用户名: 密码: 验证码:
316L不锈钢表面载药微坑制备及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用低温熔融盐电镀/阳极氧化和磁控溅射沉积/阳极氧化两种复合工艺在医用316L不锈钢表面制备了微米级和亚微米级载药微坑,并系统研究铝镀层结构、铝镀层厚度以及阳极氧化工艺参数对微坑结构、密度及尺寸分布等的影响规律以及它们之间的内在联系。深入探讨了不同结构微坑的形成机制,并初步研究了微坑结构对不锈钢表面血液相容性的影响。
     利用扫描电子显微镜、X射线光电子能谱和X射线衍射技术对不锈钢表面在不同制备工艺下获得的铝镀层的表面形貌、成分和相结构进行了分析,结果表明熔融盐电镀法和磁控溅射法制备的铝镀层组织结构分别主要受电流密度和基体负偏压影响。利用磁控溅射技术制备的铝镀层较熔融盐电镀铝镀层的颗粒更为细小、组织更为致密。利用扫描电子显微镜对上述两种方法制备的微坑形貌进行分析,结果表明不锈钢表面形成两种具有典型特征的微坑:一种是其内部由大量细小微坑组成,且基体受到不同程度的腐蚀的微坑,本文称其为复合微坑;另一种是在基体上均匀分布的,内部无细小微坑结构的微坑,本文称其为常规微坑。
     低温熔融盐电镀/阳极氧化工艺在不锈钢表面制备微坑时所需阳极氧化电压较低,且微坑形状主要受铝镀层形貌的影响,当铝镀层形貌以片状为主时,不锈钢表面主要形成圆形或椭圆形规则微坑;当镀铝层形貌以粒状结构为主时,不锈钢表面主要形成方形规则微坑;且微坑尺寸均随着阳极氧化电压的升高和阳极氧化时间的延长而增加。
     磁控溅射沉积/阳极氧化法在不锈钢表面制备的微坑的形状、尺寸及数量与铝镀层的结构密切相关。当镀层中颗粒大小不均,尺寸分布在1.0~2.5μm之间,且颗粒之间有一定的孔隙和缺陷时,不锈钢表面形成大量开口尺寸在30~100μm的不均匀分布的复合微坑;当铝镀层颗粒大小趋向一致,颗粒尺寸在2μm左右,颗粒之间出现明显的衔接,镀层孔隙率显著下降时,不锈钢表面形成均匀致密的方形规则微坑,且微坑有较明显的晶体学取向,呈现出小平面特征;当铝镀层均匀致密,颗粒尺寸在1μm左右时,不锈钢表面易形成圆形规则微坑,微坑的开口尺寸随阳极氧化参数的改变,可在0.2~3μm之间进行调节;当铝镀层呈疏松多孔结构时,不锈钢基体表面形成大量开口尺寸在50~100μm之间的复合微坑。不锈钢表面形成微坑的特征除了受铝镀层形貌影响之外,还受铝镀层厚度、阳极氧化电压、阳极氧化温度及时间等诸多因素的控制,而各因素之间又相互关联相互制约。在相同的阳极氧化温度/电压下,不锈钢表面规则微坑向复合微坑转变的临界阳极氧化电压/温度值随着铝镀层厚度的增加而增加。具有相同铝镀层厚度的试样在相同阳极氧化电压和阳极氧化温度下,微坑的特征又受到阳极氧化时间的控制。通过改变电解液种类、阳极氧化参数都会对基体表面微坑形貌、尺寸及数量产生显著影响。
     通过对以上方法形成的微坑的形貌及其形成过程的详细分析,提出两种典型微坑的形成机制。对于复合微坑而言,阳极氧化初期微孔优先在铝镀层的某些缺陷处生成,并以这些缺陷为中心,在一定尺度范围内优先发展形成微孔群。缺陷中心处微孔向基体发展速率最快,四周依次减弱。这些微孔相继通过Al/316L界面与基体接触,在基体表面形成微小腐蚀坑,小尺寸腐蚀坑迅速汇聚在一起,在不锈钢表面形成内部具有无数微小孔洞特征的复合微坑。316L不锈钢基体上圆形规则微坑形成过程经历了铝镀层表面阳极氧化微孔的均匀形成、稳定生长、到达316L不锈钢基体并在相应位置腐蚀出微坑、基体上微坑快速合并长大及基体快速腐蚀等阶段。
     血液相容性研究结果表明,当不锈钢表面微坑尺寸在0.5~2.0μm之间时,能有效减少不锈钢表面血小板黏附数量,同时能提高316L不锈钢表面亲水性,改善316L不锈钢表面的血液相容性。
Micro- and sub-micro drug carrier cavities were fabricated on surface of 316L stainless steel by the following two compound technologies: low temperature molten salts electrodeposition/anodization and magnetron sputtering/anodization. The effect of structure and thickness of aluminum films and anodizing process parameters on the structure, density and size distribution of the cavities were studied systematically. The formation mechanisms of different structure cavities were discussed. In addition, the preliminary investigations regarding to the structure of cavities on the blood-compatibility of 316L stainless steel were conducted in this work.
     The surface morphology, composition and phase structure of aluminum films deposited at different processing parameters were studied by scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction methods. The results showed that the properties of aluminum films fabricated by molten salt electroplating were mainly affected by current density, while the properties of aluminum films obtained by magnetron sputtering were mainly affected by the negative bias. In comparison with molten salt electroplating process, aluminum films prepared by magnetron sputtering had finer grain size and denser structure. Morphologies of the cavities on 316L stainless steel were studied by scanning electron microscopy. The resulets showed that two typical type cavities were fabricatied on surface of 316L stainless steel. The cavities composed with numerous of small pores in the inner walls with the substrate corroded at different degree are defined as complex cavities. The cavities without small pores in the inner wall and distributed uniform on substrate are defined as general cavities.
     In comparison with sputtering deposition/anodizing process, the anodizing voltage used in the preparation of micro-cavities on 316L stainless steel by low-temperature molten salt electroplating/anodizing technique are lower. The shape of cavities on stainless steel surface is mainly affected by the morphology of aluminum coating. The circle or subcircle cavities corresponded to flaky aluminum layers, while the rectangle cavities corresponded to granular aluminum layers. It was also found that the cavity size increased with increasing the anodizing voltage and time.
     The shape, size and number of the cavities on 316L stainless steel prepared by the magnetron sputtering deposition/anodization are closely related to the aluminum coating structure. When the aluminum grain size distribution is inhomogeneous (distributed from 1.0 to 2.5μm) and there are some porosity and defects between the grains, a large number of cavities with size distributed from 30μm to 100μm will be easily formed on the surface of stainless steel; when the aluminum grain size distribution is uniform and grain size is about 2μm accompany with the decrease of porosity and defects between the grains, the uniform dense rectangle cavities with obvious crystallographic orientation can be obtained on stainless steel surface; when the aluminum film are uniform and dense with grain size of about 1μm and there are almost no defects between the grains, the regular circle cavities can be easily obtained on stainless steel surface. Cavities with the size ranging from 0.2 to 3μm can be obtained on 316L substrates by adjusting the anodizing process parameters. When aluminum films are loose and porous, a large number of cavities with size distributed from 50μm to 100μm will be easily formed on the surface of stainless steel. The characteristics of cavities on stainless steel surface not only affected by the aluminum coating morphology, but also controlled by the thickness of aluminum coating, anodizing voltage, anodizing temperature, anodizing time and some other factors. The factors are interdependence and mutual restriction. When anodizing temperature/potential nearly constant, the critical highest anodizing potential/temperature relates to the thickness of the aluminum coatings. When the aluminum coating has a certain thickness, the characteristics of the cavities on stainless steel are controlled by the anodizing time. That is to say that the change of type of electrolyte and anodizing parameters have a significant impact on the shape, size and number of the cavities forming on 316L stainless steel surface.
     Through carefully studying on the morphology and formation process of cavities on 316L stainless steels surface, this paper puts forward the formation mechanisms of two typical type of the cavities. For complex cavities, at the initial stage of anodizing process, the pores are preferentially formatted on the defect areas of aluminum coatings. Takes the defect areas as center, several microporous group are formed in certain scale. The micropores in defects center have the fastest migration rate from surface coating to the substrate and the migration rate of surrounding minished in order. These microporous successively arrived at the stainless steel surface and finally formed complex cavities on the surface of 316L stainless steel. And each big cavity is composed with numerous of small pores. The stages for the formation of general cavities on 316L stainless steel surface including: the uniform formation and stable growth of micropores on aluminum coating; mciropores arriving the substrate and cavities formed on substrate at the relevant position; growth and coalescence process of cavities on substrate and the quick- corrosion of the substrate.
     The results of the blood compatibility indicate that compared with untreated 316L stainless steel, samples with cavities in the size of 0.5~2.0μm can effectively reduce the number of platelet adhesion, increase the hydrophilic and improve the blood compatibility of 316L stainless steel.
