用户名: 密码: 验证码:
辣椒内生枯草芽孢杆菌(Bacillus subtilis)防病促生作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对辣椒内生细菌及其拮抗菌进行了分离筛选,着重对其中2株分别来自辣椒叶片和茎杆的BS-2和BS-1菌株的鉴定、内生定殖、防病促生作用及其机制,B-2菌株的抗菌物质和发酵条件等进行了研究。
     辣椒内生细菌分离结果表明,在所选用的分离条件下,辣椒组织体内含有2.83×10~3~1.35×10~4 cfu/g(fw)的细菌;不同品种或同一品种不同组织器官内,体内细菌的数量有所不同,叶片内细菌的含量最高,果中最少,叶、根、茎和果中细菌含量分别为3.4×10~3~4.5×10~4 cfu/g(fw)、0.75×10~3~1.3×10~3 cfu/g(fw)、0.1×10~3~3.25×10~3 cfu/g(fw)和0.3×10~3~1.8×10~3 cfu/g(fw)。室内拮抗作用测定表明,所获得的108株细菌中,有31株(占28.7%)对香蕉、黄瓜枯萎病等10多种植物病原真菌具有拮抗作用,其中以分别来自辣椒叶片和茎杆中的BS-2和BS-1菌株的拮抗作用最强、最稳定。经形态和生化特征等测定,上述具有拮抗作用的31株细菌均为芽孢杆菌(Bacillus spp.);其中BS-2和BS-1菌株经Biolog鉴定为枯草芽孢杆菌(B.subtilis),再经16S rRNA序列分析比较,2菌株进一步鉴定为枯草芽孢杆菌内生亚种(B.subtilis subsp.endophyticus)。
     以抗利福平(300μg/ml)和拮抗病原真菌双抗性为标记,测定BS-2和BS-1菌株的内生定殖寄主范围及其在辣椒和白菜体内的定殖动态表明,浸种、灌根和涂抹叶片等方法接种,两菌株均可以进入辣椒、茄子、白菜、甜瓜、西瓜、丝瓜等植物体内定殖,除此之外,BS-2菌株还可以在蕃茄、黄瓜、豇豆、水稻和小麦等植物体内定殖;BS-2菌株的内生寄主范围比BS-1菌株广、内生定殖作用强。室内测定2菌株在辣椒体内和室外田间测定BS-2在白菜体内定殖动态表明,浸种、灌根及涂抹叶片等方法接种后,菌株均可主动进入辣椒和白菜体内定殖,并迅速向接种点上部、未接种的组织器官转移传导,并可在辣椒和白菜体内长期定殖。
     室内盆栽和大田小区试验测定菌株对植物生长作用影响表明,BS-2和BS-1菌株对辣椒、白菜等作物有明显的促进生长作用。室内盆栽测定,菌液浸种辣椒,出苗后15d鲜重分别增加146.72%和58.58%;大田小区测定,菌液浸种辣椒苗鲜重分别增加72.02%和63.04%;菌液浸种白菜20d后鲜重分别增加91.20%~138.04%和25.43%~55.43%;BS-2菌株比BS-1菌株的促生作用
    
    福建农林大学博士学位论文
    强。BS一2菌株浸种处理辣椒和白菜后,植株内源激素测定表明,菌株浸种处
    理后,植株体内的生长素(IAA)、玉米素(ZR4)和赤霉素(GA3)等激素
    的含量比清水对照高,而脱落酸(ABA)含量比对照减少。菌株进入植株体
    内后,调节其内源激素的变化可能是菌株促生作用的主要机制之一。
     室内防病测定表明,BS一2和BS一1菌株对辣椒炭疽病、白菜炭疽病和香
    蕉炭疽病均有良好的预防效果。BS一2菌株对辣椒苗、辣椒果、白菜和香蕉炭
    疽病的防治效果分别为:51.49%一93.34%、50.00/0一100%、45.120/0和71.54%;
    BS一1菌株对上述各病害的防治效果分别为:66.13%一79.23%、60.0%一100%、
    68.45%和43.28%。BS一2菌株对植物炭疽病的防病效果比BS一1菌株高。防病
    机制研究表明,菌株分泌抗菌物质抑制病菌菌丝生长、分生抱子产生和萌发,
    主动进入植株内生定殖、优先占领病菌入侵位点,促进植株生长、增强寄主
    生长势;诱导寄主植物过氧化物酶(POD)、超氧化物歧化酶(s OD)、过氧
    化氢酶(CAf)、苯丙氨酸解氨酶(PAL)等参与的植物防御性反应,降低寄
    主植物体内的丙二醛(MAD)的产生等,可能是菌株防病的主要机制。
     BS一2菌株抗菌物质研究表明,其培养液经硫酸钱盐析,100℃处理30min,
    可获得热稳定、抗紫外线、能强烈抑制植物病原真菌和细菌、并对辣椒炭疽
    病具有69.79%(接种后gd)防病效果的抗菌物质;经SDS.PAGE、高效液相
    色谱(HPLC)、州叭上Dl一TOF质谱等检测,该物质为分子量为落2884.39Da的
    多肤类物质。
     BS一2菌株发酵条件研究表明,以黄豆粉培养基培养、培养基初始pH值
    6.7(灭菌后)、温度为28℃、培养时间48h及良好的通气条件,为该菌株的
    最佳发酵条件。
The results of isolation by the surface sterilized with 0.1% mercury bichloride showed that 2.83×103~1.35×104cfu/g(fw) endophytic bacteria were obtained from the plants of capsicum; 3.4x103~4.5xl04cfu/g(fw) from leaves, 0.75×10-3-1.3×103 cfu/g(fw) from roots, 0.1×103~3.25×103 cfu/g(fw) from stems and 0.3xl03~1.8xl03 cfu/g(fw) from fruits. A total of 108 endophytic bacteria isolates, 31, or 28.7%, had in vitro inhibitory activity to phytopathogens of fungi, such as Fusarium oxysporum f.sp.cubense, Fusarium oxysporum f.sp.cucumberinum, and Colletotrichum sp.,etc. The strongest inhibitory activities were produced by the BS-1 and BS-2 strains which isolated from the leaf and stem respectively. Based on the basic properties including cell shape, Gram's stain, sporulation, production of catalase and oxidase, all of the 31 antagonistic isolates were identified as Bacillus spp., BS-1 and BS-2 were further identified as B. subtilis by the Biolog analysis, and based on the colonized in the plants and signature sequences of 16S rRNA, the two strains may be belonging to the B.subtilis subsp. endophyticus.
