用户名: 密码: 验证码:
生防木霉菌与水稻共生体的建立及其关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物可通过根部与土壤中的微生物,建立植物—微生物系统,进行代谢产物的交换,激活植物的防御机理,影响植物的生长。本论文为探明生防木霉菌与水稻互作关系及作用,通过对木霉菌敏感药剂的筛选,确定了三唑类化学杀菌剂腈菌唑作为木霉菌抗药性遗传标记筛选药剂,同时,确定了木霉菌抗药性遗传改良的紫外线诱变剂量与腈菌唑复筛药剂浓度。在此基础上,利用紫外线与腈菌唑协同诱变技术对本实验室自行筛选的优良生防木霉菌T_(2-16)进行遗传改良,通过三年多时间的诱变改造,共筛选出106株抗药性木霉菌突变体,利用对水稻主要病原菌的拮抗作用,从中选育出既对腈菌唑药物具有较强的抗性又保持优良拮抗性的木霉菌突变体TUV-13。经与出发菌株的培养性状、乙酸乙酯提取物成分与含量、在水稻植株定殖能力、遗传稳定性等生物学特征的比较,证明TUV-13是具有明显双抗遗传标记木霉突变型菌株,可作为研究木霉菌大田条件下与水稻互作共生体关系的标记菌株。此外,利用RAPD-PCR分子标记技术检测了突变体与其出发菌株的DNA多态性,佐证了紫外线与腈菌唑协同诱变主要是通过其遗传物质DNA位点突变而实现的。为生防木霉菌抗药性改良提供一套稳定的技术,拓宽了木霉菌大田推广应用范围。
     为探明木霉菌TUV-13浸种处理水稻种子后,在大田生产条件下能否在水稻根际与其他器官定殖,与水稻形成共生体,通过对两地不同品种不同栽培模式的有关纹枯病发生发展、抗病相关酶活力、水稻生长势等因素的变化动态调查,结果确定了木霉菌与水稻形成机遇性共生体过程及动态,即通过浸种接种方式,木霉菌可随着水稻生长发育,定殖于水稻植株整个器官的表面及皮层细胞间隙。在秧苗期可增殖,但随着水稻进一步发育生长,定殖的木霉菌数量却越来越少。到了水稻生殖生长阶段,急剧降低。整个水稻生育期,木霉菌定殖动态呈现出前升后降,后期消失的动态规律;木霉菌与水稻的这种共生体关系,可诱导水稻植株抗病相关的PPO、POD、PAL酶活力提高,增强水稻对其主要病害的抗病性。尤其明显的是能够增强水稻秧苗素质、促进分蘖抽穗,最终明显提高水稻产量。此外,田间秧苗抗寒性与水稻纹枯病发生发展调查表明,木霉菌与水稻共生体关系还能增强秧苗的抗寒能力,对水稻纹枯病防治效果呈现前高中低后高的马鞍型动态规律。
     为进一步探明木霉菌与水稻形成共生体关系的机制,在室内盆栽仅有木霉菌与水稻的条件下,采用木霉菌孢悬液浸种、沾根和叶面接种等3种方法,观察木霉菌在水稻植株上如何侵入、定殖与转移动态。结果表明,浸种处理是木霉菌与水稻形成系统共生体关系的最有效方法,而蘸根、叶部接种处理只能使木霉菌与水稻形成局部的共生体关系。不同木霉菌株浸种处理结果确定了木霉菌与水稻形成共生体的机制为:木霉菌可吸附在水稻颖壳表面,随着种子萌发,通过产生附着孢、缠绕等方式吸附在水稻胚根、胚芽以及两者之间的隆起组织,并克服水稻的防御机制,主动侵入水稻各组织器官皮层细胞间隙,并随着植株的生长而扩展。其中,水温、浸种时间的长短可影响木霉菌在水稻植株中定殖。木霉菌与水稻共生体中存在游离氨基酸的交换。还能诱导水稻秧苗对纹枯病抗病性。
     系统溶剂法提取试验结果表明,氯仿是木霉菌TUV-13水稻体外模拟培养物抗菌物质提取的最适溶剂。GC-MS检测到TUV-13氯仿提取物有40多种化学成分,其中烷烃类数量最多,为13种,其他成分为有机酸类、酯类、酮类、类固醇类等有机化合物。大孔吸附树脂HP-20与硅胶柱层析分离试验结果确定石油醚乙酸乙酯作洗脱剂的硅胶柱层析系统是木霉菌YUV-13抗菌物质的最适分离方法,能有效地分离出3种结构不同的抗菌物质。其中2号流分抗菌活性最强,鉴定为十八碳二烯酸甲酯,9号流分次之,鉴定为类固醇类抗生素。室内体外细胞毒力测定,木霉菌TUV-13代谢产生的十八碳二烯酸甲酯对不同病原菌抑制效果具有明显差异,其中对水稻纹枯病菌最为敏感,EC_(50)值9.27μg/mL;对花生白绢病EC_(50)值为21.53μg/mL;对辣椒疫病EC_(50)为131.48μg/mL;对水稻稻瘟病EC_(50)为428μg/mL。同时对不同水稻品种种子活力还具有促进作用
The plants-microbiology system combining with plants and soil microorganisms is possessed of many functions, such as exchanging metabolic product, activing plant defense behaviour, and the effect of plants growth. The Trichoderma mutant TUV-13 was obtained by means of the UV-induced in this paper to study the interaction with rice. The strain TUV-13 was labeled of myclobutanil and from the origin of strain T_(2-16) with the strongest antagonistic activity to fungus pathogens in our lab. The comprison on the the culture traits, ethyl acetate extract composition and content, colonization capacity in the rice plant, genetic stability, and other biological characteristics between TUV-13 and T_(2-16), has proved that TUV-13 is a clear genetic markers of anti-double-mutant Trichoderma Strain, which can be used as research marked strain to study the symbiotic relationship with rice under open field conditions. In addition, the biocontrol agent of TUV-13 mutant and the original strain were subjected to a random amplified polymorphic DNAs (RAPD) study. Furthermore, based on NTSYS cluster analysis, the results showed that the inheritable character of induced mutant TUV-13 was stable. The DNA homology between TUV-13 mutant and the original strain shows significance of difference.
