用户名: 密码: 验证码:
双坨子气田下白垩统泉三段储层地质建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双坨子气田结合目前的生产情况可以看出,气藏部分气井压力下降速度较快,气产量递减幅度大,产水量增大,直接影响了气藏的稳产。三维地质建模研究是油藏开发阶段的一个核心内容,是油气藏数值模拟的必要参数和油气藏开发调整方案的直接依据。建立能够正确反映油气藏地质特征的地质模型是决定油气藏数值模拟、动态预测的关键,对进一步认识油气藏地质特征及调整开发方案从而达到提高油田采收率的目的具有重要意义。本论文利用岩心、地质、测井等资料对双坨子气田泉三段开展了沉积相分析、测井储层参数精细解释研究和储层特征研究,最后利用上述研究成果建立了双坨子气田泉三段三维地质模型。
     基于收集到的录井、岩芯和测井资料,识别划分了泉三段单井沉积微相,并编制了泉三段Ⅲ砂层组的沉积相平面展布图,进而总结出泉三段的沉积相模式。泉三段发育曲流河沉积体系。曲流河包括河床、边滩、天然堤、决口扇以及泛滥平原等微相,泉三段沉积微相中边滩最为发育。
     岩芯测试物性资料统计分析表明:泉三段砂岩的孔隙度的最小值为4.4%,最大值为27.7%,平均值为19.15%;泉三段砂岩的渗透率的最小值为0.05 10~(-3)μm~2,最大值为953 10~(-3)μm~2,均值为95.57 10~(-3)μm~2。基于“岩芯刻度测井”,采用非线性BP人工神经网络,建立了双坨子气田泉三段单井测井储层参数精细解释模型。研究区5口取芯井神经网络预测孔隙度平均绝对误差为0.73%,渗透率平均相对误差为45.89%,误差较小。
     通过对泉三段单井储层级别的划分及统计,得出泉三段主要发育Ⅰ类和Ⅱ类储层,储层以发育“中高孔—中渗型”为主。分析泉三段Ⅸ砂层组的砂体厚度平面图,沉积相控制着储层的发育,储层主要发育在边滩、天然堤微相中。顺着东西向剖面,储层随着河道的摆动迁移而发生变化,顺着河道的方向,储层的连通性是比较好的,呈现条带状形态。
     在综合研究该区地质特征的基础上,利用Petrel软件建立了泉三段的构造模型、框架模型、砂组框架模型。采用序贯指示模拟算法建立了泉三段砂泥岩相模型。在数据分析及得到的变差函数模型基础上,在砂泥岩相控制下,进行孔隙度模拟得到双坨子气田泉三段的孔隙度模型,渗透率的模拟以孔隙度为第二变量,进行协同模拟得到双坨子气田渗透率分布模型,利用岩相对其约束,进行双坨子气田含气饱和度模拟。建模结果表明:双坨子气田泉三段的储层总体表现为“中高孔—中渗型”特征,孔隙度、渗透率的分布受到砂泥岩相的明显控制。最后根据建模成果计算得到的双坨子气田泉三段天然气地质储量为8.51亿方。
From the current productivity of Shuang Tuozi gas field, it is can been seen that the pressure dropping quickly in some gas well of gas pool, the gas productivity declining quickly and the water production are directly affected the stable production of the gas pool. The reservoir geological modeling research is the key for the development phase, the necessary parameter for the numerical simulation of reservoir, the directly basis for the development and adjustment program. Establishing the geological modeling correctly reflected geological characteristic of reservoir is the key for the reservoir numerical simulation and dynamic prediction., has important significance for the further understanding the geological characteristic of reservoir and adjusting the development program in order to reach the purpose of improving the recovery ratio. In this paper, it is using the core data, geologic information, logging data to analysis the sedimentary facies of Quan III member of Shuan Tuozi gas field, fine logging interpretation model on reservoir parameters and research on the reservoir characteristic. Finally it is using the above research results to establish the reservoir geological model of Quan III member in Shuang Tuozi gas field.
     Based on the borehole log, core and log data, it is identified and classified the microfacies of the single well of Quan III member and composed the sedimentation map of III sand set of Quan III member. Then it is summarized the sedimentation model The Quan III member develops snaking stream. The snaking stream is composed of riverbed, marginal bank, crevasse splay, flood plain and so on. The marginal bank is the mostly developed in the Quan III member.