    The mutanted by antagonism against the rifampicin, and inoculated by dipping seeds, daubing leaves, and watering roots, the two strains were proved to be able to colonize in the many kinds of plants, such as eggplant, cabbage, muskmelon, watermelon, loofah goard, besides that the BS-2 was able to colonize in more plants which were tomato, cucumber, cowpea, rice and wheat etc. The results also showed that the two strains were able to live and move in the plants of capsicum and the BS-2 in the cabbage plant for long time.
    The growth of capsicum and cabbage was significantly promoted by BS-2 and BS-1 strains with their cells suspension dipping seeds. Compare with the water control, the fresh weight of the 15d old capsicum seedling was increased 146.72% and 58.58% respectively tested in the pots; and 72.02% and 63.04% respectively tested in fields; and that of the 20d old cabbage was increased 91.20%~138.04% and 25.43%~55.43% respectively tested in fields. Inducing the change of plant hormone concentration may be one of the key mechanisms in promoting growth activities of the two strains.
    
    
    
    The anthracnoses of capsicum seedling and fruits, cabbage and banana, which were caused by Colletotrichum gloeosporioides, C. higgisianum and C. musae respectively, were found effective controlled by the BS-2 and BS-1 strains. The control effects of the BS-2 strain on the above anthracnoses were 81.49%~93.34%, 80.0%~100%> 45.12% and 71.54% respectively; and that of the BS-1 were66.13%~79.23%. 60.0%~100%?68.45% and 43.28% respectively. The results also showed that the secreting antibiotics which had strong inhibitory activity against the pathogens mycelial growth and conidia formation and germination, colonizing in the plants and promoting their growth, and inducing the plants defense responses were proposed to be the key mechanism in the disease control activity of the two strains.
    The BS-2 antifungal compound obtained through ammonium sulfate precipitation was primarily identified as a polypeptide (MW <=2884.39D) by SDS-PAGE and MALDI-TOF. This antifungal polypeptide of the nature of thermostable and UV-tolerant showed strong inhibitory activity against various plant pathogenic fungi and bacteria, such as Colletotrichum sp. and Ralstonia solanaceance, and had 69.79% control effect (9d after inoculating the pathogen) against the anthracnose on the capsicum postharvest fruits.
    Optimum fermentation conditions for BS-2 might culture for 48h at 28℃ with the medium made of soybean powder(pH6.7), and increase the oxygen supply as much as possible.
引文
1.上海植生所编,现代植物生理学实验指南,1999年12月第一版。
    2.东秀珠,蔡妙英等.常见细菌鉴定手册.科学出版社.2001,
    3.兰海燕,王长海,宋荣.棉花内生细菌及其研究进展.棉花学报2000,12(3):105-108.
    4.冯永君,宋未.水稻内生优势成团泛菌GFP标记菌株的性质与标记丢失动力学.中国生物化学与分子生物学报,2002,18(1):85-91.
    5.关雄.苏云金芽孢杆菌8010的研究,科学出版社.1997,P:20-21
    6.刘云霞,张青文,周明群.Bt杀虫基因向水稻内生细菌的转化研究.农业生物技术学报1987,5(2):188-193.
    7.刘云霞.植物内生细菌的研究与应用.植物保护 1994,20(5):30-32.
    8.刘云霞,张青文,周明(?).电镜免疫胶体金定位水稻内生细菌的研究.农业生物技术学报 1996,4(4):354-358.
    9.刘进元,李忠等.抗菌蛋白LCⅢ的分离纯化及其部分特性.生物工程学报.1992,8(3):266-270.
    10.刘伊强,王雅平等.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化部分特性.植物学报.1994,36(3):197-203.
    11.刘颖,徐庆,陈章良。抗真菌肽LP-1的分离纯化及特性分析。微生物学报。1999,39(5):441-447。
    12.朱广廉,钟诲文,张爱琴.植物生理学实验.北京:北京大学出版社,1990,105-108.
    13.何红,蔡学清,洪永聪等.辣椒内生细菌的分离及拮抗菌的筛选.中国生物防治,2002,18(4):171-175
    14.何红,蔡学清,陈玉森等.辣椒内生枯草芽孢杆菌BS-2和BS-1防治香蕉炭疽病研究.福建农林大学学报,2002,31(4):441-443
    15.西北农业大学植物生理生化教研组。植物生理学实验指导,陕西科学技术出版社。1987。
    16.李长松.拮抗细菌生物防治植物土传病害的研究进展,生物防治通报.1992,8(4):168~172
    17.吴蔼民,顾本康,傅正擎等.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究.植物病理学报 2001,31(4):289-294.