     Then the colonization trends of stain TUV-13 in rice was analyzed in the field test.
     The results showed that TUV-13 could be subsist and develop in tissues by presoaking the seeds with TUV-13 fermented production.The symbiotic relation between the Trichoderma mutant TUV-13 and rice could establish. The establishment and dynamic ecology of the symbiont studied through the surveying the growth rates and the resistance under two different cultivated varieties and different cultivated type in past two years. The results showed that soaking, through the inoculation method Trichoderma can colonize in the surface of rice organs and the cortex gap in cells, as the growth and development of rice. Proliferation in the seedlings period, but with the further development of the growth of rice plants, the number of the colonization of Trichoderma is less and less, to the reproductive phase of growth, the number of Trichoderma sharply reduced. The symbiotic relationship between Trichoderma with Rice body can induce the defensive enzyme activities of peroxidase(POD), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase(PAL) in rice seedling were increased by various level, enhancing resistance to its main rice disease. The most obvious is to enhance the quality of rice seedlings to promote the tiller heading, eventually improve rice production. In addition, the investigation of the seedlings in the field on chilling injury and the occurrence and development of rice sheath blight show that Trichoderma-symbiotic relationship can enhance the ability of cold resistance, control of rice sheath blight.
     Further, the best way to establish the symbiotic was studied. The spore suspension of TUV-13 was applied in rice by soaking, pruned-root dip and inoculations of daubing leave. The results indicated that each method could led to colonization of TUV-13 strain in rice tissues, and among them, the soaking is the most effective way to establishing symbiotic relationship between Trichoderma strain and rice. Because the TUV-13 strain could systematic distribution in rice when it used by soaking, and the others inocula-tions methods could only be the local symbiotic relationship between the rice body and Trichoderma.
     The mechanism of the symbiotic formation also obtains. Trichoderma strains could be absorbed on the surface of rice chaff when the rice seeds soaked with the spore suspension of Trichoderma.Follow seed germining, Trichoderma spore began to germinate and form primary germtube.Then the appressoria began to form at the tips of germtube and attached on the surface of host. Further, it coule be microscopically observed the hyphae and conidiophores to existdetween mesophyllic cells. And the target strain TUV-13 could to internal stem ,leaf and root stably .It was confirmed that the strain was endophytes in rice and could develop, transfer in rice. Observation to the macroscopical and microscopical process indicated that the rice and Trichoderma strain were compatible.The temperature, soaking time could affect the colonization of Trichoderma in the rice plants. The symbiont of Trichoderma and rice existed exchange of the free amino acids. Meanwhile, the symbiont were induced resistance to the sheath blight.
     The test results of Solvent Extraction System showed that chloroform is the most solvent for Trichoderma TUV-13 anti-bacterial substance extracted from culture in rice vitro. GC-MS detected TUV-13 chloroform extract included more than 40 kinds of chemical substances, of which number of alkanes,13 kinds, is the largest.The others contains organic acids, esters, ketones, steroids, and other types of organic compounds. The comprison on macroporous resin HP-20 and silica gel column chromatography, which the outcome of the trial of oil ethyl ether-eluting agent for the silica gel column chromatography system was Trichoderma TUV-13 anti-bacterial substances, determined that the optimum separation methods are effectiveto isolate the 3 different structure of anti-bacterial substance. Sub flow 2, the strongest anti-bacterial activity, identified as 18 carbon methyl diene, Sub flow 9, followed by sub-stream, identified as steroid antibiotics. Indoor cells in vitro Toxicity show Trichoderma TUV-13 metabolites of 18-carbon diene methyl inhibiting effect of different pathogens have significant differences, of which rice sheath blight was the most sensitive, its EC_(50) was 9.27μg/mL; to peanuts southern blight EC50 value was 21.53μg/mL; to phytophthora EC50 was 131.48μg/mL; torice blast EC_(50) was 428μg/mL. At the same time, the seeds vigor of different rice varieties were improved by the substance.
引文
[1] Chisalberti E L,Sivasi thamparam K.Antifungal antibiotics produced by Trichoderma spp[J].Soil Biology Biochemistry,1991,23(11):1011-1020.
    
    [2] Samuels G J.Trichoderma:a review of biology and systematics of the genus [J]. Mycological Research, 1996,100:923-93 5.
    [3] Samuels G J,Pardo-schultheiss R A,Hebbar K P,et al .Trichoderma stromaticum sp.nov.,a parasite of the cacao witches broom pathogen[J].Mycological Research,2000,104:760-764.
    [4] Samuels G J,Lieckfeldt E,Nironberg H I.Trichoderma asperellum,a new species with waited conidia,and redeacription of T.viride[J].Sydowia,1999,51:71-88.
    [5] Samuels G J,Dodd S L,Gams W,et al. Trichoderma species associated with the green mold epidemic of commnercially grown Agaricus.
    [6] Harman GE,Howell CR,Viterbo A,et al.Trichoderma species-oppotunistic, avirulent plant symbionts. Nat. Rev. Microbiol,2004,2:43-46.
    [7] Shoresh M,Yedidia I,Chet I.Involvement of jasmonic acid/ethylene Signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T-203. Phytopathology,2005,95:76~84.