引文
1. A. Raval, A. Choubey, C. Engineer, D. Kothwala. Development and Assessment of 316LVM Cardiovascular Stents. Materials Science and Engineering. 2004, 386:331~343
    2. A. R. Gruntzig. Letter to the Editor. Lancet. 1978, 1:263
    3. A. R. Gruntzig, D. A. Kumpe. Technique of Percutaneous Transluminal Angioplasty with the Gruntzig Ballon Cantheter. American J. of Roentgenology. 1979, 132(4):547~552
    4. A. Colombo, S. L. Goldberg, Y. Almagor, L. Maiello, L. Finci. A Novel Strategy for Stent Deployment in the Treatment of Acute or Threatened Closure Complicating Balloon Coronary Angioplasty. Use of Short or Standard (or Both) Single or Multiple Palmaz-Schatz stents. J. of the American College of Cardiology. 1993, 22:1887~1891
    5. D. L. Fischman, M. P. Savage, M. B. leon, R. A. Schatz, S. Ellis, M. W. Cleman, J. W. Hirshfeld, P. Teirstein, S. Bailey, C. M. Walker. Fate of Lesion-Related Side Branches after Coronary Artery Stenting. J. of the American College of Cardiology. 1993, 22:1641~1646
    6. S. R. Steinhubl, P. B. Berger, J T. Mann, E. T. Fry, A. DeLago, C. Wilmer, E. J. Topol. Early and Sustained Dual Oral Antiplatelet Therapy Following Percutaneous Coronary Intervention: a Randomized Controlled Trial. J. of the American College of Cardiology. 2002, 288:2411~2420
    7. G. M. Howard-Alpe, J. de Bono, L. Hudsmith, W. P. Orr, P. Foex, J. W. Sear. Coronary Artery Stents and Non-cardiac Surgery. Brit. J. Anaes. 2007, 98(5):560~574
    8. H. C. Lowe, S. N. Oesterle, L. M. Khaehigian. Coronary In-Stent Restenosis: Current Status and Future Strategies. J. of the American College of Cardiology. 2002, 39:183~193
    9. C. Bauters, E. Hubert, A. Prat, K. Bougrimi, E. V. Belle, E. P. McFadden, P. Amouyel, J. M. Lablanche, M. Bertrand. Predictors of Restenosis after Coronary Stent Implantation. J. of the American College of Cardiology. 1998, 31(6):1291~1298
    10. S. N. Oesterle, R. Whitbourn, P. J. Fitzgerald, A. C. Yeung, S. H. Stertzer, M. D. Dake, P. G. Yock, R. Virmani. The Stent Decade: 1987-1997. American Heart Journal. 1998, 136:578~599
    11. G. A. Ferns, T. Y. Avades. The Mechanisms of Coronary Restenosis: Insightsfrom Experimental Models. Int. J. Exp. Pathol. 2000, 81(2):63~88
    12. A. Farb, G. Sangiorgi, A. J. Carter, V. M. Walley, W. D. Edwards, R. S. Schwartz, R. Virmani. Pathology of Acute and Chronic Artery Stenting in Humans. Circulation. 1999, 99:44~52
    13. C. Indolfi, G. Esposito, E. Stabile, L. Cavuto, A. Pisani, C. Coppola, D. Torella, C. Perrino, E. D. Lorenzo, A. Curcio, L. Palombini, M. Chiariello. A new Rat Model of Small Vessel Stenting. Basic. Res. Cardiol. 2000; 95(3):179~185
    14. M. J. B. Kutryk, D. P. Foley, M. van den Brand, J. N. Hamburger, W. J. van der Giessen, P.J. deFeyter, N. Bruining, M. Sabate, P.W. Serruys. Local Intracoronary Administration of Antisense Oligonucleotide Against c-myc for the Prevention of In-stent Restenosis: Results of the Randomized Investigation by the Thoraxcenter of Antisense DNA Using Local Delivery and IVUS after Coronary Stenting (ITALICS) Trial. J. of the American College of Cardiology. 2002, 39(2):281~287
    15. D. R. Jr Holmes, M. Savage, J. M. Lablanche, L. Grip, P. W. Serruys, P. Fitzgerald, D. Fischman, S. Goldberg, J. A. Brinker, A. M. Zeiher, L. M. Shapiro, J. Willerson, B. R. Davis, J. J. Ferguson, J. Popma, S. B. King, A. M. Lincoff, J. E. Tcheng, R. Chan, J. R. Granett, M. Poland. Results of Prevention of Restenosis with Tranilast and its Outcomes (PRESTO) Trial. Circulation. 2002, 106(10):1243~1250
    16. R.L. Wilensky, J.F. Tanguay, S. Ito, A.L. Bartorelli, J. Moses, D.O. Williams, S.R. Bailey, J. Martin, T.A. Bucher, P. Gallant, A. Greenberg, J.J. Popma, N.J. Weissman, G.S. Mintz, A.V. Kaplan, M.B. Leon. Heparin Infusion Prior to Stenting (HIPS) Trial: Final Results of a Prospective, Randomized, Controlled Trial Evaluating the Effects of Local Vascular Delivery on Intimal Hyperplasia. American Heart Journal. 2000, 139(6):1061~1070
    17. M. C. Morice, P. W. Serruys, J. E. Sousa, J. Fajadet, E. Ban Hayashi, M. Perin, A. Colombo, G. Schuler, P. Barragan, G. Guagliumi, F. Molnàr, R. Falotico. A Randomized Comparison of a Sirolimus-eluting Stent with a Standard Stent for Coronary Revascularization. The New England Journal of Medicine. 2002, 346(23):1773~1780
    18. J. W. Moses, M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O'Shaughnessy, R. P. Caputo, D.J. Kereiakes, D. O. Williams, P. S. Teirstein, J. L. Jaeger, R. E. Kuntz. Sirolimus-eluting Stents Versus Standard Stents in Patients with Stenosis in a Native Coronary Artery. The New England Journal of Medicine. 2003, 349(14):1315~1323
    19. J. Schofer, M. Schlüter, A. H. Gershlick, W. Wijns, E. Garcia, E. Schampaert, G. Breithardt. Sirolimus-eluting Stents for Treatment of Patients with LongAtherosclerotic Lesions in Small Coronary Arteries: Double-blind, Randomised Controlled Trial (E-SIRIUS). Lancet. 2003, 362:1093~1099
    20. E. Schampaert, E. A. Cohen, M. Schlüter, F. Reeves, M. Traboulsi, L. M. Title, R. E. Kuntz, J. J. Popma. The Canadian Study of the Sirolimus-eluting Stent in the Treatment of Patients with Long De Novo Lesions in Small Native Coronary Arteries (C-SIRIUS). J. of the American College of Cardiology. 2004, 43(6):1110~1115
    21. G. W. Stone, S. G. Ellis, D. A. Cox, J. Hermiller, C. O’Shaughnessy, J. T. Mann, M. Turco, R. Caputo, P. Bergin, J. Greenberg, J. J. Popma, M. E. Russell. A Polymer-based, Paclitaxel-eluting Stent in Patients with Coronary Artery Disease. The New England Journal of Medicine. 2004, 350(3):221~231
    22. A. Colmbo, J. Drzewiechi, A. Banning, E. Grube, K. Hauptmann, S. Silber, D. Dudek, S. Fort, F. Schiele, K. Zmudka, G. Guagliumi, M.E. Russell. Randomized Study to Assess the Effectiveness of Slow- and Moderate-release Polymer-based Paclitaxel-eluting Stents for Coronary Artery Lesions. Circulation. 2003, 108(7):788~794
    23. B.L. van der Hoeven, N.M.M. Pires, H.M. Warda, P.V. Oemrawsingh, B.J.M. van Vlijmen, P.H.A. Quax, M.J. Schalij, E.E. van der Wall, J.W. Jukem. Drug-eluting Stents: Results,Promises and Problems. The International Journal of Cardiology. 2005, 99(l):9~17
    24. G. Kedia, M.S. Lee. Stent Tthrombosis with Ddrug-eluting Stents: A Re-examination of the Evidence. Cathe. Cardio. Interve. 2007, 69(6):782-789
    25. A.A. Bavry, D.J. Kumbhani, T.J. Helton, P.P. Borek, G.R. Mood, D.L. Bhatt. Late Thrombosis o f Drug-eluting Stents: A Meta-analysis of Randomized Clinical Trials. American. J. of Medicine. 2006, 119(12):1056~1061
