用户名: 密码: 验证码:
胶接修补复合材料层合板的失效评估及参数影响分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料结构的胶接修补研究是当前复合材料结构完整性评定中亟待解决的核心问题之一。本文在前人的工作基础上主要开展了以下几方面的研究工作:
     1、针对胶接修补中的挖补修理方式,建立了一种预测胶接修补复合材料层合板的损伤演变与剩余强度的PDA-CZM方法。该方法应用三维渐进损伤分析理论(PDA)和内聚力模型(CZM)分别模拟复合材料层合板和修补胶层的失效过程。对该方法作了详细介绍。
     2、对楔形修补层合板的纤维断裂、基体开裂、层间分层以及胶层脱胶等损伤的萌生和扩展以及它们之间的耦合作用进行了研究。计算得到了修补结构的载荷-位移曲线,并预测了修补结构的极限强度。计算结果和试验数据吻合良好,验证了PDA-CZM方法的有效性。
     3、详细探讨了挖补角度、胶层厚度等参数对楔形修补强度的影响规律,给出了最佳的修补方案,用来指导实际的修补工作。
     4、对阶梯挖补的复合材料层合板失效过程和承载能力进行分析,以及对目前工程中常见的两种挖补方式即楔形挖补和阶梯挖补进行分析比较,得出了一些有实用价值的结论。
Study of laminated composites bonded with composite patch is key problem to be solved in order to assess composite structure integrality. The main contents of this paper are summarized as below:
     1、This paper mainly discusses the scarf patch repair of composites. A novel method is proposed to predict damage evolution and residual strength of laminated composites bonded with composite patch. The three-dimensional progressive damage analysis (PDA) and the cohesive zone model (CZM) are used to simulate damage progression in laminated composites and adhesive layer respectively. This predictive method is introduced detailedly.
     2、The initiation and propagation of fibre damage, matrix cracking, delamination and adhesive failure of repaired composite laminates as well as coupling effect among them is investigated. Load-displacement curve and ultimate strength are obtained by numerical analysis. An excellent agreement is found between the numerical results and the test data, and the validity of analysis method is proved.
     3、The effect of repair parameters, such as the scarf angle, thickness of the adhesive, etc. on the strength of repaired structures are discussed in detail. The best repair methods are obtained to instruct actual repair work.
     4、The strength and failure process of stepped patch repair composites are simulated. Stepped patch repair method is also compared with scarf patch repair method, and some useful conclusions are captured.
引文
[1]赵稼祥.碳纤维复合材料在民用航空上的应用.高科技纤维与应用, 2002, Vol.28,No.3.
    [2]王宝忠等.飞机设计手册第10册结构设计.北京,航空工业出版社,2002.
    [3] R.Jones, R.J.Callinan and K.C.Aggarwal. Analysis of Bonded Repairs to Damaged Fibre Composite Structures. Engineering Fracture Mechanics , 1983, Vol.17:37-46.
    [4]孙宏涛.复合材料胶接修补止裂技术的理论及试验研究.博士学位论文,西安,西北工业大学,1998.
    [5] C.T.Sun,J.Klug,and C.Arendt,Analysis of Cracked Aluminum Plates Repaired with Bonded Composite Patches.1996, AIAA Jouranl, Vol.34, No.2.
    [6] Siener. Stress field sensitivity of a composite patch repair as a result of varying patch repair thickness. Composite Materials , 1992, Vol.10: 444–464.
    [7] Bair. Analysis and repair of damaged composite laminates. Proceedings 36th International SAMPE symposium, SAMPE, Covina, CA USA, 1991, Vol. 36:2264–2278.
    [8] Soutis, C; Hu, F Z. Design and performance of bonded patch repairs of composite structures. the IMechE Conference on Airworthiness Aspects of New Technologies, 10 November 1996, Bristol, UK, 17 pp.
    [9] C.Soutis and F.Z.Hu. A 3D failure analysis of scarf patch repaired CFRP plates. AIAA-98-1943,1998.
    [10] Baker, A A; Chester R J; Hugo, G R, Radtke, T C. Scarf repairs to graphite/epoxy components. AGARD-CP-550, AGARD, NATO, 1995, pp. 19.1–19.12.
    [11] Randolph A. Odi and Clifford M. Friend. A Comparative Study of Finite Element Models for the Bonded Repair of Composite Structures. Journal of Reinforced Plastics and Composites, 2002,Vol.21:321-330,.
    [12] C H Wang, A Gunnion. Design methodology for scarf repairs to composite structures. DSTO-RR-0317, 2006.
    [13] S B Kumar, I Sridhar, S Sivashanker, S O Osiyemi. Tensile failure of adhesively bonded CFRP composite scarf joints. Materials Science and Engineering B, 2006, Vol.132: 113-120.
    [14] Chou Shih pin. Finite element application for strengh analysis of scarf-patch-repaired composite laminate. Department of aerospace engineering, TaiWan:Chung Yuan ChristiaUniversity, 1998.
    [15] Andrew J. Gunnion, Israel Herszberg. Parametric study of scarf joints in composite structures. Composite Structures, 2006, Vol.75:364–37.