    [8] Yedidia I, Shoresh M, Kerem Z, et al.Concommitant induction of systemic resistance to Pseudomonas springae pv.1 achryman in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol,2003,69: 7343~7353.
    [9] Beagle-Ristaino J E, Papavizas G C.Survival and proliferation of propagules of Trichoderma spp.and Gliocladium virens in soil and in plant rhisospheres[J].Phytopathology, 1985,75(6):729~732.
    [10] Harman G E.Development and benefits of rhizosphere competent fungi for biological control of plant pathogens[J].Plant Nutr,1992,15(6):835-843.
    
    [11] Harman G E.Myths and dogmas of biocontrol: changes in peiceptions derived from research on Trichoderma harzianum T-22[J].Plant Diseases,2000,84(4):377-393.
    [12]Howell C R.Mechanisms employed by Trichoderma species in the biological control of plant diseases:the history and evolution of current concepts[J].Plant Disease,2002,87(1):4-10.
    [13]鲁海菊,刘云龙.哈茨木霉强根际定殖能力菌株的筛选[J].中国生物防治,2008,24(2):138-142.
    [14]Papavizas G C.Trichoderma and Gliocladium:biology,eclogy,and potential for biocontrol[J].Ann.Rev.Phytopatho 1.1985.23:23-54.
    [15]赵阿娜,程惠珍,丁万隆,等.两种生防木霉菌的种群动态监测及回收毒力测定[J].生物技术,2006,16(4):45-47.
    [16]徐瑞富,陆宁海,张定法,等.土壤不同微生物量对木霉菌定殖的影响和木霉菌生态学习性研究[J].中国生态农业学报,2007,15(1):207-208.
    [17]燕嗣皇,吴石平,陆德清,等.木霉生防菌对根际微生物的影响与互作[J].西南农业学报,2005,18(1):40-46.
    [18]Calvet C,Pera J M.Growth reaponse of marigold to inoculation with Glomus mosseae,Trichoderma aureuoviride and Pythium ultimum in a peat-perlite mixyure [J].Plant Soil,1993,148:1-6.
    [19]Dandurand L M,Knudsen G R.Influence of Pseudomonas fluorescens on hyphal growth and biocontrol activity of Trichoderma harziarnum in the spermosphere of pea[J].Phytopathology,1993,83(3):265-270.
    [20]朱双杰,高智谋.木霉对植物的促生作用及其机制.菌物研究,2006,4(3):107-11.
    [21]Altomare C,None W A,Bjorkman T,et al.Solubilizaltion of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harziarnum Rilai[J].Applied and Environmental of Microbiology,1999,65:2926-2933.
    [22]燕嗣皇,吴石平,陆德清,等.三唑酮对木霉根际竞争定殖的影响.2000,30(3):266-270.
    [23]吴石平,陆德清,刘世怡,等.三唑酮对豌豆根际木霉定殖和尖孢镰刀菌厚垣孢子萌发的影响.云南农业大学学报,2000,15(3):247-249.
    [24]张广志,杨合同,周红姿,等.土壤杀菌剂对木霉根际竞争的影响及木霉对玉米生长作用的初步研究[J].农业环境科学学报.2007,26(增刊):229-231.
    [25]王革,李天福,孙超岷,等.烟草木霉菌剂的肥效测定及叶面、根部定殖研究[J].中国烟草学报,2002,8(4):27-33.
    [26]王芊,王志英,张匀华.影响木霉菌在叶表定殖的因素[J].中国农学通报,2006,22(9):287-289.
    [27]王芊,王志英,张匀华.木霉菌和灰霉菌相互作用关系的初步研究[J].黑龙江八一农垦大学学报,18(6):39-42.
    [28]Ahmad JS,Baker R.Rhizosphere competence of Trichoderma harziarnum[J].Phytopathology,1987,77:182-189.
    [29]Ahmad J.S,Baker R.Induetion of rhizosphere competence in Trichoderma harziarnum(Abstract).Phytopathology,1985,75:1302.
    [30]Chao W L.,Nelson E B.,Harman G C.,et al.Colonization of the rhizosphere by biological control agents to seeds[J].Phytopathology,1986,76(1):60-65.
    [31]Green H,Jenson D EA tool of monitoring Trichoderma harziarnum:The use of GUS transformant for ecological studies in the rhizosphere[J].Phytopathology,1995,85:1436-1440.
    [32]Shoresh M,Yedidia I,Chet I.Involvement of jasmonic acid/ethylene Signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T-203.2005,Phytopathology,95:76-84.
    [33]Howell CR,Hanson LE,Stipanovic RD,et al.2000.Induction of terpenoid synthesis ubcotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens.Phytopathology,2000,90:248-252
    [34]Sivan A and Chet I.Integrated control of Fusarium crown and root rot of tomato with Trlchoderma harzfanum in combination with mythyl bromide or soil solafization[J].Crop Protection,1993,12(5):380-386.
    [35]何月秋,和志娇,杨艳丽,等.哈茨木霉ThA和ThB的存活力与定殖能力的测定[J].云南农业大学学报,2004,19(3):280-282,303.
    [36]路国兵,张瑶,冀宪领,等.植物内生细菌的侵染定殖规律研究进展[J].生物技术通报,2007(3):88-92.
    [37]李红刚,马林,刘慧平,等.两株植物内生放线菌在植株体内定殖能力的测定[J].山西农业大学学报(自然科学版),2008,28(3):287-289.
    [38]黎起秦,叶云峰,王涛,等.内生枯草芽孢杆菌B47菌株入侵番茄的途径及其定殖部位[J].中国生物防治,2008,24(2):133-137.