    18.陈少裕.膜脂过氧化与植物逆境胁迫.植物学通报,1998,6(4):211-217.
    19.陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯,1991,27(2):84-90.
    20.孔庆科,丁爱云.内生细菌作为生防因子的研究进展.山东农业大学学报(自然科学版) 2001,32(2):256-260.
    21.汪家政,范明.蛋白质技术手册.北京,科学出版社,2001.
    22.杨海莲,孙晓璐,宋未.植物内生细菌的研究.微生物学通报 1998,25(4):224-227.
    23.杨海莲,孙晓璐,宋未.水稻内生阴沟肠杆菌的定殖研究.自然科学进展1999,9(12):1241-1244.
    24.杨海莲,孙晓璐,宋未.植物根际促生细菌和内生细菌的诱导抗病性的研究进展.植
    
    物病理学报 2000,30(2):106-110.
    25.杨海莲,孙晓璐,宋未等.水稻内生阴沟肠杆菌MR12的鉴定及其固氮和防病作用研究.植物病理学报 2001,31(1):92-93.
    26.金玲,巴峰等.小麦内生有害细菌的发现和作用研究.植物病理学报.1996,26(2):123-16.
    27.金玲,巴峰等.小麦内生有害细菌的定殖研究.植物病理学报.2000,30(1):92-93.
    28.胡剑,赵永岐等.枯草芽孢杆曲BS-98分泌的抗真菌蛋白的分离纯化及其部分性质的研究.微生物学通报.1997,24(1):3-7.
    29.袁军,孙福在,田宏先等.防治马铃薯环腐病有益内生细菌的分离和筛选.微生物学报,2002,42(3):270-274.
    30.黄大防.农业微生物基因工程,科学出版社.2001.
    30.梅汝鸿,徐维敏 植物微生态学[M]。中国农业大学出版社,1999.
    32.夏正俊,顾本康等.棉花内生及根际土壤细菌诱导棉花对大丽轮枝菌抗性的研究.中国生物防治 1996,12(1):7-10。
    33.夏正俊,顾本康等.棉花内生菌诱导棉花抗黄萎病过程中同工酶活性的变化。江苏农业学报 1997,13(2):99-101
    34.傅正擎,夏正俊等.内生菌防治棉花机理.江苏农业学报 1999,15(4):211-215 傅正擎,夏正俊等.内生菌对棉花黄萎病病菌及毒素的抑制作用和对棉花的促生作用.植物病理学报 1999,29(4):374-375.
    35.邱晓,裴炎等.棉花体的假单胞菌及其对棉苗根病的防效.植物保护学报,1990,17(4):303-306.
    36.蔡妙英,卢运玉,赵玉峰.细菌名称.科学出版社,1996,p92.
    37.郭良栋.内生真菌研究进展.菌物系统.2001,20(1):148~152.
    38.郭尧君.蛋白质电泳实验技术.北京,科学出版社,2001.
    39.谢栋,彭憬等.枯草芽孢杆菌抗菌蛋白X98Ⅲ的纯化与性质.微生物学报.1998,38(1):13-19.
    40. Adel Elbetagy, Kiyo Nishioka, Tadashi Sato, et al. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. Isolated from wild rice species. Appl. Environ. MicrobioL, 2001,67(11):5285~5293.
    41. Adhikari T B, Joseph C M et al. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can. J. Microbiol. 2001,47:916-924.
    42. Anon. Agriculture in harmony with nature: Strategy for environmentally sustainable agriculture and agri-food development in Canada. Agriculture and Agri-Food Canada. Publication. Ottawa, Ontario,Canada. 1997
    43. Arsac J F, Lamothe C, Mulard D et al. Growth enhancement of maize(Zea mays L) through Azospirillum Lipoferum inoculation: effect of plant genotype and bacterial concentration. Agromomie. 1990,10:640-654.
    44. Azevedo J L, Walter M J, Jose Odair P, et al. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. EJB Electronic J.
    
    Biotechnol.,2000,3(1) :40-65.
    45. Bakker A W and Schippers P. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation. Soil Biol Biochem. 1987,19:451-457.
    46. Bai Y, D'Aoust F, Smith D L, and Driscoll B T. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol, 2002, 48(3) : 230-238.
    47. Bal A S, Chanway C P. Isolation and identification of endophytic bacteria from Lodgepole pine and western red cedar, www. ag. auburn, edu/argentina/pdfmanuscries/bol. pdf. 2001.
    48. Baldani J I, Caruso L, et al. Recent advances in BFN with non-legume plants. Soil Biology and Biochemistry. 1997, 29:911-922.
    49. Barraquio W L, Revilla L and Ladha J K Isolation of endophytic bacteria diazotrophic bacteria from wetland rice. Plant Soil. 1997,194:15-24.
    50. Barbieri P, Zannelli T, Gall E,et al. Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixtion and indole-3-acetic acid production. FEMS Microbiol. Tett. 1986,36:87-90.
    51. Bell C R, Dickie G A, et al. Endophytic bacteria in grapevine. Can. J. Microbiol. 1995,41:46-53.
    52. Benhamou N, Belanger R R, Paulitz T C. Induction of differential host responses by Pseudomonas Fluorescens in Ri T-DNA transformed pea roots after challenge with Fusarium oxysporum f.sp. pisi and Pythium ultimum. Phytopatthol. 1996a, 86:114-128.
