用户名: 密码: 验证码:
基于键合图理论和Adams的EPS系统性能仿真与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车转向系统影响汽车操纵稳定性、主动安全性和乘坐舒适性等性能。电动助力转向作为未来汽车转向的主流技术,将作为标准件装备到汽车上,并将在动力转向领域占据主导地位。这是汽车技术向电子化、智能化发展的必然趋势,是国内外汽车工业界学者研究的焦点。EPS系统是机电耦合的系统,其常规建模推导过程通常较为复杂,容易出错,而键合图理论为能量耦合系统提供了一种直观便捷的建模方法,提高了研究效率。本文以某车型为研究对象,着重研究了电动助力转向系统的结构设计、模型建立、控制方法以及试验评价,主要工作如下:
     首先,在分析电动助力转向系统设计性能要求的基础上,针对研究车型的特点对EPS系统进行选型,对关键零部件进行设计和校核,并基于CATIA平台对EPS系统进行结构设计和虚拟装配。
     其次,针对EPS系统机电耦合的特点,为了降低建模难度,提高效率,改变了传统的基于牛顿力学的建模方法,运用键合图理论列画各能域的功率键合图,明确了EPS系统内部的能量传递关系,建立了EPS系统模型,并根据键合图理论的动力学原理在Matlab中进行模拟台架试验的转向操纵性仿真,结果表明所研究的EPS系统建模和仿真方法是有效的。为了研究EPS系统在典型工况下对整车性能的影响,运用ADAMS多体动力学仿真软件建立了整车多体动力学模型,包括前后悬架模型、转向系统模型、轮胎和车身模型、发动机和制动模型。基于Insight平台对模型进行优化,并通过试验验证了模型的准确性。
     联合采用ADAMS与MATLAB对整车EPS控制性能进行仿真,分别进行了双纽线工况和角阶跃工况的仿真。其中EPS常规助力控制策略中采用基于模糊控制的PD参数自整定控制方法,实现比例和微分控制作用的最佳组合。仿真结果表明EPS系统助力效果明显,整车操纵稳定性得到改善,模糊PD控制比传统PD控制具有更好的稳定性。
     最后,以国产某轿车为载体,搭载自行设计的控制器,进行实车道路试验,分别进行原地转向试验、双纽线试验、蛇行试验和双移线试验。根据国家标准对试验结果进行分析和评价,结果表明所设计的EPS系统改善了整车的操纵稳定性。
The steering system is critical to the handing stability, active security and comfort of the vehicle. Electric Power Steering (EPS) will be the mainstream steering technology in the future and the standard equipment in the vehicle. It will also hold the dominant position in the area of power steering. This technology meets the demand to electronical and intelligent modern vehicles and it has become the focus of researchers in automotive industry from domestic and abroad. The usual modeling and deduction process of electromechanical hybrid EPS system is complex and error-prone. Bond-graph theory provides a visual and convenient modeling method for the multi-energy coupling system, which improves the research efficiency. This article focus on the structure design, model built, control method and test evaluation for EPS system. The major contents are as follows:
     Firstly, on the basis of analysis performance requirements in design of EPS system, the coloumn assisted EPS system was designed and main parts of the system were checked. The structure of EPS and the virtual assembly were made on the basis of CATIA.
     Secondly, according to the characteristc of electromechanical hybrid EPS system, based on the Bond-graph theory, the EPS model was built. This decreased the modeling difficulties and improved the efficiency which is different from classical mechanical modeling method. Druing the modeling process, the energy transfer relationship among each energy domain was explicit. The bond graphs of each subsystem were drawn and the simulation model was built with MATLAB accord to the dynamic principle of Bond-graph theory. The steering maneuverability simulation was conducted, which showed a good and speed following assit performance. The result of simulation also showed the modeling and simulation method was effective. Based on these, in order to study the the vehicle performance with EPS under typical work conditions, the mulity body model was built with ADAMS including suspension system, steering system, tire and body, engine and brake system. This model was optimized on the Insight platform and verified accord to the road test result.
     The next, the vehicle with EPS performance was co-simulated by both ADAMS and MATLAB. Fuzzy PD control method was taken as a general assist control strategy for EPS system, in order to achieve the best combination of the proportion and the differential. The double lane change and step input simulations were made. The result showed the improvement in vehicle stability and fuzzy PD control is more stable than conventional control.
     Finally, vehicle road tests were carried out with the designed controller. According to the national standard, the pivot steer, Lemniscate test, snake test and double lane change test were carried out and evaluated. The result showed that the designed EPS system improved the vehicle handing stability.
引文
[1]陈家瑞.汽车构造[M].第3版(下册).北京:人民交通出版社,1994.
    [2]余志生.汽车理论[M].第2版.北京:机械工业出版社,1998.
    [3]施国标.电动助力转向助力特性仿真与控制策略研究[D].长春:吉林大学,2002.