    [39]牟志美,路国兵,冀宪领,等.桑树内生拮抗细Burkholderia cepacia LulO-1的分离鉴定及其内生定殖[J].微生物学报,2008,48(5):623-630.
    [40]胡小加,刘胜毅,Daniel Robeas.产碱假单胞菌在油菜根圈定殖的动态和分布研究[J].中国油料作物学报,2002,24(4):54-56.
    [41]平叔珍,程红梅,林敏.盐胁迫下粪产碱菌在水稻根表的定殖和异源固氮基因的表达[J].2000,26(2):95-100.
    [42]Nielsen K M,Elsas J D,Smalla K.Transformation of Acinetobacter sp.Strain BD413(pFG4A nptlI)with Transgenic plant DNA in soil Microcosms and elects of kanamycin on selection transformants[J].Applied and Environmental Microbiology,2000,5:1237-1242.
    [43]胡小加,江木兰,张银波.巨大芽孢杆菌在油菜根部定殖和促生作用的研究[J].2004,41(6)946-948.
    [44]张晓霞,王平,冯新梅,等.外源基因标记的紫云英根瘤菌在水稻根部的定殖研究[J].生态学报,2003,23(4):772-776.
    [45]Wang P,Li F D.The Application of marker Gene in the study of Rhizospere Colonazition[J].J.of Biotech.,1994,5:9 - 12.
    [46]齐飞飞,夏觅真,唐欣昀.luxAB基因标记的K2116L菌株在棉花根际中的定殖[J].生态学杂志,2008,27(2):192-19.
    [47]Tang XY,Sun YY,Wen CQ,et al.2004.Survival of Pseudomonas fluorescence X16(luxAB)strain in soils accumulated with mixed rare earth elements[J].Journal of Rare Earth,2004,22:904-908.
    [48]White D,Leifeit C,Ryder MH,et al.Lux gene technology-A strategy to optimize biological control o f soil-born disease[J].New Phytologist,1996,133:173-181.
    [49σ李友国,周俊初.消除共生质粒的费氏中华根瘤菌HND29SR在大豆根圈的定殖动态[J].生态学报,2002,22(9):1420-1424.
    [50]韦兵,唐欣昀.假单胞菌JK45菌株lux基因标记及在土壤中的存活[J].农业环境科学学报2006.25(6):1524-152.
    [51]田涛,亓雪晨,王琦,等.芽孢杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探[J].植物病理学报,2004,34(4):346-35 1.
    [52]邱珊莲,崔中利,王英,等.甲基对硫磷降解菌DLLBR在青菜及根际土壤中的定殖研究.土壤[J].2005,37(1):100-104.
    [53]蔡天明,管莉菠,李顺鹏.Pseudomonas putida GM6的基因标记及在活性污泥中的定殖[J].土壤学报,2007,44(3):516-521.
    [54]田涛,王琦.绿色荧光蛋白作为分子标记物在微牛物学中的应用[J].微生物学杂志,2004.25(1):68-72.
    [55]Errampalli D,Leung K,Cassidy M B,et al.Applications of the green fluorescent protein as a molecular marker in environmental microorganisms[J].Journal of Microbiological Methods,1999,35:187-199.
    [56]Qazi S N A,Rees C E D,Mellits K H,et al.Development of gfp vectors for expression in Listeria monocytogenes and other low G + C gram positive bacteria[J].Microbial Ecology,2001,41(4):301-309.
    [57]陈晓斌,张炳欣,楼兵干,等.运用生色基因标记黄瓜根围促生菌(PGPR)筛选菌株[J].微生物学报,2001,41(3):287-292.
    [58]佟宏霞,李喜文,邢苗.栝楼愈伤组织细胞中天花粉蛋白的免疫细胞化学定位研究.东北师大学报自然科学版,1996,3:58-62.
    [59]左豫虎,康振生,黄丽丽,等.大豆疫霉菌对大豆下胚轴侵染过程的细胞学研究.植物病理学报,2005,35(3):235-241.
    [60]刘利华,吴祖建,林奇英,等.水稻条纹叶枯病细胞病理变化的观察.植物病理学报,2000,30(4):306-311.
    [61]安千里,匡柏健,母锡金,等.固氮菌Klebsiella oxytoca SA2在水稻根内定殖并表达固氮酶.自然科学进展,1999,9(12增):1262-1268.
    [62]GyaneshwarP,James EK,Mathan N,et al.J Bacteriol,2001,183:2634-2645.
    [63]孙超岷,山东农业大学硕士研究生论文,2002.
    [64]冯永君,宋未.植物内生细菌.自然杂志,2001,23(5):249-252.
    [65]卢镇岳,杨新芳,冯永君.植物内生细菌的分离、分类、定殖与应用.生命科学,2006,18(1):90-94.
    [66]Gado-Jarana J,Moreno Mateos M A,and Benitez T.Glucose uptake in Trichoderma harzianum:role of gttl[J].Eukaryot.cell,2003,2:708-717.
    [67]Ghen I,and Inbar J.Biological control of fungal pathogens[J].Appl.Biochem.Biotechnol.,1994:48:37-43.
    [68]宋晓妍,孙彩云,陈秀兰,等.木霉生防作用机制的研究进展.中国农业科技导报,2006,8(6):20-25.
    [69]Jong-min B,Charkes R,Howell C,et al.The role of extracellular chitinase from Trichoderma virens Gv29—8 in tlle bioeontrol of Rhizoctonia solani[J].Current Genetics,1999,35(1):41-43.
    [70]BertagnoUi B L.,Daly S,and Sinclair J B.Antimycotic compounds from the plant pathogen Rhizoctonia solani and its antagonist Trichoderma harzianum [J].Phytopathology,1998,88:131-135.
