序构成及充填响应模式.中国科学(D辑:地球科学),2004(S1): p.74-82.
    凌云.基本地震属性在沉积环境解释中的应用研究.石油地球物理勘探,2003(06): p.642-653+579-580.
    刘宝珺,张锦泉.沉积成岩作用.1992,北京:科学出版社.
    刘传虎.准噶尔盆地腹部层序地层及隐蔽圈闭识别.2006,北京:地质出版社.129.
    刘豪,王英民,王媛.浅析准噶尔盆地侏罗系煤层在层序地层中的意义.沉积学报,2002(02): p.197-202.
    刘招君,程日辉,易海永.层序地层学的概念、进展与争论.世界地质,1994(03):p.56-68.
    刘振夏, BerneS, LATALANTE科学考察组.东海陆架的古河道和古三角洲.海洋地质与第四纪地质,2000(01): p.9-14.
    罗蛰潭,王允诚.油气储集层的孔隙结构.1986,北京:科学出版社.
    梅冥相,于炳松,靳卫广.塔里木盆地库车坳陷白垩纪层序地层格架及古地理演化.古地理学报,2004(03): p.261-278.
    梅志超,林晋炎.湖泊三角洲的地层模式和骨架砂体的特征.沉积学报,1991(04): p.1-11.
    倪新锋.陆相层序地层学理论体系及其发展趋势.沉积与特提斯地质,2002(04): p.35-43.
    倪逸.储层油气预测中地震属性优选问题探讨.石油地球物理勘探,1999(06): p.614-626+734.
    彭希龄.准噶尔盆地早古生代陆壳存在的证据.新疆石油地质,1994(04): p.289-297.
    邱中建,康竹林,何文渊.从近期发现的油气新领域展望中国油气勘探发展前景.石油学报,2002.23(4): p.1-6.
    裘亦楠,肖敬修,薛培华.湖盆三角洲分类的探讨.石油勘探与开发,1982(01): p.1-11.
    任于灿,周永青.废弃的黄河三角洲的地貌特征及演化.海洋地质与第四纪地质,1994(02): p.19-28.
    邵龙义,窦建伟,张鹏飞.含煤岩系沉积学和层序地层学研究现状和展望.煤田地质与勘探,1998(01): p.6-11.
    邵龙义.中国含煤岩系层序地层学研究进展.沉积学报,2009(05): p.904-914.
    寿建峰,张惠良,斯春松.砂岩动力成岩作用.2005,北京:石油工业出版社.
    宋传春.准噶尔盆地中部沉积体系及沉积特征.2006,北京:地质出版社.
    覃建雄.层序地层学发展的若干重要方向.岩相古地理,1997(02): p.63-70.
    佟殿君,任建业,李亚哲.准噶尔盆地侏罗系西山窑组沉降中心的分布及其构造控制.大地构造与成矿学,2006(02): p.180-188.
    佟殿君,任建业,任亚平.准噶尔盆地车莫古隆起的演化及其对油气藏的控制.油气地质与采收率,2006(03): p.39-42+106.
    汪彦.中国高分辨率层序地层学的研究现状.天然气地球科学,2005(03): p.352-358.
    王敏芳.准噶尔盆地侏罗系储集层特征及影响因素分析.大庆石油地质与开发,2005(05): p.20-23+104.
    王宜林.准噶尔盆地侏罗系层序地层划分.新疆石油地质,2001(05): p.382-385+1.
    王卓飞,蒋宜勤,祝嗣全.准噶尔盆地侏罗系低渗透油气储层特征及成因探讨.断块油气田,2003(05): p.23-25+36-90.
    魏魁生.松辽盆地白垩系高分辨率层序地层格架.石油与天然气地质,1997(01): p.9-16.
    吴宏海.高岭石和硅/铝-氧化物对腐殖酸的吸附实验研究.岩石矿物学杂志,2003(02):p.173-176.
    吴孔友.准噶尔盆地构造演化与动力学背景再认识.地球学报,2005(03): p.217-222.
    吴庆福,周德明.准噶尔盆地地质结构及找油新启示.新疆石油地质,1982(03): p.1-20.
    吴庆福.哈萨克斯坦板块准噶尔板片演化探讨.新疆石油地质,1985(01): p.11-22.
    吴庆福.准噶尔盆地发育阶段、构造单元划分及局部构造成因概论.新疆石油地质,1986(01): p.29-37.
    吴晓智,赵永德,李策.准噶尔东北缘前陆盆地构造演化与油气关系.新疆地质,1996(04): p.297-305.