    26. I. Iakovou, T. Schmidt, E. Bonizzoni, L. Ge, G.M. Sangiorgi, G.Stankovic, F. Airoldi, A. Chieffo, M. Montorfano, M. Carlino, I. Michev, N. Corvaja, C. Briguori, U. Gerckens, E. Grube, A. Colombo. Incidence, Predictors, and Outcome of Thrombosis after Successful Implantation of Drug-Eluting Stents. J. of the American Medical Association. 2005, 293(17):2154~2156
    27. A. V. Finn, F. D. Kolodgie, J. Harnek, L. J. Guerrero, E. Acampado, K .Tefera, K. Skorija, D. K. Weber, H. K. Gold, R.Virmani. Differential Rresponse of Delayed Healing and Persistent Inflammation at Sites of Overlapping Sirolimus- or Paclitaxel-eluting Stents. Circulation. 2005, 112(2):270~278
    28. J. R. Nebeker, R. Virmani, C. L. Bennett, J. M. Hoffman, M. H. Samore, J. Alvarez, C. J. Davidson, J. M. McKoy, D. W. Raisch, B. K. Whisenant, P. R. Yarnold, S. M. Belknap, D. P. West, J. E. Gage, R. E. Morse, G. Gligoric, L. Davidson, M. D. Feldman. Hypersensitivity Cases Associated with Drug-eluting Coronary Stents: A Review of Available Cases from the Research on Adverse Drug Events and Reports (RADAR) Project. J. of the American College of Cardiology. 2006, 47(1):175~181
    29. R. Virmani, G. Guagliumi, A. Farb, G. Musumeci, N. Grieco, T. Motta, L. Mihalcsik, M.Tespili, O. Valsecchi, F. D. Kolodgie. Localized Hypersensitivity and Late Coronary Thrombosis Secondary to a Sirolimus-eluting Stent: Should We Be Cautious? Circulation. 2004, 109(6):701~705
    30. W. J. van der Giessen, A. M. Lincoff, R. S. Schwartz, H. M. van Beusekom, P. W. Serruys, D. R. Holmes, S. G. Ellis, E. J. Topol. Marked Inflammatory Sequelae to Implantation of Biodegradable and Nonbiodegradable Polymers in Porcine Coronary Arteries. Circulation. 1996, 94(7):1690~1967
    31. P. W. Serruys, G. Sianos, A. Abizaid, J. Aoki, P. den Heijer, H. Bonnier, P. Smits, D. McClean, S. Verheye, J. Belardi, J. Condado, M. Pieper, L. Gambone, M. Bressers, J. Symons, E. Sousa, F. Litvack. The Effect of Variable Dose and Release Kinetics on Neointimal Hyperplasia Using a Novel Paclitaxel-eluting Stent Platform: the Paclitaxel In-Stent Controlled Elution Study (PISCES). J. of the American College of Cardiology. 2005, 46(2):253~260
    32. J. Mehilli, A. Kastrati, R. Wessely, A. Dibra, J. Hausleiter, B. Jaschke, J. Dirschinger, A. Sch?mig. Randomized Trial of a Nonpolymer-based Rapamycin-eluting Stent versus a Polymer-based Paclitaxel-eluting Stent for the Reduction of Late Lumen Loss. Circulation. 2006, 113(2):273~279
    33. R. Wessely, J. Hausleiter, C. Michaelis, B. Jaschke, M. Vogeser, S. Milz, B. Behnisch, T. Schratzenstaller, M. Renke-Gluszko, M. St?ver, E. Wintermantel, A. Kastrati, A. Sch?mig. Inhibition of Neointima Formation by a Novel Drug-Eluting Stent System That Allows for Dose-Adjustable, Multiple, and On-Site Stent Coating. Arterioscler. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005, 25(4):748~753
    34. J. Hausleiter1, A. Kastrati1, R. Wessely, A. Dibra, J. Mehilli, T. Schratzenstaller, I. Graf, M. Renke-Gluszko, B. Behnisch, J. Dirschinger, E. Wintermantel, A. Sch?mig. Prevention of Restenosis by a Novel Drug-eluting Stent System with a Dose-adjustable, Polymer-free, On-site Stent Coating. European Heart Journal. 2005, 26(15):1475~1481
    35. H. Zhao. Materials Aspects of Coronary Stents. Doctoral Thesis of Catholic University of Leuven. 2003:45~48
    36.倪中华,顾兴中,易红.微孔结构血管支架.中国发明专利申请号: 00510040936.公开号: 1709210. 2005-12-21
    37. J. W. Hirshfield, J. Schwarts, R. Jugo, R. G. MacDonald, S. Goldberg, M. P.Savage, T. A. Bass, G. Vetrovec, M. Cowley, A. S. Taussig. Restenosis after Coronary Angioplasty: a Multivariate Statistical Model to Relate Lesion and Procedure Variables to Restenosis. J. of the American College of Cardiology. 1991, 18: 647~656
    38. J. R. Bengtson, D. B. Mark, M. B. Honna, D. S. Rendall, T. Hinohara, R. S. Stack, M. A. Hlatky, R. M. Califf, K. L. Lee, D. B. Pryor. Detection of Restenosis after Elective Percutaneous Transluminal Coronary Angioplasty Using the Exerciser Treadmilltest. American Journal of Cardiology. 1990, 65:28~34
    39. J. J. Popma, R. M. Califf, E. J. Topol. Clinical Trial of Restenosis after Coronary Angioplasty. Circulation. 1991, 84:1426~1436
    40. J. W. Beatt, P. W. Faxon, P. G. Hugenholtz. Restenosis after Coronary Aangioplasty: New Standards for Clinical Sstudies. J. of the American College of Cardiology. 1990, 15:491~498
    41. M. G. Wolf, D. J. Molilterno, A. M. Linceoff, E. J. Topol. Restenosis-an Open File. Clinical Cardiology. 1996, 19(5):347~356
    42. G. Mani, M. D. Feldman, D. Patel, C. M. Agrawal. Coronary Stents: A materials Perspective. Biomaterials. 2007, 28:1689~1710
    43. U. Sigwart, J. Puel, V. Mirkovitch, F. Joffre, L. Kappenberger.et al. Intravascular Stents to Prevent occlusion and Restenosis after Transluminal Angioplasty. The New England Journal of Medicine. 1987, 316: 701~706
    44. P. W. Serruys, P. D. Jaegere, F. Kiemeneij, C. Macaya, W. Rutsch, G. Heyndrickx, H. Emanuelsson, J. Marco, V. Legrand, P. Materne, J. Belardi, U. Sigwart, A. Colombo, J. J.Goy, P. V. den Heuvel, J. Delcan, M. Morel. A Comparison of Balloon-expandable-stent Implantation with Balloon Angioplasty in Patients with Coronary Artery Disease. The New England Journal of Medicine. 1994, 331:489~495
    45. D. L. Fischman, M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, K. Detre, L. Veltri, D. Ricci, M. Nobuyoshi, M. Cleman, R. Heuser, D. Almond, P. S. Teirstein, R. D. Fish, A. Colombo, J. Brinker, J. Moses, A. Shaknovich, J. Hirshfeld, S. Bailey, S. Ellis, R. Rake, S. Goldberg. A Randomized Comparison of Coronary-stent Placement and Balloon Angioplasty in The Treatment of Coronary Artery Disease. The New England Journal of Medicine. 1994, 331:486~501
    46. H. C. Lowe, S. N. Oesterle, L. M. Khaehigina. Coronary In-stent Restenosis: Current Status and Future Strategies. J. of the American College of Cardiology. 2002, 39:183~193
    47. C. Bauters, E. Hubert, A. Prat, K. Bougrimi, E. van Belle, E. P. McFadden, P.Amouyel, J. M. Lablanche, M. Bertrand. Predictors of Restenosis after Coronary Stent Implantation. J. of the American College of Cardiology. 1998, 31:1291~1298
    48. S. N. Oesterle, R. Whitbourn, P. J. Fitzgeral, A. C.Yeung, S. H. Stertzer, M. D. Dake, P. G. Yock, R. Virmani. The Stent Decade: 1987-1997. American Heart Journal. 1998, 136:578~599
    49. G. A. Ferns, T. Y. Avades. The Mechanisms of Coronary Restenosis: Insights from Experimental Models. International Journal of Experimental Pathology. 2000, 81:63~88