    [71]Ghisalbert E L.Antifungal antibiotics produced by Trichoderma spp.[J].SoiI Biology & Biochemistry,1991,23(11):1011-1020.
    [72]Ghisalbert E L,Rowland G R.Antifungal metabolite from Trichoderma harzianum [J].Journal of Natural Products,1993,56(10):1769-1840.
    [73]Faull J L,Graeme Cook K A,amd Pilkington B L.Production of an isanitrile antibiotic by an UV-induced mutant of Trichoderma harzianum [J].Phytochemistry,1994,36(5):1273-1276.
    [74]Elad,Y.Biocontrol of foliar pathogens:mechanisms and application [J].Commun.Agric.App1.Bio1.Sci.,2003,68:17-24.
    [75]Elad ~.,Barak R.,and Chet I.Possible role of leetins in mycoparasitism[J].J.Bacteriol,1983,154:1431-1435.
    [76]Neethling D.,Nevalainen H.Mycoparasitic species of Trichoderma produce lectins [J].Can.J Microbio 1.,1996,42:141-146.
    [77]Ahmed S A,Perez S C,Emilia C M.Evaluation of induction of systemic resistance in pepper plants(Capsicum annum)to Phytophtora capsici using Trichoderma harzianum and its relation with capsidiol accumulation[J].European Journal of Plant Pathology,2000,106(9):817-824.
    [78]王建锋,吴利民,陆宁海,等.木霉发酵产物对黄瓜种子活力及幼苗生长的影响[J].陕西农业科学,2008,54(3):37-38.
    [79]高增贵,吴海云,庄敬华,等.木霉菌REMI变异株对部分生态因子的影响[J].植物保护学报,2007,34(5):524-528.[80]吴利民,郭立季,陆宁海,等.木霉对番茄种子活力及幼苗生长的影响[J].安徽农业科学,2006,34(2 1):5482-5482,5492.
    [81]魏林,梁志怀,罗赫荣.哈茨木霉T2发酵产物对水稻种子活力的影响[J].种子,2005,24(11):4-6,50.
    [82]魏林,梁志怀,曾粮斌,等.哈茨木霉T2-16代谢产物诱导豇豆幼苗抗枯萎病研究[J].湖南农业大学学报(自然科学版),2004,30(5):443-445.
    [83]NzoiiyobiriJean-Berchmans,徐同,宋凤鸣等.哈茨木霉NF9菌株对水稻的诱导抗病性[J].中国生物防治,2003,19(3):111-114.
    [84]Meyer G D,Bigirirmna J,Elad Y,et al.Induced systemic resistance in biocontrol of Botrytis cinerea by Trichoderma harzianumT39[J].European Journal of Plant Pathology,1998,104(3):279-286.
    [85]陆宁海,吴利民,田雪亮,等.哈茨木霉对番茄幼苗促生作用机理的初步研究[J].西北农业学报,2007,16(6):192-194.
    [86]梁志怀,魏林,郑明福,等.哈茨木霉发酵产物对豇豆产量和品质的影响[J].湖南农业科学2005,(5):38-40,4
    [87]Papavizas G C.Trichoderma and Gliocladium:Biology,ecology,and potential for biocontrol[J].Annu.Rev.Phytopathology,1985,23:23-54.
    [88]Sivan A,Haman G E.Improved rhizosphere competence in a proto-plast fusion progeny of Trichoderma harzianum IJ].Gen.Micronol,1991,137:23-29.
    [89]庄敬华,杨长城,牟连晓,等.土壤不同处理对木霉菌定殖及其生防效果的影响[J].植物保护,2005,31(6):42-44.
    [90]于雪云,扈进冬,杨合同.木霉菌抗药性研究进展[J].山东农业科学,2007,6:81-85.
    [91]于新,田淑慧,徐文兴,等.木霉生防作用的生化机制研究进展[J].中山大学学报,2005,44(2):86-90.
    [92]张兴,马志卿,李广泽.试谈生物农药的定义和范畴[J].农药科学与管理,2002,1:32-36.
    [93]王勇,杨秀荣,刘水芳.拮抗木霉耐药性菌株的筛选及其与速克灵防治灰霉病的协同作用[J].天津农学院学报,2002,9(4):19-22.
    [94]刘新,尤新民.木霉Y对毒死蜱和甲胺磷的降解作用[J].福建大学学报,2002-31(4):454-458.
    [95]付文祥.有机磷农药降解菌木霉FM10的生长条件研究[J].生物磁学,2005,5(3):29-31.
    [96]姜兴印.山东农业大学博士论文,2006.
    [97]杨合同,唐文华,李纪顺,等.绿色木霉LTR-2菌株的紫外线诱变改良[J].中国生物防治,2004,20(3):182-186.
    [98]Papavizas G C,Lewis J A,and Moity THA-E.Evaluation of new biotypes of Trichoderma harzianum for tolerance to benomyl and enhanced capabilities[J].Phytopathology,1982,72:126-132.
    [99]Papavizas G C,Lewis J A.Physiological and biocontrol characteristics of stable mutants of Trichoderma viride resistant to fungicides[J].Phytopathology,1983,73:407-411.
    [100]丁中,刘峰,慕立义.紫外光诱导哈茨木霉产生腐霉利抗性菌株的研究[J].中国生物防治,2002,18(2):75-78.
    [101]田连生,李贵香,高玉爽.紫外光诱导木霉产生对速克灵抗药性菌株的研究[J].中国植保导刊,2006,26(6):18-20.
    [102]鲁海菊,刘云龙,张云霞.哈茨木霉多菌灵耐药性菌株的筛选[J].云南农业大学报,2005.20(3):436-437.