    53. Benhamou N, Kloepper J W, Quadt-Hallmann A, et al. Induction of defense-related ultrastrutural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 1996b,112(3) :9 19-929.
    54. Benhamou N, Kloepper J W, Tuzum S. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: Ultrastructure and cytochemistry of the host response. Planta. 1998,104:153-168.
    55. Bensalim S, Nowak J, and Asiedu S. A plant promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am. J. Potato Res. 1998,75:145-152.
    56. Beyeler M P, Michaux C, Keel D. Effect of enhanced production of indole-3-acetic acid by the biological control agent Pseudomonas fluorescens CHAO on plant growth.. In:Ogoshi A K. Kobayashi Y. Homma F. Kodama N.(eds.):Plant growth-promoting rhizobacteria-Present status and future prospects. Pro. 4 Inter. Workshop on Plant Growth-Promoting Rhizobacteria. Japan-OECD Joint Workshop Sapporo. Japan. October5-10, 1997,310-312.
    57. Boddey R M, de Oliveira O C, Urquiaga S,et al. Biological nitrogen fixation associated with sugarcane and rice xontributions and prospects for improment. Plant Soil. 1995,174:195-209.
    58. Boyer J S. Plant productivity and environment. Science 1982,218:443-448.
    59. Broadbent P, Baker K F, Franks N, et al. Effect of Bacillus spp. On increased growth of
    
    seedlings in steamed and nontreated soil. Phytopathol, 1977,67: 1027-1031.
    60. Brooks D S,Gonzalez, C F, et al. (abstract). Phytopathol. 1988,78:626.
    61. Brooks D S, Gonzalez C F, Appel D N, et al. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol. Control. 1994,4:373-381.
    62. Brown M. Seed and root bacterization. Annu. Rev. Phytopathol. 1974, 12:181-197.
    63. Bugbee W M, gudmestad N C, et al. Sugar beet as a symptopless host for Corynebacterium sepedonicum. Phytopathol. 1987, 77:765-770.
    64. Cameron R K, Dixon R, Lamb C. Biologically induced systemic acquired resistance in Arabidopsis thaliana. Plant J. 1994,5 :715-725 .
    65. Carroll G C. The biology of endophytism in plants with particular reference to woody plants. In: Fokkema N J, van den Heuvel J eds. Microbiology of the phyllosphere. Cambridge U.K.:Cambridge University Press. 1986,205-222.
    66. Chanway C P, Turkington R and Roll F B. Ecological implications of specificity between plants and rhizosphere microorganisms. Adv. Ecol. Res. 1991,21:121-169.
    67. Chanway C P, Shishido M and Holl F B. Root-endophitic and rhizosphere plant growth promoting rhizobacteria for conifer seedlings. In improving Plant Productivity with Rhizosphere Bacteria. Pro. Of 3rd. Int. Workshop PGPR,Ryder M. H.Stephens P M. and Bowen G D.,Eds.,CSIRO Div. Soils. Adelaide, Australia,pp.72-74,1994.
    68. Chen C, Bauske EM, Musson G, et al. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol. Control 1995,5 :83-91 .
    69. Chestcr K. The problem of acquired physiological immunity in plants. Quart. Rev. Biol, 1933,8:129-151.
    70. Conn K L, Nowak J and Lazarovits G A. gnotobiotic bioassay for studying interactions between potatoes and plant growth-promoting rhizobacteria. Can. J. Microbiol. 1997,3:801-808.
    71. Cother E J and Dowling V. Bacteriated with internal breakdown of onion bulbs and their possible role in disease expression. Plant Pathology. 1986, 35(3) :329-336.
    72. Cricmore N, Zeigler D R, Feitelson J, et al. Revision of nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews , 1998:807-813.
    73. David A Dubnau. Molecular biology an international series of monographs and textbooks. The molecular biology of the Bacilli. Volume 1:Bacillus subtilis. Academic Press, 1982,
    74. Davison J. Plant beneficial bacteria .Bio-Technology 1988,6:282-286.
    75. De Bary A. Morphologie und physiologie der pilze, Flechten und Myxomyceten. Engelmann. Leipzig. 1866,1-316.
    76. De Boer S H and Copeman R J. endophytic bacterial flora in Solanum tuberosum and its significance in bacterial ring rot diagnosis. Can. J. Plant Sci. 1974,54:115-122.
    77. DeFago G, Berling C H, Burger U,et al. Suppression of black rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms . In: Biological Control of soil-borne Plant Pathogens. Hornby D. Ed. Cab
    
    International, Wallingford Oxon UK 1990,pp.93-108.
    78. Dixon R, Cheng Q, Shen G F, et al. Nif gene transfer and expression in chloroplasts: Prospects and problems. Plant Soil. 1997,194:193-203.
    79. de Bruijn F J, Jing Y and Dazzo F B. Potential pitfalls of trying to extend symbiotic interactions of nitrogen-fixing organisms to presently non-nodulated plants,such as rice. Plant Soil. 1995,174:225-240.
    80. Diem G, Rougier M, et al. Colonization of rice roots by a Diazotroph bacteria. Ecol. Bull. 1978,26:305-311.
    81. Dobereiner J, Baldani V L D, Reis V M. Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In:Fendrik I.,de Callo M., Vanderleyden J. et al.(eds.). Azospirillum Viand Related Microorganisms. Berlin:Spring-Verlag., 1995, p3-14.