    50. H. Mudra, F. Wermer, E. Regar, V. Klauss, F. Werner, K. H. Henneke, E. Sbarouni, K. Theisen. Serial Follow-up after Optimized Ultrasound-guided Deployment of Palmaz-Schatz Stents: In-stent Neointimal Proliferation without Significant Reference Segment Response. Circulation. 1997, 95: 363~370
    51. D. R. Holmes, D. O. Williams. Catheter-Based Treatment of Cornary Artery Disease: Past, Present, and Futrue. Circulation. 2008, 1:60~73
    52. P. W. Serruys, M. J. B. Kutryk, A. T. L. Ong. Coronary Arery Stent. The New England Journal of Medicine. 2006, 354: 483~495
    53. M. Schillinger, S. Sabeti, C. Loewe, P. Dick, J. Amighi, W. Mlekusch, O. Schlager, M. Cejna, J. Lammer, E. Minar. Balloon Angioplasty versus Implantation of Nitinol Stents in the Superficial Femoral Artery. The New England Journal of Medicine. 2006, 354:1879~88
    54. A. L. Lewis, J. D. Furae. S. Small, J. D. Robertson, B. J. Higgins, S. Taylor, D. R. Ricci. Long-term Stability of a Coronary Stent Coating Post-implantation. The Journal of Biomedical Materials Research. 2002, 63:699~705
    55. J. C. Palmaz. New Advances in Endovascular Technology. Texas Heart Institute Journal.1997, 24(3):156~159
    56. E. Ruckenstein, S. V. Gourisankar. A Surface Energetic Criterion of Blood Compatibility of Foreign Surfaces. J. of Colloid and Interface Science. 1984,101(2):436~451
    57. V. A. DePalma, R. E. Baier, J. W. Ford, V. L. Gott, A. Furuse. Investigation of Three-surface Properties of Several Metals and Their Relation to Blood Compatibility. The J. of Biomedical Materials Research. 1972, 6(4):37~75
    58. K. Gutensohn, C. Beythien, J. Bau, T. Fenner, P. Grewe, R. Koester, K. Padmanaban, P. Kuehnl. In Vitro Analyses of Diamond-like Carbon Coated Stents. Reduction of Metal Ion Release, Platelet Activation, and Thrombogenicity. Thrombosis Research. 2000, 99(6):577~585
    59. C. L. Klien, H. Kohler, C. J. Kirkpatrick. Increased Adhesion and Activation of Polymorphonuclear Neutrophil Granulocytes to Endothelial Cells under HeavyMetal Exposure in Vitro. Pathobiology. 1994, 62:90~98
    60. R. B. Tracana,J. P. Sousa, G. S. Carvalho. Mouse Inflammatory Response to Stainless Steele corrosion Products. J. of Materials Science: Materials in Medicine.1994:5:596~600
    61. E. Leitao, R. A. Siliva, M. Barbosa. Electrochemical and Surface Modifications on N-ion-implanted 316L Stainless Steel. J. of Materials Science: Materials in Medicine. 1997, 8:365~368
    62. J. Gunn, D. Cumberland. Stent Ccoatings and Local Drug delivery. European Heart Journal. 1999, 20:1693~700
    63. S. Hofma. Recent Developments in Coated Stents. Current Interventional Cardiology Reports. 2001, 3: 28~36
    64. R.A. Herrmann, A. Rybnikar, A. Resch, B. M?rkl, E. Alt, A. Stemberger, A. Sch?mig. Thrombogenicity of Stainless Steel Coronary Stents with a Completely Gold Coated Surface. J. of the American College of Cardiology. 1998, 31(Suppl.2):413
    65. J. vom Dahl, P.K. Haager, E. Grube, M. Gross, C. Beythien, E.P. Kromer, N. Cattelaens, C.W. Hamm, R. Hoffmann, T. Reineke, H.G. Klues. Effects of Gold Coating of Coronary Stents on Neointimal Proliferation Following Stent Implantation. American Journal of Cardiology. 2002, 89(7):801~805
    66. A. Kastrati, A. Sch?mig, J. Dirschinger, J. Mehilli, N. von Welser, J. Pache, H. Schühlen, T. Schilling, C. Schmitt, F.J. Neumann. Increased Risk of Restenosis after Placement of Gold-coated Stents. Circulation. 2000, 101: 2478~2483
    67. M. Unverdorben, B. Sippel, R. Degenhardt, K. Sattler, R. Fries, B. Abt, E. Wagner, H. Koehler, G. Daemgen, M. Scholz, H. Ibrahim, K.H. Tews, B. Hennen, H. Berthold, C. Vallbracht. Comparison of a Silicon Carbide-coated Stent Versus a Noncoated Stent in Human Beings: The Tenax versus Nir Stent Study’s Long-term Outcome. American Heart Journal. 2003, 145(4):E17
    68. P. Schuler, D. Assefa, J. Yl?nne, N. Basler, M. Olschewski, I. Ahrens, T. Nordt, C. Bode, K. Peter. Adhesion of Monocytes to Medical Steel as Used for Vascular Stents is Mediated by the Integrin Receptor Mac-1 (CD11b/CD18;αMβ2) and Can be Inhibited by Semiconductor Coating. Cell Communication and Adhesion. 2003, 10(1):17~26
    69. M. Prunotto, C. Isaia, M. A. Gatti, E. Monari, E. Pasquino, M. Gallon. Nitinol Carbofilm Coated Stents for Peripheral Applications: Study in The Porcine Model. J. of Materials Science: Materials in Medicine. 2005, 16:1231~1238
    70. Z. H. Zhao, Y. Sakagami, T. Osaka. Toxicity of Hydrogen Peroxide Produced by Electroplated Coatings to Pathogenic Bacteria. Canadian Journal of Microbiologyl. 1998, 44(5):441~447
    71. C. D. Mario, E. Grube, Y. Nisanci, N. Reifart, A. Colombo, J. Rodermann, R. Muller, S. Umman, F. Liistro, M. Montorfano, E. Alt. Moonlight: a Controlled Registry of an Iridium Oxide-coated Stent with Angiographic Follow-up. International Journal of Cardiology. 2004, 95:329~331
    72. S. Windecker, R. Simon, M. Lins, V. Klauss, F. R. Eberli, M. Roffi, G. Pedrazzini, T. Moccetti, P. Wenaweser, M. Togni, D. Tüller, R. Zbinden, C. Seiler, J. Mehilli, A. Kastrati, B. Meier, O. M. Hess. Randomized Comparison of a Titanium-Nitride-Oxide-Coated Stent with a Stainless Steel Stent for Coronary Revascularization: The TiNOX Trial. Circulation. 2005, 111(20):2617~2622
    73. C. Mrowietz, R. P. Franke, U. T. Seyfert, J. W. Park, F. Jung. Haemocompatibility of Polymer-coated Stainless Steel Stents as Compared to Uncoated Stents. Clinical Hemorheology and Microcirculation. 2005, 32(2):89~103
    74. H. Ly, J. S. Awaida, J. Lespérance, L. Bilodeau. Angiographic and Clinical Outcomes of Polytetrafluoroethylene-covered Stent Use in Significant Coronary Perforations.The American Journal of Cardiology. 2005, 95:244~246
    75. http://www.stvincents.ie/img/stent.jpg
    76. W.V.D. Giessen, P. Serruys, W. Visser. Endothelialization of Intravas-Cular stents. J. of Interventional Cardiology. 1988, 1:109~120
    77. J.E. Baker, J.B. Horn, V. Nikolayehik, N.N. Kipshidze. Fibrin Stent Coatings. Endoluminal Stenting. London,W.B.Saunders:1996:84~89
    78. C. J. McKenna, A. R. Camrud, G. Sangiorgi, H. M. Kwon, W. D. Edwards, D. R. Holmes, R. S. Schwartz. Fibrin-Film Stenting in a Porcine Coronary Injury Model: Efficacy and Safety Compared With Uncoated Stents. J. of the American College of Cardiology. 1998, 31(6):1434~1438
    79. J. Moses. US IRIS Trial Low-activity 32P Stent. Advances in Cardiovasular Radiation Therapy III, Washionton, DC, 1999 (abstruction)
    80.毕亚艳,田野,谷宏越,傅世英.放射性NiTi合金血管内支架可行性及安全性的实验观察.哈尔滨医科大学学报. 2003, 37(3):211~214
    81.徐温崇,常芬,孙福玉,高润霖,袁晋青.第二代血管内支架的研制及临床应用基础研究.人民出版社. 2000:464~467