    [16] Mary A.Mahler. Bonded composite repair of composite structures. University of California LosAngeles,1999.
    [17] R D S G Campilho, M F S F Demoura, J J M S DOMINGUES. Stress and failure analyses of scarf repaired CFRP laminates using a cohesive damage model. Journal Adhesion Science Technology, 2007, Vol.21(9): 855–870.
    [18]孟凡颢,陈绍杰,董善艳.复合材料损伤结构胶接补强修补分析及设计.飞机设计, 2002, 1: 18-21.
    [19]孟凡颢,陈绍杰,童小燕.层压板修理设计中的参数选择问题.复合材料学报, Vo1.18,2001.
    [20] Feras H. Darwish, Kunigal N. Shivakumar, Sameer Hamoush. Performance of patch repaired composite panels– static and fatigue. AIAA 2006-2271,2006.
    [21] Benjamin M Cook. Experimentation and analysis of composite scarf joint. Department of the air force, USA: Air force institute of technology, 2005.
    [22]喻梅,复合材料结构挖补补强强度研究.南京:南京航空航天大学航空宇航学院, 2005.
    [23]殷有泉.固体力学非线性有限元引论.北京,北京大学出版社、清化大学出版社, 1987.
    [24] Carlos G. Dávila. Analysis of the effects of residual strains and defects on skin/stiffener debonding using decohesion elements. AIAA 2003-1465, 2003.
    [25] Qingda Yang, Brian Cox. Cohesive models for damage evolution in laminated composites. International Journal of Facture, 2005, Vol.133:107-137.
    [26] P P Camanho, C G Dávila, D R Ambur. Numerical simulation of delamination growth in composite materials. NASA TP-2001-21041, 2001.
    [27] S Roy Chowdhury and R narasimhan. A cohesive finite element formulation for modelling fracture and delamination in solids. Sadhana, 2000, Vol. 25:561–587.
    [28] De Xie, Sherrill B. Biggers Jr. Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elements in Analysis and Design , 2006, Vol.42:977– 984.
    [29] Carlos G Dávila, Pedro P Camanho, Albert Turon. Cohesive elements for shells. NASA TP-2007-214869, 2007.
    [30] Ronald Krueger, Pierre J Minguet. Analyses of composite skin-stiffener debond specimens using a shell/3D modeling technique and submodeling. NASA CR-2004-2126b4, 2004.
    [31] Krueger R. and O'Brien T.K. A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Laminates. Composites Part A: Applied Science and Manufacturing, 2001, Vol.32:25-44.
    [32] Ronald Krueger. Analysis of Composite Skin-Stiffener Debond Specimens Using a Shelll/3D Modeling Technique and Submodeling. NASA/CR, 2004-212684.
    [33] Ronald Krueger. Influence of Finite Element Software on Energy Release Rates Computed Using the Virtual Crack Closure Technique. NASA/CR-2006-214523, 2006.
    [34] Ronald Krueger. Analysis of Composite Panel-Stiffener Debonding Using a Shelll/3D Modeling Technique. NASA/CR, 2006-214229.
    [35] Xi Liu, Guoping Wang. Progressive failure analysis of bonded composite repairs. Composite Structures, 2007, Vol. 81:331–340.
    [36] K.I. Tserpesa, G. Labeasb, P. Papanikosb, Th. Kermanidis. Strength prediction of bolted joints in g raphite/epoxy composite laminates. Composites: Part B, 2002, Vol.33:521–529.
    [37]顾亦磊.复合材料层合板螺栓连接失效分析.航空计算技术,2006(2):110-113.
    [38]崔维成.复合材料结果破坏过程的计算机模拟.复合材料学报, 1996 (10):102-111.
    [39]王丹勇,温卫东,崔海涛.含孔复合材料层合板静拉伸三维逐渐损伤分析.力学学报,2005 (11):787-795.
    [40]崔海涛,温卫东,郝勇.碳纤维增强复合材料含孔层合板损伤破坏分析研究进展.材料导报,2002 (2):43-56.
    [41]崔海坡,温卫东,崔海涛.含孔复合材料层压板在压缩载荷下的三维渐进损伤.机械工程学报,2006 (8):89-94.
    [42]顾亦磊,赵美英.复合材料层合板螺栓连接失效分析.航空计算技术,2006 (8):110-113.
    [43]沈观林,胡更开.复合材料力学.北京,清华大学出版社, 2006.
    [44] Hashin Z. Fatigue failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 1981, Vol.47 (4): 329 - 334.
    [45] Yeh H Y, Kim C H. The Yeh–Stratton criterion for composite Materials. J Compos Mater 1994, 28:926–39.
    [46]庄茁等.ABAQUS非线性有限元分析与实例.北京,科学出版社,2005.
    [47] Gordon Kelly, Stefan Hallstrom. Strength and failure mechanisms of composite laminates subject to localised transverse loading. Compsite Structure, 2004, Vol.63(03): 301-314.
    [48]杨乃宾,章怡宁.复合材料飞机结构设计.航空工业出版社, 2002.
    [49]周新顺.直升机复合材料结构件的修补方法,2000(3):21-26.
    [50]王宇光,黎关生.复合材料结构修理研究现状.航空维修与工程,2003(3):31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700