    82. Dong Z, Canny M J, McCully M E, et al. A nitrogen-fixing endophytic of sugarcane stems. Plant Physiol. 1994,105:1139-1147.
    83. Downing K J, Thomson J A. Introduction of the Serratia marcescens chiA. gene into an entophytic Pseudomonas fluorescens for the biocontrol of phytopathgenic fungi. Can. J. Microbiol.2000,46(4) :363-369.
    84. Eckert J W, and Ogawa J M. The chemical control of postharvest diseases: Deciduous fruits,berries, vegetables and root/tuber crops. Ann. Rev. Phytopathol., 1988,26:433-469.
    85. Elvira-Recuenco M and van Vuurde J W L. Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can. J. Microbiol. 2000,46:1036-1041.
    86. Gagne S, Richard C, Rousseau H, et al. Xylem-residing bacteria in alfalfa roots. Can. J. Microbiol. 1987,33:996-1000.
    87. Gardner J M, Feldman A W and Zablotowicz R M. Identity and behaviour of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl. Environ. Microbiol. 1982,43:1335-1342.
    88. Gillis M, Kersters K, Hoste B, et al. Acetobacter diazophicus sp. nov., a nitrogen-acetic acid bacterium associated with sugarcane. Int. J. Syst. Bacterial. 1989,39:361-364.
    89. Gopalaswamy G. Kannaiyan S, O'Callaghan K J, et al The xylem of rice (Oryza sativa) is colonized by Azorhizobium caulinodans. Proc R Soc Lond B Biol Sci, 2000; 267(1439) : 103-107.
    90. Gough C,Vasse J, Galera C, et al. Interactions between bacterial diazotrophs and non-legume dicots: Arabidopsis thaliana as a model plant. Plant Soil. 1997,194:123-130.
    91. Gunson H E and Spencer-Phillips P T N. Endophytic and methylotrophic ability of bacteria associated with micropropagated Zantedeschia aethiopica paints. In: Abstracts of the 6th International Congress of Pant Pathology, Montreal Canada. P.34. Pub). Sales and Distrib., Natl. Res. Council, Ottawa. 1993.
    92. Fisher P J, Petrini O and Lappin Scott H M. The distribution of some fungal and bacterial endophytes in maize(Zea mays L.). New Phytol. 1992,122:299-305.
    93. Frommel M I, Pazos G S and Nowak J. Plant-growth stimulation and biocontrol of tomato seeds with Serratia plymuthica and Pseudomonas sp.. Fitopatologia.
    
    1991,26:66-73.
    94. Foster R C. The ultrastructure and histochemistry of the rhizosphere. New Phytol. 1981,89:263-273.
    95. Foster R C. The ultrastructure of the rhizosplane and rhizosphere Annu. Rev. Phytopathol. 1986,24:211-234.
    96. Fredrickson J K and Elliott L F. Effects on winter wheat seedling growth by toxin producing rhizobacteria. Plant Soil. 1985,83:399-409.
    97. Hammerschmidt R, Kuc J. Induced resistance to disease in plants . Kluwer Academic Publishers, DordrechtL, The Netherlands, p182, 1995.
    98. Hawksworth D L, Kirk P M, Sutton B C, Pelger D N. eds. Ainsworth & Bisby's Dictionary of Fungi (8th edition). CAB International. U. K.:Cambridge University Press. 1995.
    99. Hinton D M, Bacon C. W. Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia. 1995,129(2) :117-125.
    100. Holland M A. Occam's razor applied to hormonology: are cytokinnins produced by plants? Plant Physiol. 1997, 115:865-868.
    101. HoIlis J P. Bacteria in the healthy potato tissue. Phytopathol. 1951, 41:197-209.
    102. Huang J. Ultrastructure of bacterial penetration in plants. Ann. Rev. Phytopathol. 1986,24:141-157.
    103. Hurbert J J, Helton A W. A translocated resistance phenomenon in Prunus domestica induced by initial with Cytospora cineta. Phytopathol.. 1967, 57: 1094-1098.
    104. Jacobson C B, Pasternak J J and Glick B R. Partial purification and characterization of 1-amino-cyclopropane-l-carboxylate deamunase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 1994, 40: 1019-1025.
    105. Jacob M J, Bugbee W M and Gabrielson D A. Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can. J. Bot. 1985,63:162-1265.
    107. James E.K and Olivares F L. Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophytic diazotrophs. Critical Reviews in Plant Sciences. 1998,17:77-119.
    108. James E K, Olivares F L, et al. Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L. Moench. J. of Experimentmental Botany. 1997,48:785-797.
    109. Jones S M and Paton A M. The L-phase of Erwinia carotovora var. atroseptica and its possible association with plant tissue. J. Appl. Bact. 1973,36: 729-737.
    110. Kempe J and Sequiera L. Biological control of bacterial wilt of potatoes: demonstration of pyocyanin and fluorescein. Plant Disease. 1983,67:499-503.
    111. Kenji T, Takanori A and Makoto S. Cloning, sequencing, and characterization of the iturin A operon. J. Bacteriology. 2001, 265-273.
    112. Kennedy I R, Pereg-Gerk L L, Wood C, et al. Biological nitrogen fixation in
    
    non-leguminous field crops: facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil. 1997. 194:65-79.
    113. Kirchhof G, Baldni J I, et al. Molecular assay to identityify Acetobacter diazotrophicus and detect its occurrence in plant tissues. Can. J. Microbiol. 1998, 44:12-19.