     The statistics of petrophysical data tested using the core shows that the minimum value of the porosity is 4.4%, the maximum value of the porosity is 27.7% and the average value of the porosity is 19.15% and the minimum value of the permeability is 0.05 10~(-3)μm~2, the maximum value of the permeability is 953 10~(-3)μm~2, the average value of the permeability is 95.57 10~(-3)μm~2. On the basis of the principal of core scale the log, it is established the fine interpretation model of reservoir parameter of single well of Quan III member in the Shuang Tuozi gas field using the non-linear BP artificial neural network. The mean absolute error of the predicted porosity by the neural network is 0.73% and the mean relative error of the predicted permeability by the neural network is 45.89% of the 5 core-well in the studied area. The result shows that the error is minimum.
     Through the classifying and calculating the reservoir degree of single well of Quan III member, it is obtained that it is mainly developed the I type and II type in the Quan III member. The study demonstrates that it is the medium-large porous- and medium penetrative reservoir in the Quan III member. Through the sand body’s thickness map of the mainly productivity IX sand set of Quan III, it is reached that sedimentary facies controls the reservoir’s development and reservoir is mainly mainly developed in the marginal bank and natural bank. Along with east-western section, the sand body changed along with the deviating and moving of the river channel. And along with the direction of river channel, the connectivity of the reservoirs is relatively good and the shape is banding.
     On the basis of comprehensive study of the geologic feature in this area, it is used the Petrel Software to established the structural model, skeleton model and sand set skeleton model of the Quan III member. Using the sequential indication simulated algorithm, it is established the sand-mud lithofacies model of the Quan III member. Based on the data analyses and variation function and under the control of sand-mud lithofacies, it is reached the porosity model after simulation. Using the porosity as the second variable and with the synergistic simulation, it is established the permeability model. By the means of controlling under lithofacies, it is established the saturation model. The model is demonstrated that the characteristic of reservoir is medium-large porosity and medium permeability. And the distribution of the porosity and permeability is under the control of lithofacies. Finally, it is counted that the gas in place is 8.51 billion square of the Quan III member in the Shuang Tuozi gas field in accordance with result of model.
引文
[1]翟雨阳,孙志超.地质建模技术在河间油田开发研究中的应用[J].石油天然气学报,2008,30(6):211-213.
    [2]凌咏红.油田三维地质建模技术及其软件实现[J].计算机工程,2009,35(1):237-239.
    [3]魏嘉.地质建模技术[J].勘探地球物理进展,2007(30):2-6.
    [4]宇淑颖,贾丽莹等.坨深1井试井资料解释与应用[J].油气井测试,2004,13(4):20-24.
    [5]王根久,赵丽敏等.随机建模中变差函数的敏感性研究[J].石油勘探与开发,2005,32(1):72-75.
    [6]刘运成,阮宝涛,李忠埕等.双坨子气田泉头组第一段沉积微相及储集物性特征[J].成都理工大学(自然科学版),2010,37(1):75-81.
    [7]魏莲.测井沉积相分析方法研究[D].成都:成都理工大学,2001.
    [8]尉中良,邹长春.地球物理测井[M].北京:地质出版社,2005.
    [9]姜在兴.沉积学[M].北京:石油工业出版社,2002.
    [10]雍世和,张超模.测井数据处理与综合解释[M].东营:中国石油大学出版社,2007.
    [11]夏红泉,刘红岐.BP神经网络在测井资料标准化中的应用[J].测井技术,1996,20(3):201-206.
    [12]雍世和.最优化测井测井解释[M].北京:石油大学出版社,1995.
    [13]庞雯,郭德运,赵靖舟等.鄂尔多斯盆地甘谷驿油田东区长6油层储层特征及储层评价[J].兰州大学学报(自然科学版),2004,40(5):96-99.
    [14]包莹莹.辽河油田锦150块中生界油层储层地质建模研究[D].阜新:辽宁工程技术大学,2008.
    [15]闫百泉,马世忠,王龙等.曲流点坝内部剩余油形成与分布规律物理模拟[J].地学前缘,2008,15(1):65-70.
    [16]刘伟,刘红岐,李建萍等.PETREL软件在油藏储层地质建模中的应用实例[J].国外测井技术,2010,2(175):20-21.
    [17]李瑛亮,龙斌,金韦华等.白豹地区63超低渗储层测井解释方法研究及应用[J].中国高新技术企业,2010,28(163):86-88.