    82. D.O. Williams, R. Holubkov, W. Yeh, M. G. Bourassa, M. Al-Bassam, P. C. Block, P. Coady, H. Cohen, M. Cowley, G. Dorros, D. Faxon, D. R. Holmes, A. Jacobs, S. F. Kelsey, S. B. King, R. Myler, J. Slater, V. Stanek, H. A. Vlachos, K. M. Detre. Percutaneous Coronary Intervention in the Current Era Compared With 1985-1986: the National Heart, Lung; and Blood Institute Registries.Circulation. 2000, 102:2945~2951
    83. R. Mehran, G. Dangas, A. S. Abizaid, G. S. Mintz, A. J. Lansky, L. F. Satler, A. D. Pichard,K. M. Kent, G. W. Stone, M. B. Leon. Angiographic Patterns of In-stent Restenosis: Classification and Implication for Long-term Clinical Outcome. Circulation. 1999, 100:1872~1878
    84. R. Fattori, T. Piva. Drug-eluting Stent in Vascular Intervention. Lancet. 2003, 361:247~249
    85. E. Regar, G. Sianos, P. W. Serruys. Stent development and local drug delivery. British Medical Bulletin. 2001, 59(1):227~248
    86. L. Gruberg, G. Dangas, M. B. Leon. Coronary Artery Stents: Appropriate Use of Adjunctive Pharmacotherapy to Prevent Stent Thrombosis. Drugs and Aging. 1999, 15(5):341~348
    87. S.T. Rab, S.B. King, G.S. Roubin, S. Carlin, J. A. Hearn, J. S. Douglas. Coronary Aneurysms after Stent Placement: A Suggestion of Altered Vessel Wall Healing in the Presence of Anti-inflammatory Agents. J. of the American College of Cardiology. 1991, 18:1524~1528
    88. A. Colomb, E. Karvouni. Biodegrdable Stents: Full Filling the Mission and Stepping Away. Circulation. 2000, 102(4):399~104
    89. T. Peng, P. Gibula, K. Yao, M. Goosen. Role of Polymers in Improving the Results of Stenting in Coronary Arteries. Biomaterials. 1996, 17(7):685~694
    90. J. Tanguay, J. Zidar, H. Phillips, R. Stack. Current Status of Biodegradable Stents. Cardiology Clinics. 1994, 12(4):699~713
    91. R. Rogacka, A. Chieffo, A. Latib, A. Colombo. Bioabsorbable and Biocompatible Stents. Is a New Revolution Coming? Minerva Cardioangiol. 2008, 56(5):483~491
    92. R. S. Stack, R. M. Califf, H. R. Phillips, D. B. Pryor, P. J. Quigley, R. P. Bauman, J. E. Tcheng, J. C. Greenfield. Interventional Cardiac Catheterization at Duke Medical Center. American Journal of Cardiology. 1988, 62:F3~F24
    93. A. Lincoff, J. Furst, S. Ellis, R. Tuch, E. Topol. Sustained Local Delivery of Dexamethasone by a Novel Intravascular Eluting Stent to Prevent Restenosis in the Porcine Coronary Injury Model. J. of the American College of Cardiology. 1997, 29:808~816
    94. H. Tamai, K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, H. Uehata. Initial and 6-Month Results of Biodegradable Poly-l-Lactic Acid Coronary Stents in Humans. Circulation. 2000, 102:399~404
    95. J. A. Ormiston, P. W. Serruys, E. Regar, D. Dudek, L. Thuesen, M. Webster, Y. Onuma, H. M. Garcia-Garcia, R. McGreevy, S. Veldhof. A Bioabsorbable Everolimus-eluting Coronary Stent System for Patients with Single De-novoCoronary Artery Lesions (ABSORB): a Prospective Open-label trial. Lancet. 2008, 371:899~907
    96.李涛,吕志前.生物可降解支架研究进展.解剖科学进展. 2008, 14(4):436~440
    97. B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich. Biocorrosion of Magnesium Alloys: a New Principle in Cardiovascular Implant Tchnology? Heart. 2003, 89(6):651~656
    98. C. D. Mario, H. Griffiths, O. Goktekin, N. Peeters, J. Verbist, M. Bosiers, K. Deloose, B. Heublein, R. Rohde, V. R. Kasese, C. Ilsley, R. Erbel. Drug-eluting Bioabsorbable Magnesium Stent. J. of Interventional Cardiology. 2004, 17(6):391~395
    99. R. Erbel, C. D. Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F. R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. B?se, J. Koolen, T. F. Lüscher, N. Weissman, R. Waksman. Temporary Scaffolding of Coronary Arteries with Bioabsorbable Magnesium Stents: a Prospective, Non-randomised Multicentre Trial. Lancet. 2007, 369:1869~1875
    100. M. Peuster, P. Wohlsein, M. Brugmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, G. Hausdorf. Novel Approach to Temporary Stenting: Degradable Cardiovascular Stents Produced from Corrodible Metal-results 6-
    18 months after Implantation into New Zealand White Rabbits. Heart. 2001, 86:563~569
    101. M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, C. von Schnakenburg. Long-term Biocompatibility of a Corrodible Peripheral Iron Stent in the Porcine Descending Aorta. Biomaterials. 2006, 27:4955~4962
    102. R. Waksman, R. Pakala, R. Baffour, R. Seabron, D. Hellinga, F. O. Tio. Short-term Effects of Biocorrodible Iron Stents in Porcine Coronary Arteries. J. of Interventional Cardiology. 2008, 21:15~20
    103. A. K. Mitra, D. K. Agrawal. Instent Restenosis: Bane of the Stent Era. J. of Clinical Pathology. 2006, 59(3):232~239
    104. C. Indolfi, D. Torella, C. Coppola, E. Stabile, G. Esposito, A. Curcio, A. Pisani, L. Cavuto, O. Arcucci, M. Cireddu, G. Troncone, M. Chiariello. Rat Carotid Artery Dilation by PTCA Balloon Catheter Induces Neointima Formation in Presence of IEL Rupture. American J. of Physiology- Heart and Circulatory Physiology. 2002, 283:H760~H767
    105.尹铁英,王亚洲,王贵学.血管支架内再狭窄机制的研究现状. 2007第一届全国介入医学工程学术会议论文汇编. 2007, 77~83
    106. E. R. Edelman, C. Rogers. Pathobiologic Response to Stenting. The AmericanJournal of Cardiology. 1998, 81(7A):4E~6E
    107.吴卫.人体血管支架有限元分析与结构拓扑优化.大连理工大学博士论文. 2007:5~7
    108. E. Grube, S. Silber, K. E. Hauptmann, R. Mueller, L. Buellesfeld, U. Gerckens, M. E. Russell. TAXUS I: Six- and Twelve-Month Results From a Randomized, Double-Blind Trial on a Slow-Release Paclitaxel-Eluting Stent for De Novo Coronary Lesions. Circulation. 2003, 107:38~42
    109. G. W. Stone, S. G. Ellis, L. Cannon, J. T. Mann, J. D. Greenberg, D. Spriggs, C. D. O'Shaughnessy, S. DeMaio, P. Hall, J. J. Popma, J. Koglin, M. E. Russell. Comparison of a Polymer-based Paclitaxel-eluting Stent with a Bare Metal Stent in Patients with Complex Coronary Artery Disease: a Randomized Controlled Trial. The Journal of the American Medical Association. 2005, 294(10):1215~1223
    110. O. C. Marroquin, F. Selzer, S. R. Mulukutla, D. O. Williams, H. A. Vlachos, R. L. Wilensky, J. F. Tanguay, E. M. Holper, J. D. Abbott, J. S. Lee, C. Smith, W. D. Anderson, S. F. Kelsey, K. E. Kip. A Comparison of Bare-metal Anddrug-eluting stents for Off-label Indications. The New England Journal of Medicine. 2008, 358:342~352