    114. Kleopper J W, Schipper B and Bakker P A H M . Proposed elimination of the term endorhizosphere. Phytopathol. 1992,82:726-727.
    115. Ladha J K, de Bruijn F J and Malik K A. Introduction: assessing opportunities for nitrogen fixation in rice-a frontier project. Plant Soil. 1997, 194:1-10.
    116. Lamb T G, Tonkyn D W and Kluepfel D A. Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J. Microbiol. 1996, 42: 1112-1120.
    117. Lampel J S. Integrative cloning, Expression, and Stability of the CryIA(c) Genne from Btk in a Recombinant Strain of Clavibacter xyli subsp. cynodontis. Appl. Environ. Microbiol. , 1994,60(2) :501-508.
    118. Landy M, Warren G H, Roseman S B, et al. Bacillomycin, an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc. Soc. Exp. Biol. Med. 1948, 67:539-541.
    119. Lazarovits G and Nowak J. Rhizobateria for improvement of plant growth and establishment. Hortscience. 1997,32:188-192.
    120. Lee S, Sevilla M, Meletzus K T, et al. Analysis of nitrogen fixation and regulatory genes in the sugarcane endophyte Acetobacter diazotrophicus. In: Nitrogen Fixation with Non-Legumes. Proceedings of the 7th International Symposium on Nitrogen Fixation with Non-legums. Malik K.A. Mirza M.S. and Ladha J.K.Eds Kluver Academic Publishers, Dordrecht, pp. 11-19. 1998.
    121. Lima G, Ippolito A, Nigro F, Salermo M. Attempts in the biological control of citrus mal secco (Phoma tracheiphila) using endophytic bacteria. Difesa delle Piante. 1994,17(l-2) :43-49.
    122. Maget-Dana R and Peypoux F. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology. 1994,87:151-174.
    123. MahaffeeW F, Kloepper J W, et al. In Improving Plant Productivity with Rhizosphere Bacteria. Ryder,M.H., Stephenes,P.M., Bowen, G.D., (eds). CSIRO, Australia, 1994,P:180
    124. M'piga P, Belanger R R, Paulitz T C, et aL Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomoto plants treated with the endophytic bacterium Pseudomonas fluorescens stain 63-28. Physiol.Mol. Plant Pathol. 1997,50:301-320.
    125. MaIik K A, Bilal R, et al. Association of nitrogen-fixing ,plant growth promoting rhizobacteria (PGPR)with kallar grass and rice. Plant Soil. 1997, 194: 37-44.
    126. Malik K A, Zafar Y, Mehnaz S, et al. Use of 15N isotope dilution for quantification of N2 fixation associated with the roots of kallar grass (Leptochloa fused). Biol. Fertil. Soil. 1987,4:103-108.
    127. Mari M, Guizzardi M and Pratella G C. Biological control of gray mold in pears by
    
    antagonistic bacteria. Biological Control. 1996,7:30-37.
    128. McInroy J A and Kleopper J W. Studies on indigenous endophytic bacteria of sweet corn and cotton . In: Molecular Ecology of Rhizosphere Microorganisms. Biotechnology and the Release of GMOs. O'Gara F. Dowling D N. and Boesten B. Eds. VCH,Verlagesellshaft MBH,Germany,pp. 19-28. 1994.
    129. McInroy J A and Kleopper J W. Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Can. J. Microbiol. 1995a,41:895-901.
    130. McInroy J A and Kleopper J W. Survey of indigcnus bacterial endophytic from cotton and sweet corn. Plant Soil. 1995b, 173:337-342.
    131. Meneley J C and Stanghellini M E. Occurrence and significance of soft-rotting bacteria in healthy vegetables. Phytopathol. 1972, 62:779(abstract).
    132. Meneley J C and Stanghellini M E. Detection of enteric bacteria within locular tissue of healthy cucumbers. J. Food Sci. 1974, 39:1267-1268.
    133. Meneley J C and Stanghellini M E. Establishment of Erwinia carotovora in healthy cucumber tissue. Annu. Proc. Am. Phytopathol. Soc for. 1974, 1:91 (Abstract).
    134. Meneley J C and Stanghellini M E. Establishment of an inactive population of Erwinia carotovora in heathy cucumber fruit. Phytopathol. 1975,65:670-673.
    135. Misaghi I J and Donndelinger C R. Endophytic bacteria in symptom-free cotton plants. Phytopathol. 1990,80:808-811.
    136. Mundt J O and Hinkle N F. Bacteria within ovules and seeds. Appl. Environ. Microbiol. 1976,32:694-698.
    137. Murty M G and Ladha J K. Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hytroponic conditions. Plant Soil. 1988,108:281-285.
    138. Nejad P and Johnson P. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biological Control. 2000,18:208-215.
    139. Nowak J, Asiedu S K, Bensalim S, et al. From laboratory to applications Challenges and progress with in vitro dual cultures of potato and beneficial bacteria. Plant Cell Tissue Organ. Cult. 1998, 52:97-103.
    140. Nowak J. Benefits of in vitro "biotization" of plant tissues cultures with microbial inoculants. In Vitro Cell. Develop.Biol.Plant. 1998,34:122-134.
    141. Okon Y P G. Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 1985,3:223-228.
    142. OId K M and Nicolson T H. The root cortex as part of a microbial continuum. In: Microbial Ecology. Loutit M.V. and Miles J. A. R., Eds., Springer-Verlag, Berlin, Germany, pp. 291-294.