    吴因业.煤层──一种陆相盆地中的成因层序边界.石油学报,1996(04): p.28-35.
    吴因业.吐哈盆地侏罗系含煤沉积层序特征研究.石油勘探与开发,1995(05): p.35-39+97-98.
    肖序常.新疆北部及其邻区大地构造.1992:地质出版社.
    谢庆邦.陕北三叠系延长组低渗储集层孔隙结构特征及其评价.石油勘探与开发,1988(02): p.48-55+37.
    新疆维吾尔自治区区域地层表编写组,西北地区区域地层表:新疆维吾尔自治区分册.1981:地质出版社.
    熊琦华,吴胜和.新疆三塘湖盆地煤系地层低渗透砂岩储集层成因机理及储集特征.新疆石油地质,1997.18(2): p.170-175.
    徐怀大.陆相层序地层学研究中的某些问题.石油与天然气地质,1997(02): p.3-9.
    薛良清.层序地层学研究现状、方法与前景.石油勘探与开发,1995(05): p.8-13+96.
    杨文孝,况军,徐长胜.准噶尔盆地大油气田形成条件和预测(庆祝克拉玛依油田勘探开发40周年).新疆石油地质,1995(03): p.200-211+284.
    杨占龙.地震属性分析与岩性油气藏勘探.石油物探,2007(02): p.131-136+13-14.
    尹善春.泥炭沼泽的演化及其机制.煤田地质与勘探,1995(06): p.6-11.
    尹延鸿,周永青,丁东.现代黄河三角洲海岸演化研究.海洋通报,2004(02): p.32-40.
    由伟丰.准噶尔盆地腹部地区中—上侏罗统沉积相研究.中国西部油气地质,2006(03):p.276-280.
    于兴河,碎屑岩系油气储层沉积学.2008,北京:石油工业出版社.549.
    于兴河,李胜利.碎屑岩系油气储层沉积学的发展历程与热点问题思考.沉积学报,2009. v.27(05): p.880-895.
    于兴河,王德发,孙志华.湖泊辫状河三角洲岩相、层序特征及储层地质模型──内蒙古岱海湖现代三角洲沉积考察.沉积学报,1995(01): p.48-58.
    于兴河,王德发.陆相断陷盆地三角洲相构形要素及其储层地质模型.地质论评,1997(03): p.225-231.
    曾大乾,李淑贞.中国低渗透砂岩储层类型及地质特征.石油学报,1994(01): p.38-46.
    张春生.扇三角洲形成过程及演变规律.沉积学报,2000(04): p.521-526+655.
    张龙海.不同类型低孔低渗储集层的成因、物性差异及测井评价对策.石油勘探与开发,2007. No.201(06): p.702-710.
    张兴阳.三级基准面旋回内三角洲砂体骨架模型的建立——以陕北安塞三角洲露头为例.沉积学报,2006(04): p.540-548.
    张耀荣.准噶尔盆地重磁力场特征与基底结构.新疆石油地质,1982.3(5): p.1-5.
    赵白.准噶尔盆地的基底性质.新疆石油地质,1992(02): p.95-99.
    赵白.准噶尔盆地的形成与演化.新疆石油地质,1992(03): p.191-196.
    赵焕庭,珠江三角洲的形成和发展.海洋学报(中文版),1982(05): p.595-607.
    赵霞飞,张塞,张百灵.陆相低渗透储层形成机制与区域评价.2002,北京:地质出版社.
    郑浚茂,陆源碎屑沉积环境的粒度标志.1982,北京:武汉地质学院北京研究生部.
    郑浚茂,庞明.碎屑储集岩的成岩作用研究.1989,北京:中国地质大学出版社.133.
    郑浚茂,应凤祥.煤系地层(酸性水介质)的砂岩储层特征及成岩模式.石油学报,1997(04): p.19-24.
    郑荣才,吴朝容,叶茂才.浅谈陆相盆地高分辨率层序地层研究思路.成都理工学院学报,2000(03): p.241-244.
    郑荣才.高分辨率层序地层学.2010,北京:地质出版社.
    周路.准噶尔盆地车莫古隆起侏罗系剥蚀厚度恢复.古地理学报,2007(03): p.243-252.
    朱春俊.低孔低渗砂岩储层成因及控制因素研究.2010,中国矿业大学(北京).
    朱国华.陕甘宁盆地西南部上三叠系延长统低渗透砂体和次生孔隙砂体的形成.沉积学报,1985(02): p.1-17+151-153.
    朱筱敏,康安,王贵文.陆相坳陷型和断陷型湖盆层序地层样式探讨.沉积学报,2003(02): p.283-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700