    [103]Mukherjee P K,Sherkhane P D,Murthy N B K.Induction of stable benomyl tolerant phenotypic mutants of Trichoderma psedokoningii MTCC 3011,and their evaluation for antagonistic and biocontrol potential[J].Indian J.Exp.Biol.,1999,37(7):710-712.
    [104]Ahmad JS,Baker R.Competitive saprophytic ability and cellulolytic activity of rhizosphere competent mutants of Trichoderma harzianum[J].Phytopathology,1987,77(22):358-362.
    [105]杨合同,Maarten H.Ryder,唐文华.原生质体融合技术改良植病生防木霉菌株[J].中国生物防治,2005,21(4):247-253.
    [106]Harman G E.The genetic nature and biocontrol ability of progeny from protoplast fusion in Trichoderma[A].In:ChetI,ed.Biotechnology in Plant Disease Control.Wiley Liss Press,1993:237-255.
    [107]Harman G E,Hayes C K,Lorito M,et al.Chitinolytic enzymes of Trichoderma harzianum:purification of chitobiosidase and endochitinase[J].Phytopathology,1993(83):313-318.
    [108]Ogawa K,Yoshida N,Gesnara w,et al.Hybridization and breeding of the benomyl resistant mutant,Trichoderma harzianum antagonized to phytopathogenic fungi by protoplast fusion[J].Bio.Biotech.Biochem.,2000,64(4):833-836.
    [109]Hatvani L.Manczinger L,Kredics L.et al.Production of Trichoderma strains with pesticide polyresistance by mutagenesis and protoplast fusion[J].Antonie Van Leeuwenhoek,2006,89(3-4):387-393.
    [110]Pe'er S,Chet I.Trichoderma protoplast fusion:a tool for improving biocontrol agents[J].Canadian Journal of Microbiology,1990,36:6-9.
    [111]MigheliQ,Whipps JM,Budge SP,et al.Production of inter2 and intra2 strain hybrids of Trichoderma Spp.By protoplast fusion and evaluation of their biocontrol activity against soilborne and foliar pathogens[J].Journal of Phytopathology,1995(143):91-97.
    [112]杨谦,赵小岩.多菌灵抗性基因在木霉菌中的转化方法[J].科学通报,1998,43(22):2423-2426.
    [113]刘士旺.CryK13V基因对绿色木霉原生质体的转化[J].浙江大学学报。2006,32(3):270-275.
    [114]石晶盈,陈维信,刘爱媛.植物内生菌及其防治植物病害的研究进展[J].生态学报,2006,26(7):2395-2401.
    [115]Fiore S D,Gallo M.Endophytic bacteria:their possible role in the host plant.In:Fendrik,I.Eds.Azospirillum Ⅵ and related microorganisms.Berlin Springel Vefiag,1995,5:169-187.
    [116]徐同.木霉在工农业生产几环境保护中的应用前景广阔.国际学术动态,2005,3:17-19.
    [117]邱德文主编.植物免疫与植物疫苗.研究与实践.北京:科学出版社,2008:67-79.
    [118]郭润芳,刘晓光,高克祥等.拮抗木霉菌在生物防治中的应用与研究进展.中国生物防治,2002,18(4):180-184.
    [119]Harman GE.Overview of mechanism and use of Trichoderma spp..Phytopathology.2006(96):190-194
    [120]何淼,吴元华,赵刚等.农用抗生素产生菌Streptomyce SN03菌株的诱变选育.农药,2007,46(8):571-573.
    [121]李贵香,高海霞,田连生,等.拮抗木霉耐多菌灵菌株的筛选.生物技术,2006,16(6):29-332.
    [122]李恒奎,陈长军,王建新等.禾谷镰孢菌对腈烯菌酯的敏感性基线及对室内抗药性风险初步评估.植物病理学报,2006,36(3):273-278.
    [123]陈建爱,肖敏,王末名.木霉诱变菌株发酵条件研究.核农学报,2002,16(5):305-309.
    [124]田连生.紫外光诱导哈茨木霉产生对多菌灵抗药性的菌株.农业环境科学学报,2007,26(1):318-321.
    [125]张蓓蓓,吕淑霞,肖冰.番茄煤霉病生防融合子基因组RAPD分析鉴定.微生物学杂志,2007,27(4):35-39.
    [126]吴海云,高增贵,赵世波等.生防木霉菌123及其诱变体的RAPD分析.植物保护,2007,33(3):26-29.
    [127]杨合同,肖性龙,徐砚珂等.植病生防木霉菌的RAPD分析[J].山东科学,2004,17(3):17-21.
    [128]BULAT S A,LUBECK M,MIRONENKO N V,et al.UP-PCR analysis and ITS1ribotyping of strains of Trichoderma and Gliocladium.Mycol Res,1998,2:933-943.
    [129]谭琦.危害双孢蘑菇木霉株系的遗传差异测定.食用菌学报,1998,5(2):37-41.
    [130]Kuhls K,Lieckfeldt E,Samuels G J.et al.Revision of Trichoderma sect.Longibrachiatum including related teleomorphs based on analysis of ribosomal DNA internal transcribed spacer sequences[J].Mycologia,1997,89(3):442-460.
    [131]Grondona I.Hermaosa M.Tejada M D.etl.Physiological and biochemical characterization of Trichoderma harzianu,a biological control agent against soil —borne fungal plant pathogens[J].Applied and Environmental Microbiology,1997,8:3189-3198.
    [132]李梅云,刘开启,李天飞等.木霉的RAPD分析[J].中国烟草学报,2004,10(3):38-41.
    [133]Meyer W.Morawetz R,Bomer T,el al.The use of DNA-fmgerprint analysis in the classification of some species of the Trichoderma aggregate[J].Curt Genet,1992(21):27-30.