    [4]孙立军.汽车电动助力转向系统助力特性及控制策略研究[D].镇江:江苏大学,2007.
    [5]毕大宁.汽车转阀式动力转向器的设计与应用[M].北京:人民交通出版社,1998.
    [6]李书龙.汽车电动助力转向系统的研究与开发[D].南京:东南大学,2004.
    [7]毕大宁.2008年重庆转向系统年会报告.
    [8]Gary S.Vasilash. The Future of Steering[J]. Automotive Deisign and Production,2008, Sep: 34-35.
    [9]苗立东,何仁,徐建平,徐勇刚.汽车电动转向技术发展综述[J].长安大学学报.2004,24(1):79-84.
    [10]Werner Harter, Wolfgang Pfeeiffer, Peter Dominke,et al. Future electrial steering system:realizations with saftey requirements [C]. SAE Paper 2000-01-0822,2000.
    [11]Christophere A. Sawyer. The Future of Electric Steering Assistant [J]. Automotive Deisign and Production,2008, Sep:36.
    [12]Philip Koehn and Michael Eckrich. Active Steering-The BMW Approach Towards Modern Steering Technology [C]. SAE Paper 2004-01-1105,2004.
    [13]朱敏慧.未来的EPS技术[J].汽车与配件.2009,27(7):17-19.
    [14]于蕾艳,林逸,李玉芳.汽车线控转向系统综述[J].农业装备与车辆工程.2006(1):32-36,48.
    [15]孙宣峰.电动助力转向系统H∞鲁棒控制及侧向干扰研究[D].镇江:江苏大学,2008.
    [16]刘学,孙凌玉,季学武.EPS电感式转矩传感器正弦波振荡器的研究[J].信息技术.2007(6):83-85,89.
    [17]王齐刚,李万莉,徐鸣谦,李康.电动汽车转向传感器设计理论研究[J].仪表技术与传感器.2008(1):6-7,82.
    [18]赵学平,李欣,陈杰,边姜.电动助力转向系统永磁直流电机PWM控制模式研究[J].系统仿真学报.2010,22(1):174-178.
    [19]刘光启.汽车电动助力转向无刷直流电机控制系统研究[D].武汉:华中理工大学,2005.
    [20]Sam-Sang You a, Seek-Kwon Jeoeng b. Controller design and analysis for automation steering of passenger cars[J]. Mechatronic,2002(12):427-446.
    [21]王海峰,王文建.汽车EPS系统原理及整车应用要点[J].合肥工业大学学报(自然科学版).2009,32(z1):21-24.
    [22]谢刚.汽车电动助力转向系统的设计与控制技术研究[D].成都:四川大学,2006.
    [23]王望予.汽车设计[M].北京:机械工业出版社,2004.
    [24]倪长明.GMR传感器在电动助力转向系上应用及仿真分析[D].重庆:重庆理工大学,2010.
    [25]付其军.小齿轮电动助力转向(P-EPS)系统控制策略研究及实现[D].天津:天津大学,2007.
    [26]李强.基于分岔理论的电动助力转向系统控制策略及其对汽车操稳性影响的研究[D].镇江:江苏大学,2007.
    [27]王健民.速腾车电动助力转向系统分析[J].汽车维护与修理.2010(1):72-74.
    [28]GB/T2978-1997,轿车子午线轮胎产品系列标准[S].
    [29]蒋春彬.汽车电动助力转向控制系统的研究设计[D].镇江:江苏大学,2006.
    [30]濮良贵,纪名刚.机械设计[M].高等教育出版社,2001.
    [31]H. M. Paynter. Analysis and Design of Engineering Systems[M]. Cambrige:M.I.T. Press,1961.
    [32]裘熙定.键合图理论在汽车系统分析与控制中的应用[J].汽车工程.1993,18(5):277-284.
    [33]王中双.基于键合图理论的多体系统耦合动力学建模方法的研究[D].哈尔滨:哈尔滨工业大学,2007.
    [34]王中双.键合图理论及其在系统动力学中的应用[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [35]李强,何仁.键合图理论在汽车线控转向系统建模中的应用[J].农业机械学报.2006,Vol.37(10):27-30.
    [36]王艾伦,刘云.复杂机电系统动力学相似分析的键合图法[J].机械工程学报.2010,Vol.46(1):74-78.
    [37]沈慧军.液压悬置系统参数对车内噪声的影响及控制研究[D].镇江:江苏大学,2007.
    [38]Kim,H.J. and Song, J.B. Control logic for an electric power system using assist motor[J]. Mechatronics.2002,12,447-459.
    [39]吴亦君.汽车电动助力转向系统的建模与仿真[J].中国机械工程.2007,5(3):293-297,307.