    111. C. Stettler, S. Wandel, S. Allemann, A. Kastrati, M. C. Morice, A. Schomig, M. E. Pfisterer, G. W. Stone, M. B. Leon, J. S. de Lezo, J. J. Goy, S. J. Park, M. Sabate, M. J. Suttorp, H. Kelbaek, C. Spaulding, M. Menichelli, P. Vermeersch, M. T. Dirksen, P. Cervinka, A. S. Petronio, A. J. Nordmann, P. Diem, B. Meier, M. Zwahlen, S. Reichenbach, S. Trelle, S. Windecker, P. Juni. Outcomes Associated with Drug-eluting and Bare-metal Stents: a Collaborative Network Meta-analysis. Lancet. 2007, 370: 937~948
    112. D. R. Holmes, M. B. Leon, J. W. Moses, J. J. Popma, D. Cutlip, P. J. Fitzgerald, C. Brown, T. Fischell, S. C. Wong, M. Midei, D. Snead, R. E. Kuntz. Analysis of 1-year Clinical Outcomes in the SIRIUS Trial: a Randomized Trial of a Sirolimus-eluting Stent Versus a Standard Stent in Patients at High Risk for Coronary Stenosis. Circulation. 2004, 109: 634~640
    113. A. M. Salam, J. A. Suwaidi, D. R. Holmes. Drug-eluting Coronary Stents. Current Problems in Cardiology. 2006, 31: 8~119
    114. D. R. Holmes, P. Teirstein, L. Satler, M. Sketch, J. O’Malley, J. J. Popma, R. E. Kuntz, P. J. Fitzgerald, H. Wang, E. Caramanica, S. A. Cohen. Sirolimus-eluting Stents vs Vascular Brachytherapy for In-stent Restenosis within Bare-metal Stents: the SISR Randomized Trial. The Journal of the American Medical Association. 2006, 295:1264~1273
    115. G. W. Stone, S. G. Ellis, C. D. O’Shaughnessy, S. L. Martin, L. Satler, T.McGarry, M. A. Turco, D. J. Kereiakes, L. Kelley, J. J. Popma, M. E. Russell. Paclitaxel-eluting Stents Versus Vascular Brachytherapy for In-stent Restenosis within Bare Metal Stents: the TAXUS V ISR Randomized Trial. The Journal of the American Medical Association. 2006, 295:1253~1263
    116. G. W. Stone, S. G. Ellis, D. A. Cox, J. Hermiller, C. O’Shaugh-nessy, J.T. Mann, M. Turco, R. Caputo, P. Bergin, J. Greenberg, J.J. Popma, M.E. Russell. A Polymer-based Paclitaxel-eluting Stent in Patients with Coronary Artery Disease. The New England Journal of Medicine. 2004, 350:221~231
    117. R. D. Holmes, O. D. Williams. Catheter-Based Treatment of Coronary Artery Disease: Past, Present, and Future. Circulation Cardiovasc Intervent. 2008, 1:60~73
    118. J. Daemen, P. W. Serruys. Drug Eluting Stent Update 2007, Part II: Unsettled Issues. Circulation. 2007, 116:961~968
    119.葛均波,刘学波.药物洗脱支架和再狭窄机制的再认识.中华心血管病杂志. 2005, 33(8):681~683
    120. M. J. Cowley. Drug-eluting Stent Restenosis: Ineidence, Predictors, Mechanisms, and Treatment. J. of interventional cardiology. 2006, 19:547~553
    121. A. Kermer, L. Gruberg, M. Kapeliovich, E. Grenadier. Late Stent Thrombosis after Implantation of a Sirolimus-eluting Stent. Catheter Cardiovasc Interv. 2003, 60(4):505~508
    122. L.I. Heller, K.C. Shemwell, K. Hug. Late Stent Thrombosis in the Absence of Prior Intracoronary Brachytherapy. Catheter Cardiovasc Interv. 2001, 53(1):23~28
    123. F. Wang, G. Stouffer, S. Waxman, B. Uretsky. Late Coronary Stent Thrombosis: Early vs. Late Stent Thrombosis in the Stent Era. Catheter. Cardiovasc. Interv. 2002, 55(2):142~147
    124. A.T.L. Ong, E.P. McFadden, E. Regar, P.P.T. deJaegere, R.T. van Domburg, P.W. Serruys. Late Angiographic Stent Thrombosis (LAST) Events with Drug-eluting Stents. J. of the American College of Cardiology. 2005, 45(12):2088~2092
    125.沈雳,葛均波.药物洗脱支架应用现状和展望.中国医疗器械信息. 2006, 12(7):8~12
    126.张正才.药物涂层支架的研究应用和发展趋势. 2005, 29(6):446~448
    127.刘玉洁,孙根义,刘志勇,张世妹,梁爽霖.川芎嗪防治冠心病经皮冠状动脉介入术后再狭窄的临床研究.中国心血管杂志. 2004, 9(2):90~91,95
    128.李璇,陈忠,马根山,苏亚民,顾兴中.川芎嗪洗脱支架预防支架内再狭窄的实验研究.东南大学学报:医学版. 2008, 27(2):102~105
    129. J. R. Sheu, Y. C. Kan, W. C. Hung, C. H. Lin, M. H. Yen. The Antiplatelet Activity of Tetramethylpyrazine is Mediated Through Activation of NO Synthase. Life Sciences. 2000, 67(8):937~947
    130.陈立娟,马根山,陈忠,丁澍,冯毅,沈成兴.川芎嗪涂层支架生物相容性的实验研究.现代医学. 2006, 34(6):371~374
    131.聂晓敏,江洪,李庚山,李晓艳,蒋学俊,王晓红,漆曙辉,杨新红,吴钢, 朱中生,许辉.大蒜素包膜支架对犬冠状动脉损伤后再狭窄的影响.中国循环杂志. 2002, 17(3):229~231
    132.徐尚华,江洪,李庚山,吴可贵,蒋学俊,李晓艳,陈元秀,王海蓉..二烯丙基三硫化物包被支架预防冠状动脉内膜损伤后再狭窄的实验研究.中华心血管病杂志. 2004, 32(8):747~750
    133.聂晓敏,周玉杰,谢英,李艳芳.二烯丙基三硫化物涂层支架对冠状动脉损伤后内皮结构和功能的影响.中华医学杂志. 2006, 86(16):1125~1128
    134. E. Iofina, R. Langenberg, R. Blindt, H. Kuhl, M. Kelm, R. Hoffmann. Polymer-based Paclitaxel-eluting Stents are Superior to Nonpolymer-based Paclitaxel-eluting Stents in the Treatment of De Novo Coronary Lesions. American Journal of Cardiology. 2006, 98: 1022~1027
    135. A. Gershlick, I. De Scheerder, B. Chevalier, A. Stephens-Lloyd, E. Camenzind, C. Vrints, N. Reifart, L. Missault, J. J. Goy, J. A. Brinker, A. E Raizner, P. Urban, A. W. Heldman. Inhibition of Restenosis with a Paclitaxel-eluting, Polymer-free Coronary Stent: the European Evaluation of Paclitaxel Eluting Stent (ELUTES) Trial. Circulation. 2004, 109: 487~493
    136. S. J. Park, W. H. Shim, D. S. Ho, A. E. Raizner, S. W. Park, M. K. Hong, C. W. Lee, D. Choi, Y. Jang, R. Lam, N. J. Weissman, G. S. Mintz. A Paclitaxel-eluting Stent for the Prevention of Coronary Restenosis. The New England Journal of Medicine. 2003, 348: 1537~1545
    137. A. J. Lansky, R. A. Costa, G. S. Mintz, Y. Tsuchiya, M. Midei, D. A. Cox, C. O’Shaughnessy, R. A. Applegate, L. A. Cannon, M. Mooney, A. Farah, M. A. Tannenbaum, S. Yakubov, D. J. Kereiakes, S. C. Wong, B. Kaplan, E. Cristea, G. W. Stone, M. B. Leon, W. D. Knopf, W. W. O’Neill. Non-polymer-based Paclitaxel-coated Coronary Stents for the Treatment of Patients with De Novo Coronary Lesions: Angiographic Follow-up of the DELIVER Clinical Trial. Circulation. 2004, 109:1948~1954
    138. A. L. Lewis, T. A. Vick, A. C. M. Collias, L. G. Hughes, R. R. Palmer, S. W. Leppard, J. D. Furze, A. S. Taylor, P. W. Stratford1. Phosphorylcholine-based Polymer Coatings for Stent Drug Delivery. J. of Materials Science: Materials inMedicine. 2001, 12:865~870
    139. P. W. Serruys, P. Ruygrok, J. Neuzner, J. J. Piek, A. Seth, J. J. Schofer. A Randomized Comparison of an Everolimus-eluting Coronary Stent with a Paclitaxel-eluting Coronary Stent: the SPIRIT II Trial. EuroIntervention. 2006, 2: 286~294
    140. B. O’Brien, W. Carroll. The Evolution of Cardiovascular Stent Materials and Surfaces in Response to Clinical Drivers: A review. Acta Biomaterialia. 2009, 5(4):945~958
    141. I. Tsujino, J. Ako, Y. Honda, P. J. Fitzgerald. Drug Delivery via Nano. Micro and Macroporous Coronary Stent Surfaces. Expert Opinion on Drug Delivery. 2007, 4(3):287~295
    142. R. Koster, D. Vieluf, M. Kiehn, M. Sommerauer, J. K?hler, S. Baldus, T. Meinertz, C. W. Hamm. Nickel and Molybdenum Contact Allergies in Patients with Coronary In-stent Restenosis. Lancet. 2000, 356:1895~1897
    143. A. Abizaid, A. J. Lansky, P. J. Fitzgerald, L. F. Tanajura, F. Feres, R. Staico, L. Mattos, A. Abizaid, A. Chaves, M. Centemero, A. G. Sousa, J. E. Sousa, M. J. Zaugg, L. B. Schwartz. Percutaneous Coronary Revascularization Using a Trilayer Metal Phosphorylcholine-coated Zotarolimus-eluting Stent. The American Journal of Cardiology. 2007, 99(10):1403~1408