    143. Olivares F L, Baldni V L D, et al. Occurrence of the endophytic diazotrophs Herbaspirillum spp. In roots, stems and leaves, predominantly of Gramineae. Biol. Fertil. Soils. 1996,21:197-200.
    144. O'Neill G A, Radley R A and Chanway C P. Variable effects of emergence-promoting rhizobacteria on conifer seedling growth under nursery conditions. Biol. Fertil. Soils.
    
    1992,13:45-49.
    145. Paula M A, Reis V M and Dobereiner J. Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum sp.) and sweet sorghum (Sorghum vulgae). Biol. Fertil. Soils. 1991,11:111-115.
    146. Perotti R. On the limits of biological enquiry in soil science. Pro. Intern. Soc. Soil. 1926,2:146-161.
    147. Petersen C A, Emanuel M E, et al. Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays) and broad bean (Viciafaba). Can.J.Bot. 1981,59:618-625.
    148. Petrini O. Fungal endophytes of tree leaves. In: Andrews J H. Hirano S S.eds. Microbial Ecology of Leaves. New York, Springer-Verlag. 199 1 , 179-197.
    149. Peypoux F, Bonmatin M and Wallach J. Recent trends in the biochemistry of surfactin. Appl.Microbiol.Biotechnol. 1999,51 :553-563 .
    150. Pirttila A M, Laukkanen H, Pospiech H, et al. Detection of Intracellular Bacteria in the Buds of Scotch Pine (Pinus sylvestris L.) by In Situ Hybridization. Appl. Environ. Microbiol. 2000, 66: 3073-3077.
    151. Pillay V J and Nowak J. Inoculum density ,temperature and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L) seedlings inoculated with a pseudomonad bacterium. Can.J. Microbiol. 1997,43:34-361.
    152. Poon E S, Huang T C and Kuo T T. Possible mechanism of symptom inhibition of bacterial blight of rice by an endophytic bacterium isolated from rice. Bot. Bull. Academia Sinica, 1977,18:61-70.
    153. Protella G C, Mari M, et al.,Preliminary studies on the efficiency of endophytes in the biological control of postharvest pathogens Monilinia laxa and Rhizopus stolonifer in stone fruit. Postharvest Biology and Technology. 1993,3(4) :361-368.
    154. Quadt-Hallman A, Benhamou N and Kloepper J W. Immunological detection and localization of cotton endophyte Enterobacter asburiae JM22 in different plant species. Can. J. Microbiol. 1996,42:1144-1154.
    155. Quadt-Hallman A, Benhamou N and Kloepper J W. Bacterial endophytes in cotton: mechanisms of entering the plant. Can. J. Microbiol. 1997b,43:557-582.
    156. Ramamoorthy V, Viswanathan R, Raguchander T, et al. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pest and diseases. Crop Protection 200 1 ,20 : 1-11 .
    157. Reed B M, Buckley P M, DeWilde T N. Detection and eradication of endophytic bacteria from micropropagated mint plants. In Vitro Cellular and Development Biology Plant. 1995,31(1) :53-57.
    158. Reis V M, Olivares F L amd Dobereiner J. Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J. of
    
    Microbiology 1994, 10:401-405.
    159. Reva O N, Smirnov V V, Pettersson B, Priest F G. Bacillus endophyticus sp. nov., isolated from the inner tissues of cotton plants (Gossypium sp.). Int JSyst Evol Microbiol 2002,: 101-107.
    160. Roger P A and Ladha J K. Biological N2 fixation in wetland rice fields: estimation and contribution to nitrogen balance. Plant Soil. 1992, 141:41-55.
    161. Ross A F. Systemic acquired resistance by localized virus infection in plants. Virology. 1961,14:340-358.
    162. Samish Z and Dimant D. Bacterial population in fresh, healthy cucumbers. Food Manuf. 1959,34:1-20.
    163. Samish Z, Etinger-Tulczynska R and Bick M. Microflora within healthy tomatoes. Appl. Microbiol. 1961,9:20-25.
    164. Samish Z, Etinger-Tulczynska R and Bick M. The microflora within the tissue of fruits and vegetables. J.food Sci. 1963, 28:259-266.
    165. Sanford G B. The occurrence of bacteria in normal potato plants and legumes. Sci. Agric. 1948,28:21-25.
    166. Scbippers B, Bakker A W, et al. beneficial and deleterious effects of HCN-producing pseudomonads onrhizophere interactions. Plant Soil. 1990, 129:75-83.
    167. Scortichini M. Bacterial contamination in plant tissue cultures in vitro. Informatore Fitopatologico. 1988, 38(12) :37-48.
    168. SevilIa M, Meletzus D, et al. Analysis of nif and regulatory genes in Acetobacter diazotrophicus. Soil Biol. and Biochem. 1997, 29:871-874.
    169. Sevilla M, Oliveira A, Baldani I, et al. Contributions of the bacterial endophyte Acetobacter diazotrophicus to sugarcane nutrition: A preliminary study. Symbiosis 1998, 25:181-191.
    170. Sharma V K and Nowak J. Enhancement of verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings wilt a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can.J.Microbiol. 1998,44:528-536.
    171. Sharrock K P, Parkes S L, et al. Involvement of bacterial endophytes in storage roots of buttercup squash (Curcurbita maxima D. Hybrid 'Delica'). N. Z. J. Crop.Hortic. Sci. 1991, 19:157-165.
    172. Shishido M Loeb B M and Chanway C P. External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can. J. Microbiol. 1995,41:707-713.