    [134]Kuhls K,Lieckfeldt E,Samuels GJ,et al.Revision of Trichoderma sect.Longibrachiatum including related teleomorphs based on analysis of ribosomal DNA internal transcrebed spacer sequences[J].Mycologia,1997,89:442-460.
    [135]宣群,张玲琪.莪术内生真菌的分离与鉴定[J].中国民族民间医药杂志,2007(84):45-46.
    [136]邓祖军,曹理想,谭红铭等.红树林内生真菌抗细菌和抗真菌活性的初步研究[J].广东药学院学报,2007,23(5):563-567,571.
    [137]何迎春,高必达.立枯丝核菌的生物防治[J].中国生物防治,2000,16(1):31-34.
    [138]徐同,徐静萍,李德葆.木霉对土传病害真菌的拮抗作用[J].植物病理学报,1993,23(1):64-67.
    [139]Shoresh M,Yedidia I,Chet I.Involvement of jasmonic acid/ethylene Signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T-203[J].Phytopathology,2005,95:76-84.
    [140]Yedidia I,Shoresh M,Kerem Z,et al.Concommitant induction of systemic resistance to Pseudomonas springae pv.1 achryman in cucumber by Trichoderma asperellum(T-203) and accumulation of phytoalexins[J].Appl Environ Microbiol,2003,69:7343-7353.
    [141]Harman GE,Howell CR,Viterbo A,et al.Tdchoderma species-opportunistic,avirulent plant symbionts[J].Nat.Rev.Microbiol,2004(12):43-46.
    [142]CAO L X,YOU J L,ZHOU S N.Endophytic fungi from musa acuminate leaves and roots in south China[J].World Journal of Microbiology and Biotechnology,2002(18):169-171.
    [143]王娣,贾书华,张兆轩等.霍山石斛内生真菌分离、培养及其促生作用的初步研究[J].菌物研究,2007,5(2):84-88
    [144]张玲琪,郭波,李海燕等.长春花内生真菌的分离及其发酵产生药用成分的初步研究[J].中草药,2000,31(11):805-807.
    [145]张海清,邹应斌,肖国超等.抗寒种衣剂对早籼稻秧苗抗寒性的影响及其作用机理的研究.中国农业科学,2006,39(11):2220-2227.
    [146]张志良,瞿伟箐.植物生理学实验指导.北京:高等教育出版社,2003:39-41,67-71,127-129,274-276.
    [147]李海林,殷绪明,龙小军.低温胁迫对水稻幼苗抗寒性生理生化指标的影响.安徽农学通报,2006,12(11):50-53.
    [148]蒋靓,庄杰云,樊叶杨等与水稻耐逆性相关的叶片丙二醛含量的QTL分析.中国水稻科学,2007,21(4):436-438.
    [149]梁颖,王三根.Ca~(2+)对低温下水稻幼苗膜的保护作用.作物学报,2001,27(1):59-63.
    [150]Avni A,Bailey B A,Mattoo A K,et al.Induction of ethylene biosynthesis in Nicotiana tabactun by a Trichoderma viride xylanase is correlated to the accumulation of 1-aminocycloproponce-1-carboxylic acid(ACC)synthesis and ACC oxidase transcripts[J].Plant Physidogy,1994,106:1049-1055.
    [151]Dean J F D,Gamble H R,Anderson J D.Ihe ethylene biosynthesis inducing xylanase;its inducion in Trichoderma viride and certain plant pathogens [J].Phytopathology,1989,79:1071-1078.
    [152]焦琮,路丙声.康氏木霉制剂对棉花和菜豆幼苗几个生理指标的影响[J].中国生物防治.1995,11(1):30-32.
    [153]BiO rkman T,Blanchard L M,and Harman G E.Growth enhancement of shrunken-22(sh2)sweet corn by Trichoderma harzianu 1295-22:effect of environmental stress[J].Journal of the American Society for Horticultural Science,1998,123:35-40.
    [154]朱双杰,张立付,高智谋等.哈茨木霉TH-1菌株对植物的促生作用及其机制(摘要).中国植物病理学会,2008年学术年会论文集:548.
    [155]佐佐木康晴.中国发明专利《植物活化剂及其制备方法,活化方法、活性促进剂及其使用方法》,申请号为00807600.
    [156]Altomare C,None W A,BiOIkmaIl T,et al.Solubililtion ofphosphates and micronutrients by the plant growth promoting andbiocontrol fungus Tdchodemm harganam Rilai [J].Applied and Environmental of Microbiology,1999,65:2926-2933.
    [157]黄有凯.哈茨木霉对水稻硝酸还原酶活力及氮磷钾含量的影响[D].合肥:安徽农业大学生命科学学院,2003.
    [158]袁志林,戴传超,史央等.内生真菌B3促进水稻生长的机理研究[J].江苏农业科学,2004(2),10-13.
    [159]任安芝.植物内生真菌.一类应用前景广阔的资源微生物[J].微生物学通报,2001,28(6):90-93.
    [160]Arditti J.Factors affection the germination of orchid seeds.The Botanical Review,1967,33(1):1-83.
    [161]Hijer JA.et al.Orchid mycorrhiza,Vitamin production and requirement by the symbionts[J].Anner J Bot,1973,60(8):829-835.
    [162]蔡学清,何红,胡方平.双抗标记法测定枯草芽孢杆菌BS-2和BS-1在辣椒体内的定殖动态[J].福建农林大学学报(自然科学版),2003,32(1):41-45.
    [163]张兴锋,陈振明,何红,等.红树植物内生海洋细菌CⅢ-1在植物体内及根际土壤中的定殖测定[J].生态农业科学,2007,23(2):384-388.