    144. S. E. Burke, R.E. Kuntz, L.B. Schwartz. Zotarolimus (ABT-578) Eluting Stents. Advanced Drug Delivery Reviews. 2006, 58:437~ 446
    145. G. W. Stone, J. W. Moses, S. G. Ellis J. Schofer, K. D. Dawkins, M. C. Morice, A. Colombo, E. Schampaert, E. Grube, A. J. Kirtane, D. E. Cutlip, M. Fahy, S. J. Pocock, R. Mehran, M. B. Leon.. Safety and Efficacy of Sirolimus and Paclitaxel-eluting Coronary Stents. The New England Journal of Medicine. 2007, 356(10):998~1008
    146. B. Lagerqvist, S.K. James, U. Stenestrand J. Lindb?ck,T. Nilsson, L. Wallentin. Long-term Outcomes with Drug-eluting Stents versus Bare-metal Stents in Sweden. The New England Journal of Medicine. 2007, 356(10):1009~1019
    147. M. Labinaz, J. P. Zidar, R. S. Stack, H. R. Phillips. Biodegradable Stents: the Future of Interventional Cardiology? J. of Interventional Cardiology. 1995, 8(4):395~405
    148. E. M. Hietala, U. S. Salminen, A. St?hls, T. V?limaa, P. Maasilta, P. T?rm?l?, M. S. Nieminen, A. L. Harjula. Biodegradation of the Copolymeric Polylactide Stent. Long-term Follow-up in a Rabbit Aorta Model. J. of Vascular Research. 2001, 38(4):361~369
    149. Y. Marois, R. Guidoin. Endothelial Cell Behavior on Vascular Prosthetic Grafts: Effect of Polymer Chemistry, Surface Structure, and Surface Treatment.Amercian Society of Artificial Internal Organs. 1999, 45(4):272~280
    150. M A. Golden, S. R. Hanson, T. R. Kirkman, P. A. Schneider, A. W. Clowes. Healing of Polytetrafluoroethylene Arterial Grafts is influenced by Graft Porosity. J. of Vascular Surgery. 1990, 11(6):838~845
    151. D. L. Akers, Y. H. Du, R. F. Kempczinski. The Effect of Carbon Coating and Porosity on Early Potency of Expanded Polytetrafluoroethylene Grafts: an Experimental Study. J. of Vascular Surgery. 1993, 18(1):10~15
    152. H. Wieneke, O. Dirsch, T. Sawitowski, Y. L. Gu, H. Brauer, U. Dahman, A. Fischer, S. Wnendt, R. Erbel. Synergistic Effects of a Novel Nanoporous Stent Coating and Tacrolimus on Intima Proliferation in Rabbits. Catheterization and Cardiovascular Interventions. 2003, 60:399~407
    153. A. Hines, Richard. Process for Forming a Porous Drug Delivery Layer. United States Patent (6904658). 2005
    154. http://www.tctmd.com/csportal/appmanager/tctmd/main?_nfpb=true&_ pageLabel=TCTMDContent&hdCon=800746
    155. M. Kollum, A. Farb, R. Schreiber, K. Terfera, A. Arab, A. Geist, J. Haberstroh, S. Wnendt, R. Virmani, C.Hehrlein. Particle Debris From a Nanoporous Stent Coating Obscures Potential Antiproliferative Effects of Tacrolimus-Eluting Stents in a Porcine Model of Restenosis. Catheterization and Cardiovascular Interventions. 2005, 64:85~ 90
    156. A. Dibra, A. Kastrati, J. Mehilli, J. Pache, R. von Oepen, J. Dirschinger, A. Sch?mig. Influence of Stent Surface Topography on the Outcomes of Patients Undergoing Coronary Stenting: A Randomized Double-blind Controlled Trial. Catheterization and Cardiovascular Interventions. 2005, 65(3):374~380
    157. A. Finkelstein,D. MeClean,S. Kar K. Takizawa, K. Varghese,N. Baek, K. Park, M. C. Fishbein, R. Makkar, F. Litvack, N. L. Eigler. Local Drug Delivery via a Coronary Stent with Programmable Release Pharmacokinetics. Circulation. 2003, 107(5):777~784
    158. P. W. Serruys. The New CoStar ? Stent: 12 Month Results with the New DES Technology. European Paris Course on Revascularization. Paris, France. 2005
    159.顾兴中,倪中华.微孔结构血管支架的激光切割工艺.华中科技大学学报(自然科学版). 2005, 35(增刊I):143~146
    160. J. F. Murphy, C. E. Michelson. A Theory for the Formation of Anodic Coatings on Aluminum. A.D.A. Conference on Anodizing of Aluminum. Nottingham, England.1961.
    161. K. V. Heber. Studies on Porous A12O3 Growth-I. Physical Model. Electrochimica Acta.1978, 23(2):127~133
    162. G. E. Thompson, R. C. Furneaux, J. S. Goode, G. C. Wood. Porous Anodic Film Formation on Aluminium Substrates in Phosphoric Acid. Transactions of the Institute of Metal Finishing. 1978, 56(4):159~167
    163. G.E. Thompson, R.C. Furneaux, G.C. Wood, J. A. Richardson, J. S. Goode. Nucleation and Growth of Porous Anode Films on Al. Nature. 1978, 272:433~435
    164.姚素薇,孔亚西,张璐.高度有序多孔氧化铝膜形成机理的探讨.功能材料. 2006, 37(l):113~116
    165. K. Wada, T. Shimohira. Microstructure of Porous Anodic Oxide Films on Aluminum. J. of Materials Science. 1986, 21:3810~3816
    166.黎樵炎.铝阳极氧化膜的形态结构和成分分布的研究.表面技术. 1992, 21(4):159~165
    167. J. Siejka, C. Ortega. An O18 Study of Field-assisted Pore Formation in Compact Anodic Oxide Films on Aluminum. J. of the Electrochemical Society. 1977, 124(6):883~891
    168. Y. Xu, G. E. Thompson, G. C. Wood. Mechanism of Anodic Film Growth on Aluminium. Transactions of the Institute of Metal Finishing. 1985, 63(3-4):98~102
    169. K. Shimizu, K. Kobayashi, G.E. Thompson. Development of Porous Anodic Films on Aluminium. Philosophical Magazine A. 1992, 66(4):643~646
    170. K. Shimizu, K. Kobayashi, G. E. Thompson. The Mechanism of Porous Anodic Oxide Growth on Aluminium. Science and Engineering of Light Metals. 1991, 91:335~340
    171. O. Jessensky, F. Müller, U. G?sele. Self-organized Formation of Hexagonal Pore Arrays in Anodic Alumina. Applied Physics Letter. 1998, 72(10):1173~1175
    172.巩运兰,王为,王惠,郭鹤桐.铝阳极氧化膜纳米孔阵列结构的自组织过程分析.物理化学学报. 2004 , 20 (2):199~201
    173. H. W. Liu, H. M. Guo, Y. L. Wang, Y. T. Wang, C. M. Shen, L. Wei. Self-assembled Strips on the Anodic Aluminum Oxide by Atomic Force Microscope Observation. Applied Surface Science. 2003, 219(3-4):282~289
    174.刘虹雯,郭海明,王业亮,申承民,杨海涛.阳极氧化铝模板表面自组织条纹的形成.物理学报. 2004, 53(2):656~660
    175.姚素薇,张璐,孔亚西,宋兆爽.铝阳极氧化膜纳米孔阵列的微细结构.材料研究学报. 2005, 19(6):236~240
    176.张璐,姚素薇,张卫国,王宏智.氧化铝纳米线的制备及其形成机理.物理化学学报. 2005, 12(11):1254~1258
    177.朱绪飞,宋晔,肖迎红,朱晴,高魁,陆路德.纳米多孔铝阳极氧化膜的形成机理研究.真空科学与技术学报. 2007, 27(2):111~114
    178. X. F. Zhu, D. D. Li, Y. Song, Y. H. Xiao. The Study on Oxygen Bubbles of Anodic Alumina Based on Purity Aluminum. Materials Letters. 2005, (59):3160~3163
    179. V. P. Parkhutik, V. I. Shershulsy. Theoretical Modeling of Porous Oxide Growth on Aluminium. J. Physics D: Applied Physics. 1992, 25:1258~1263
    180.朱祖芳.铝合金阳极氧化与表面处理技术.化学工业出版社. 2004:103~104
    181.胡永明,顾豪爽,陈侃松,郑凯泓.多孔阳极氧化铝模板法合成纳米线阵列的研究及应用进展.化工进展. 2004, 23(10):1072~1076
    182. B. Das, S. P. McGinnis. Formation of porous silicon through the nanosized pores of an anodized alumina template. Applied Physics Letters. 2003, 83(14):2904~2906
    183.吴俊辉,邹建平,朱青,鲍希茂.硅基氧化铝纳米有序孔阵列制备.半导体学报. 1999, 20(4):314~318