    173. Stoltzfus J R, So R, Malarvithi P P, et al. Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil. 1997,194:25-36.
    174. Sturdy M L and Cole A L J. Studies on endogenous bacteria in potato tubers infected by Phytophthora erythroseptica Pethybr. Ann. Bot. 1974,8:11-127.
    175. Sturz A V and Matheson B G. Populations of endophytic bacteria which influence
    
    host-resistance to Erwinia-induced bacterial soft rot in potato tubers. Plant and Soil . 1996,184:265-271.
    176. Sturz A V, Christie B R, Matheson B G, et al. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils. 1997, 25:13-19.
    177. Sturz A V, Christie B R and Matheson B G. Associations of bacterial endophytes populations from red clover and potato crops with potential for beneficial allelopathy. Can. J Microbiol. 1998,44:162-167.
    178. Sturz A V, Christie B R, Matheson B. G, et al. Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Pant Pathol. 1999,48:360-369.
    179. Sturz A V, Christie B R and Nowak J. Baterial endophytes: Potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences . 2000,19(1) : 1-30.
    180. Sturz A V. The role of endophytic bacteria during seed piece decay and potato tuberization. Plant and Soil. 1995, 75:57-263.
    181. Swensen S M and Mullin B C. The impact of molecular systematics on the hypothesis for the evolution of root nodule symbioses and implications for expanding symbioses to new host plant genera. Plant Soil. 1997, 194:185-192.
    182. Tervet I W and Hollis J P. Bacteria in the storage organs of healthy plants. Phytopathol. 1948,38:960-967.
    183. Tien T M, Gaskins M H and Hubell D H. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.).Appl. Environ. Microbiol. 1979, 37:1016-1024.
    184. Tomasino S F, Leister R T, Dimock M B, et al. Field performance of Clavibacter xyli subsp. Cynodontis expressing the insecticidal protein gene cryIA(c) of Bacillus thuringiensis against European corn borer in field corn. Biological Control. 1995,5:442-448.
    185. Tor M, Mantell S H and Ainsworth C. Endophtic bacteria expressing beta-glucuronidase cause false positives in transformation of Dioscorea species. Plant Cell Reports. 1992,11 (9) :452-456.
    186. Tuzum S and Kleopper J W. Induced systemic resistance by plant growth promoting rhizobacteria. In: Improving Plant Productivity with Rhizosphere Bacteria. Proc. Of 3rd. Int. Wok. PDPR. Ryder M.H.,Stephens P. M.,and Bowen G. D.,Eds. CSIRO Div.Soils,Adelaide,Australia,pp. 104-109. 1991.
    187. Van Berkum P and Bohlool B B. Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiol.Rev. 1980,44:91-517.
    188. Van buren A M, Andre C and Ishimaru C A. Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopthol. 1993,83:1406. (abstract)
    189. Vanittanakom N, Loeffler W, el al. Fengycin-a novel antifungal lipopeptide antibiotic
    
    produced by Bacillus subtilis F-29-3. J. Antibiol. 1986,39:888-901.
    190. Van Loon L C. Induced resistance in plants and the role of pathogensis related proteins. Eur. J. Plant Pathol. 1997,103:753-765.
    191. Van Loon L C, Bakker P A H M, Pieterse C M J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 1998, 36:453-483.
    192. Van Peer R, Punte H L M, de Weger L A, et al. Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots. App.Environ. Microbiol. 1990,56:2462-2470.
    193. Van Vuurde J W L and Elvira-Recuenco M. Endophytes management as a tool to optimize plant quality. 2001, www. ag. auburn, edu/argentina/pdfmauscripts/ vanvuurdez. Pdf
    194. Vargas C, Lopes A and Hemerly A. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol, 2001, 47(3) : 229-236.
    195. Velazhahan R, Samiyappan R. Relationship between antagonistic activities of Pseudomonas fluorescence isolates against Rhizoctonia solani and their production of lytic enzymes. J. Plant disease and Protection. 1999,106(3) :244-250.
    196. Webster G, gough C, Vasse J, et al. Interactions of rhizobia with rice and wheat. Plant Soil. 1997,194:115-122.
    197. Wilhelm E, Arthofer W and Schafleitner R. Bacillus subtilis, an endophyte of chestnut (Castanea saliva), as antagonist against chestnut blight (Cryphonectria parasitica), p. 331-337. In A. C. Cassells (ed.), Pathogen and microbial contamination management in micropropagation. Kluwer Academic Publishers, Dortrecht, The Netherlands. 1997.
    198. Whitesides S K and Sports R A. Frequency, distribution, and characteristics of endophytic Pseudomonas syringae in pear trees. Phytopathol. 1991,81:453-457.
    199. Wilson D. Endophyte-the evolution of a term, and clarification of its use and definition. Oikos. 1995,73:274-276.
    200. Xu H, Griffith M, Patten C L, et al. Isolation of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J. Microbiol. 1998,44:64-73.
    201. Yanni Y G, Rizk R Y, Corich V, et al. Natural endophytic association between Rhizobium leguminosarum bv. Trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil. 1997,194:99-114.
    202. You C and Zhou F. Non-nodular endorhizosphere nitrogen fixation in wetland rice. Can. J. Microbiol. 1989, 35:403-408.
    203. Zehnder G W, Murphy J F, Sikora E J, et al. Application of rhzobacteria for induced resistance. Eur. J. Plant Pathol, 2001,107:39-50.
    204. Zinniel D K, Pat Lambrecht, Harris N B, et al., Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol., 2002,68(5) :2198-2208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700