    [18]姚光庆,吴涛,张博全等.包日温都扇三角洲砂砾岩低渗透油藏小层沉积微相识别与制图[J].特种油气藏,2000,7(2):1-7.
    [19]孙立双,王恩德,刘国华等.变差函数稳健性研究[J].东北大学学报(自然科学版),2008,29(2):277-279.
    [20] Haldoron H, Lake L.A new approach to shale management in field scale simulation models[J].SPE 10976,1984:1-8.
    [21] Mallet J L.Discrete Smooth Interpretation [J].ACM Transactions on Graphics,1989,8(2):121-144.
    [22] Menezes R, Garciarsoidan P, Febrero-Bande M.A comparison of akpproaches for variogram achievement[J].Computational Statistics,2005,20(4):623-642.
    [23] Glatzer E, Muller W G.Residual diagnostics for variogram fitting[J].Computers & Geosciences,2004,30(8):859-866.
    [24] Ramos J A.Expontial data fitting applied to infiltration, hydrograph separation, and variogram[J].Stochastic Environmental Research and Risk Assessment,2006,20(1):33-52.
    [25] Krige D G, Magri E J.Studies of the effects of outliers and data trensformaition on variogram estimates for a base metal and a gold ore body[J].Journal of Mathematical Geology,1982,14(6):557-564.
    [26]孟庆武.沉积相综合分析方法研究及软件研制[D].北京:中国科学院软件研究所,2001.
    [27]郭凯,史静,杨勇.储集层随机建模中三维变差函数研究[J].新疆石油地质,2007,28(2):179-181.
    [28]焦艳丽.大庆油田萨北开发区二类油层储层沉积模式[J].大庆石油学院学报,2010,34(3):19-22.
    [29]纪玉峰.新民油田东垒区块泉头组三、四段沉积微相研究[D].北京:中国地质大学,2006.
    [30]蒋旭东.东营凹陷尚店油田馆陶组沉积相研究[J].江汉石油科技,2010,20(1):6-9.
    [31]王允城.油气储层评价[M].北京:石油工业出版社,1999.
    [32]张兵,郑荣才,张春生等.鄂尔多斯盆地庆64井区延10油层的储层三维地质建模[J].成都理工大学学报(自然科学版),2010,37(1):29-35.
    [33] DEUTSCH C V,WANG LiBING.Hierarchial object based stochastic modeling of fluvial reservoirs[J].Mathematical Geology,1996,28(7):857-880.
    [34]燕军,刘堂晏,孙嘉戌等.改进的神经网络软件系统在多井测井分析中的应用[J].石油工业计算机应用,1995(9):52-55.
    [35]岳昊.含断层地层的三维地质建模与剖切[D].济南:山东科技大学,2005.
    [36]吴刚.基于变差函数及隐含多项式曲线的图像物体分割描述与识别方法研究[D].合肥:合肥工业大学,2001.
    [37]燕继成,文政,夏宏泉.基于多矿物模型分析的最优化测井解释在X油田中的应用研究[J].国外测井技术,2008(12):19-20.
    [38]杨斌,匡立春,孙中春等.神经网络在石油测井中的应用[M].北京:石油工业出版社,2005.
    [39]单敬福,纪友亮,史榕等.基于神经网络和开窗技术的储层渗透率的预测方法-以大庆萨尔图油田葡萄花油层组PⅠ1-PⅠ4小层砂岩为例[J],地质科学,2007,42(2):395-402.
    [40]刘国栋,晏宁平,黄文科等.精细变差函数分析在靖边气田下古气藏的应用[J].石油化工应用,2009,28(7):31-32.
    [41]段天向,刘晓梅,张亚军等.Petrel建模中的几点认识[J].岩性油气藏,2007,19(2):102-107.
    [42]徐志华.离散裂缝网络地质建模技术研究[D].北京:中国石油大学,2009.
    [43]张冰.利用测井资料研究沉积相与储层非均质性[D].长春:吉林大学,2010.
    [44] Hossain Rahimpour-Bonab.A Proedure for appraisal of a hydrocarbon reservoir continyuity and quantification of its heterogenetity[J].Joural of Petroleum Science and Engineering,2007(58):1-12.
    [45]吕晓光,姜彬,李洁.密井网条件下的储层确定性建模方法[J].大庆石油地质与开发,2001,20(5):19-24.
    [46]徐守成,赵志川,胡方.平落坝气田须二段储层分布特征[J].西部探矿工程,2010(11):103-110.