    [40]Srihari Vijayakumar and Pinhas Barak. Application of Bond Graph Technique and Computer Simulation to the Design of Passenger Car Steering System[C]. SAE Paper No.2002-01-0617.
    [41]Srihari Vijayakumar and Ram Chandran. Analysis of an Electric Power Assisted Steering System using Bond Graphs[C]. SAE Paper No.2003-01-0586.
    [42]王磊,刘晶郁,颜克亮.基于键图理论对安装EPS系统的车辆操纵稳定性的仿真分析[J].交通标准化.2007,2/3.
    [43]吴浩.电动助力转向系统建模及其助力特性的研究[D].吉林:吉林大学,2003.
    [44]施国标,申荣卫,林逸.电动助力转向系统的建模与仿真技术[J]. 吉林大学学报(工学版).2007,37(1):31-36.
    [45]施国标,林逸,张昕等.电动助力转向助力特性的若干问题[C],中国汽车工程学会2003学术年会.
    [46]Shi Guobiao, Lin Yi and Zhang Xin et al. Simulation of Straight-line Type Assist Characteristic of Electric Power-Assisted Steering[C]. SAE Paper No.2004-01-1107.
    [47]郭孔辉,朱宏巍.汽车转向的力输入控制与角输入控制及其对驾驶员——汽车闭环系统的影响[J].中国机械工程.1997.8,(1):39-42.
    [48]申荣卫,施国标,林逸.电动助力转向系统稳定性分析与研究[J].汽车技术.2006(4):9-12.
    [49][日]安部正人著,陈辛波译. 汽车的运动和操纵[M].北京:机械工业出版社,1998.
    [50]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大 学出版社,2002.
    [51][德]米奇克著,陈荫三译.汽车动力学A卷(第二版)[M].北京:人民交通出版社,1992.
    [52]张洪欣.汽车系统动力学[M].上海:同济大学出版社,1996.
    [53]张越今.汽车多体动力学及计算机仿真[M].长春:吉林科学技术出版社,1998.
    [54]齐朝晖.多体系统动力学[M].北京:科学出版社.2008.
    [55]郑建荣.ADAMS虚拟样机技术应用与提高[M].北京:机械工业出版社.2002.
    [56]刘红军,明平顺,程远会等.ADAMS在汽车操纵稳定性中的应用研究[J].武汉理工大学学报(信息与管理工程版),2003,25(4):50-53.
    [57]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005.
    [58]陈军.MSCADAMS技术与工程分析实例[M].北京:中国水利水电出版社,2009.
    [59]耿建涛.基于ADAMS和响应面理论的整车悬架阻尼优化与试验[D].镇江:江苏大学,2008.
    [60]罗文水.基于ADAMS的某跑车操纵稳定性和制动性仿真分析及优化[D].湖南:湖南大学,2007.
    [61]Using ADAMS/CAR, version 11.0[M], Mechanical Dynamics Inc.1999.
    [62]范成建,熊光明,周明飞.虚拟样机软件MSCADAMS应用与提高[M].北京:机械工业出版社,2006.
    [63]喻广强.基于操纵稳定性的客车前轮定位参数优化设计[D].镇江:江苏大学,2008.
    [64]魏道高.车辆前轮定位参数参数算法与实验研究[D].镇江:江苏大学,2003.
    [65]郑重.基于虚拟样机的悬架优化设计与整车仿真[D].武汉:武汉理工大学.2009.
    [66]王毅.轿车多连杆悬架优化设计及整车稳态转向性能研究[D].合肥:合肥工业大学.2009.
    [67]Thomas D.Gillespie,赵六奇,金达锋译.车辆动力学基础[M].北京:清华大学出版社,2006.
    [68]彭熊雄.基于多体动力学的车轮定位参数与平顺性仿真分析及优化[D].长沙:湖南大学.2009.
    [69]陈明星.双横臂独立悬架中橡胶衬套刚度的研究及优化[D].吉林:吉林大学.2006.
    [70]MSC.Software.Getting Started Using ADAMS/Insight.2005.
    [71]赵立微.基于K&C试验的悬架特性分析与试验优化[D].吉林:吉林大学.2008.
    [72]郭晓冬.基于ADAMS与MATLAB的空气悬架客车阻尼器模糊控制仿真研究[D].镇江:江苏大学,2010.
    [73]王晓东,毕开波,周须峰.基于ADAMS与Simulink的协同仿真技术及应用[J1.计算机仿真,2007,24(04):271-274.
    [74]李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2006.
    [75]林逸,施国标,邹常丰等.电动助力转向助力控制策略的研究[J].汽车技术.2003(3):8-11.
    [76]张国良,曾静,柯熙政,邓方林.模糊控制及其MATLAB应用[M].西安:西安交通大学出版社,2002.
    [77]冯冬青.模糊智能控制[M].北京:化学工业出版社,1998.
    [78]刘金琨著.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700