    184.杨阳,陈慧兰,鲍希茂.硅基多孔氧化铝膜的整体发光及其化学修饰.化学学报. 2003, 61(3):320~324
    185. M. S. Sander, L. S. Tan. Nanoparticle Arrays on Surfaces Fabricated Using Anodic Alumina Films as Template. Advanced Functional Materials. 2003, 13 (5):393~397
    186.杨昊炜,张璋,段晓楠,俞宏坤,金庆原.硅基超薄多孔氧化铝膜的制备.物理化学学报. 2008, 24(2):313~316
    187.熊德平,张希清,林鹏,王丽.石英衬底阳极氧化铝膜的制备及其光致发光的研究.光谱学与光谱分析. 2005, 25(6):831~835
    188.鄢俊兵,李佐宜,晋芳,董凯锋,林更琪.多孔氧化铝模板上TbFeCo薄膜的制备及磁性能.功能材料. 2008, 39(7):1081~1083
    189. 254邹建平,吴俊辉,朱青,濮林,朱健民,鲍希茂.硅基底电子束蒸发铝膜阳极氧化特性.半导体学报. 2000, 21(3):255~259
    190. Y. Kimura, H.Shiraki, K. Ishibashi, H. Ishii, K. Itaya, M. Niwano. In Situ Real-Time Infrared Spectroscopy Study of Formation of Porous Anodic Alumina on Si. The Electrochemical Society. 2006, 153(5):C296~C300
    191. D. Crouse, Y.H. Lo. Self-ordered Pore Structure of Anodized Aluminum on Silicon and Pattern Transfer. Applied Physics Letters. 2000, 76(1):49~51
    192. S. Z. Chu, K. Wada, S. Inoue, S. Todoroki. Formation and Microstructures ofAnodic Alumina Films from Aluminum Sputtered on Glass Substrate. J. of the Electrochemical Society 2002, 149(7):B321~B327
    193. H. Asoh, M. Matsuo, M. Yoshihama, S. Ono.Transfer of Nanoporous Pattern of Anodic Porous Alumina into Si Substrate. Applied Physics Letters. 2003, 83: 4408~4410
    194. L. Chen, C. T. Kuo, T. G. Tsai, B. W. Wu, C. C. Hsu, F. M. Pan. Self-Organized Titanium Oxide Nanodot Arrays by Electrochemical Anodization. Applied Physics Letters. 2003, 82(17):2796~2798
    195. X. W. Zhao, U. J. Lee, S. K. Seo, K. H. Lee. The Nanoporous Structure of Anodic Aluminum Oxide Fabricated on the Au/Nb/Si Substrate. Materials Science and Engineering C. 2009, 29:1156~1160
    196. A. Mozalev, A. J. Smith, S. Borodin, A. Plihauka, A.W. Hassel,M. Sakairi, H. Takahashi. Growth of Multioxide Planar Film with the Nanoscale Inner Structure via Anodizing Al/Ta Layers on Si. Electrochimica Acta.2009, 54:935~945
    197. S. H. Jeong, K. H. Lee. Fabrication of the Aligned and Patterned Carbon Nanotube Field Emitters Using the Anodic Aluminum Oxide Nano-templates on a Si Wafer. Synthetic Metals. 2003, 139:385~390
    198. N. I. Tatarenko, A. M. Mozalev. Geometry and Element Composition of a Nanoscale Field Emission Array Formed by Self-organization in Porous Anodic Aluminum Oxide. Solid-State Electron. 2001, 45:1009~016
    199. P. M. Kevin, J. M. Gregory, P. R. Adam, S. M. Lukas, L. M. D. Judith. Low-Temperature Synthesis of Large-Area, Free-Standing Nanorod Arrays on ITO/Glass and Other Conducting Substrates. Advanced Materials. 2008, 20:4470~4475
    200. S. Z. Chu, K. Wada, S. Inoue, S. Todoroki. Fabrication and Characteristics of Nanostructures on Glass by Al Anodization and Electrodepositon. Electrochimica Acta. 2003, 48:3147~3153
    201.李磊,桑革,蒋刚.热浸镀铝的研究动态.材料导报. 2008, 22(4):76~78
    202.周细枝. 45钢热浸镀铝镀层结构分析.湖北工业大学学报. 2007, 22(5):54~56
    203.鄢博,谭月华,高歌,杨玉新.电化学镀铝基体局域应力对镀层形貌影响研究.武汉理工大学学报. 2006, 28(10):42~44
    204.冯秋元,丁志敏,贾利山,关君实.低温熔融盐电镀铝的研究.材料保护. 2004, 37(4):1~4
    205. B. Nayak, M. M. Misra. The Electrodeposition of Aluminium on Brass from a Molten Aluminum Chloride-sodium Chloride Bath. J. Applied Electrochemistry.1977, 7:45~50
    206.王玉魁,陈宝清,朱英臣,王斐杰,宋美丽,李国斌.基板负偏压对铜基体磁控溅射离子镀铝膜相组成的影响.大连工学院学报. 1985, 24(3):37~42
    207.韩耀文.真空蒸镀铝膜质量的研究.材料科学进展. 1987, 1(2):36~40
    208.王艳波,王福全.真空沉积铝膜.铝加工. 1997, 20(5):45~50
    209.杜敏,魏绪钧.铝在醚类电解质中的电沉积材料科学与工艺. 1996, 4(1):43~47
    210.张守民,周永洽.有机溶液中铝的电镀.腐蚀与防护. 2000, 21(2):57~60
    211.陈祝平.特种电镀技术.北京工业出版社. 2004:207
    212.杜道斌.熔盐电解渗铝过程及渗铝层性能研究.金属热处理. 1993, ( 10):16~21
    213.石声泰,冯明任,曹铁樑,马樟源,张彩玲.熔盐电解法渗铝的研究.中国腐蚀与防护学报. 1981, 1(4):1~6
    214. B. Nayak, M. M. Misra. The Electrodeposition of Aluminium on Mild Steel from a Molten Aluminum Chloride-sodium Chloride Bath. J. Applied Electrochemistry. 1978, 9:699~706
    215.李庆峰,邱竹贤, N. J. Bjerrum.铝在NaCl-A1C13熔盐体系中的电化学沉积.稀有金属材料与工程. 1995. 24 (3):59~63
    216.牛洪军,孙国恩,宋国泰. AlC13-NaCl熔盐电解渗铝及其耐蚀性.腐蚀与防护. 1994, 2:61~63
    217. M. Paucirova, K. Matiasovsky. Electrolytic Aluminium-Plating in Fused Salts Based on Chlorides. Electrodeposition Surface Treatment. 1975, 3 (2):121~128
    218. P. Fellner, M. Paucirova, K. Matiasovsky. Electrolytic Aluminum Plating in Molten Salt Mixtures Based on AlCl3. I: Influence of the Addition of Tetramethylammonium Chloride. Surface Technology.1981, 14 (2):101~108
    219. M. Paucirova, P. Fellner, A. Silny, K. Matiasovsky. Electrolytic Aluminum Plating in Molten Salt Mixtures Based on AlCl3. II: Influences of the Application of the Pulsed Current and of a Copper Underlayer. Surface Technology. 1982, 16(1):15~21
    220. K. Grjotheim, K. Matia?ovsky. Some Problems Concerning Aluminum Electroplating in Molten Salts. Acta. Chemica. Scandinavica. 1980, A34(9):666~670
    221.杨宝刚,孙舒萍.熔盐电镀铝和铝合金.有色矿冶.1998 14(4):43~46
    222.李瑞文,邹觉生,鲜晓斌.负偏压对Be上磁控溅射离子镀Al膜结构影响的研究.真空. 2002, 3: 30~33
    223.赵克宜,王飞凌.磁控溅射沉积铝层及其性能研究. 1985, 3:27~31
    224.陈荣发.电子束蒸发与磁控溅射镀铝的性能分析研究.真空. 2003, 2:11~15
    225.顾汉卿,徐国风.生物医学材料学.天津:天津科技翻译出版公司. 1993.
    226.周本正.医学技术实用全书.北京:科学技术文献出版社出版. 1995
    227.季士委,黄楠,万国江,王凯. 316L不锈钢血管支架材料电化学抛光工艺研究. 2006, 3(3):217~120
    228. M. T. Wu, I. C. Leu, J. H. Yen, M. H. Hon. Preparation of Ni Nanodot and Nanowire Arrays Using Porous Alumina on Silicon as a Template Without a Conductive Interlayer. Electrochem. Solid-State Letter. 2004, 7(5):C61~C63
    229. O. Rabin, P. R. Herz, Y. M. Lin, A. I. Akinwande, S. B. Cronin, M. S. Dresselhaus, Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass. Advanced Functional Materials. 2003,13(8):631~638
    230. V. Gianneta, M. Huffman, A. G. Nassiopoulou. Formation of Porous Anodic Alumina Templates in Selected Micrometer-sized Areas on a Si Substrate. Application for Growing Ordered Ti Nanopillars. Phys. Status Solidi A. 2009, 206(6):1309~1312
    231.李东栋.多孔阳极氧化铝模板的制备及形成机理研究.南京理工大学硕士论文. 2005:30~31
    232. M. Donachie. Biomedical alloys. Advanced Materials & Processes. 1998, 154(7):63~65
    233. I. Dion, X. Roques, C. Baquey, E.Baudet, C. B. Basse, N. More. Haemocompatibility of Diamond-like Carbon Coating. Biomedical Materials Engineering. 1993, 3:51~55
    234. I. Dion, C. Baquey, B. Candelon, J.R. Monties. Haemocompatibility of Titanium Nitride. International Journal of Artificial Organs. 1992, 15(10):617~621
    235. H. W. Roh, M. J. Song, D. K. Han, S. Leed, J. H. Ahn, S. C. Kim. Effect of Cross-link Density and Hydrophilicity of PU on Blood Compatibility of Hydrophobic PS/hydrophilic PU IPNs. J. of Biomaterials Science. Polymer Edition. 1999, 10(1):123~143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700