    [47]李宏建,李生业,张研等.浅谈松辽盆地南部双坨子地区深层地质特征[J].录井工程,2005(3):56-59.
    [48]张景义,魏嘉,朱文斌等.三维地质建模在大庆T4油田水平井开发中的应用[J].勘探地球物理进展,2009,32(2):143-146.
    [49] Navdal G,JOHNSON L M, Aanonsen SL.et al.Reservoir monitoring and continous model updating using resemble Kalman filter[J].SPE Journal,2005,10(1):66-74.
    [50]吕晓光,张永庆,陈兵等.深度开发油田确定性与随机建模结合的相控建模[J].石油学报,2004,25(5):60-64.
    [51] Clark I.Practicial Geostatistic[M].London:Applied Sciences,2000.
    [52]舒良树,幕玉福,王伯长等.松辽盆地含油气地层及其构造特征[J].地质学杂志,2003,27(4):340-347.
    [53]刘宝珺.沉积岩石学[M].北京:地质出版社,1979.
    [54]高恒逸,徐国盛,周连德等.双坨子气田泉一段储层含气性识别与老井挖潜[J].天然气技术,2008,2(3):19-21.
    [55]李瑞磊.松辽盆地(南部)深层构造特征及油气富集规律研究[D].长春:吉林大学,2005.
    [56]程日辉,王国栋,王璞.松辽盆地白垩系泉三段—嫩二段沉积旋回与米兰科维奇周期[J].地质学报,2008,82(1):55-63.
    [57]方石,刘招君,王少双等.松辽盆地合隆地区泉头组河流沉积体系判别及其形成条件分析[J].吉林大学学报(地球科学版),2003,33(3):306-311.
    [58]潘树新,郭维华,马凤良等.松辽盆地榆树水系泉头组—嫩江组沉积相特征及勘探潜力[J].新疆石油地质,2010,31(1):47-50.
    [59]王根久,赵丽敏,李薇.随机建模中变差函数的敏感性研究[J].石油勘探与开发,2005,32(1):72-75.
    [60]胡望水,张宇焜,牛世忠.相控储层地质建模研究[J].特种油气藏,2010,17(5):37-39.
    [61]左毅,芦凤明,刘天鹤.相控建模技术在河流相复杂断块的应用[J].特种油气藏,2006,13(1):36-39.
    [62]裘怿楠,陈子琪.油藏描述[M].北京:石油工业出版社,1996.
    [63]李强.油藏开发后期地质建模及剩余油研究-一大港王徐庄生物灰岩油藏为例[D].成都:成都理工大学,2007.
    [64]贾焕军.油气层神经网络识别方法研究[D].大庆:大庆石油学院,2003.
    [65] Lippmann R P.An Introduction to computing with neural nets[J].IEEE ASSP Maganine,1987(4):789-805.
    [66]于兴河,陈建阳,张志杰等.油气储层相控随机建模技术的约束方法[J].地学前缘,2005,12(3):237-244.
    [67]于兴河,李剑峰.碎屑岩系储层地质建模与计算机模拟[M].北京:地质出版社,1996.
    [68]桂峰,黄智辉,马正.利用相控模型进行井间参数预测[J].地球科学,2001,26(1):49-53.
    [69]刘得军,冉群英,王斌.支持向量机在大庆齐家凹陷测井解释中的应用[J].石油物探,2007,46(2):156-161.
    [70] Burges C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
    [71]魏延平,张鸣.子洲油田何家集区油层沉积、储层特征[J].科技咨询,2010(9):103.
    [72]薛永超,彭仕宓,朱红卫等.新立油田泉三、四段储层成岩作用及储集空间演化[J].西安石油大学学报(自然科学版),2005,20(4):11-16.
    [73] Alaa M,Salem S,Morad S.etc.Diagenesis and reservoir quality evolution of fluvial sandstones during progressive burial and uplift:evidence from the Upper Jurassic Boipeba Member, ReconcavoBasin,North eastern Brazil[J],AAPG Bulletin,2000,84(7):1015-1040.
    [74]段新国.陆相浅层气藏早期评价技术[D].成都:成都理工大学,2007.
    [75]周贤文.精细油藏描述总述[J].国外油气地质信息,1999,71(3):33-41.
    [76] Liaushuang Qi, Timoyhy R.Carr.Neural network prediction of carbonate lithofacies from well log, Big Bow and Sand Arroyo Creek field, Southwest Kansas[J],Computer & Geosciences,2006(32):947-964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700