    [164]杨敏,李建强,倪汉文等.尖角突脐孢菌在稗草和水稻上的萌发和侵染行为的比较研究[J].菌物学报,2005,24(4):551-557
    [165]张宗山,张丽荣,刘静,等.枸杞炭疽病对成熟果实侵染过程的显微观察[J].西北农业学报,2008,17(1):92-94.
    [166]史娟,韩青梅,张宏昌等.苜蓿假盘菌侵染苜蓿叶片的细胞学研究[J].菌物学报,2008,27(2):183-192.
    [167]谭小明,郭顺星,周雅琴,等.七叶一枝花根的显微结构及其内生真菌分布研究[J]. 菌物学报,2006,25(2):227-233.
    [168]罗赫荣.生防木霉菌对土著根瘤菌固氮活性及遗传多样性影响的研究.博士学位论文,2007.
    [169]刘井兰,王美凤,徐建祥等.农药对水稻体游离氨基酸含量及抗虫性的影响[J].扬州大学学报(农业与生命科学版),2005,26(3):74-78.
    [170]余月书,吴进才,王芳等.吡虫啉胁迫对水稻可溶性糖、游离氨基酸及钾等矿物元素含量的影响[J].扬州大学学报(农业与生命科学版),2008,19(1):85-89.
    [171]程旺大.姚海根,张国平等.镉胁迫对水稻生长和营养代谢的影响[J].中国农业科学2005,38(3):528-532.
    [172]邓江明,蔡群英,潘瑞只.光质对水稻幼苗蛋白质、氨基酸含量的影响[J].植物学通报,2000,17(5):419-423.
    [173]杨红玉,李湘,张一凡等.灰霉菌培养及其对拟南芥的侵染[J].西南农业学报,2005,18(4):431-434.
    [174]CAO L X,YOU J L,ZHOU S N.Endophytic fungi from musa acuminate leaves and roots in south China[J].World Journal of Microbiology and Biotechnology,2002,18:169-171.
    [175]Yedidia I,Benhamou N,Kapulnik Y.Inducation and accumulation of PR protein activity during early stdges of root colonization by the microparasite Trichoderma harzianu strain T203[J].Plant Physiology and Biochemistry.2000,38:863-873.
    [176]Simons M,Van der Bij A,Brand J,et at.Grotobiotic system for studying colorization by plant growing-promoting Pseadomonas bacteria[J].MPMI,1996,9(7):600.
    [177]杨海莲,孙晓璐,宋未.水稻内生阴沟肠杆菌的定殖研究[J].自然科学进展,1999,12(9):1241-1244.
    [178]赵小锋,杨晖,陈欣欣等.桃儿七地下茎的显微结构及内生真菌分布[J].甘肃科学学报,2007,19(3):85-87.
    [179]谭小明,郭顺星,周雅琴等.美登木根的显微结构及其内生真菌的分布[J].植物学通报,2006,23(4):368-373.
    [180]田新莉,蔡爱群,曹理想等.水稻内生真菌类群分析及其拮抗病原菌活性研究[J].中山大学学报(自然科学版),2005,44(2):69-73.
    [181]Chen J,Harman GE,Comis A.Proteomics related to the biocontrol of Pythium damping off in maize with Trichoderma harzianum[J].Journal of integrative plant biology,2005,47(8):988-997.
    [182]CORLEY D G,MILLER WIDEMAN M,DURLEY R C.Isolation and Structure of Harzianum A:A New Trichothecene from Trichoderma harziarum[J]J Nat Prod,1994,57(3):422-425
    [183]APSITE A,VIESTURS U,STEINBERGA V,et al.Morphology and Anfifungal Action of the Genus Trichoderma Cultivated in Geometrically Dissimilar Bioreactors[J].Worm J Microb Biot,1998.14:23-29.
    [184]Lumsden R D,Ridout C J,Vendemia M E.Can J Microbiol.1992,38:1274-1280.
    [185]Jones R W,Lanini W T,Hancock J G.Weed Sci,1988,36:683-687
    [186]Howell,C.R.,Hanson,L.E.,Stipanovic,et al.Induction of terpenoid synthesis in cotton roots and control of Rhizoctoina solani by seed treatment with Trichlderma virens[J].Phytopathology,2000,90:248-252.
    [187]陈列忠,陈建明,郑许松等.枸骨内生真菌抗菌代谢产物的鉴定及活性研究[J].农药学学报2007,9(2):143-148
    [188]中国发明专利申请号为200710156394.X,选用保存编号为CGMCCl672的紫杉木霉菌株ZJUF0986发酵后所得的发酵液提纯木霉菌酯素
    [189]陈凯,杨合同,李纪顺.绿色木霉菌LTR-2孢子提取物的抑菌活性及化学成分分析[J].微生物学通报,2007,34(3):455-458.
    [190]陈凯,李纪顺,杨合同等.0.2%a-吡喃酮WP对植物病原真菌的防治效果[J].农药,2006,45(9):632-633.
    [191]李玉新,郝静君,王有名.吡喃二酮衍生物的活性及吡喃酮并吡唑的合成研究进展[J].精细化工中间体.2004,5(3):1-3.
    [192]Cohen Y U Gist,E M osinger Systemic tesistance of potato plants against Ph.vtophtpora in eslcn.s'inducedby unsaturated fatty acids[J].Physiol M al PlantPathol,1991 38:255-263.
    [193]宋凤鸣等.两种十八碳二烯酸诱发水稻对稻瘟病的抗性及其防病作用[J].中国水稻科学,1994,8(3):163-167.
    [194]Petrini O.Fungal endophytes of tree leaves[A].ANDREWS J H,HIRANO S S ets.Microbial Ecology of Leaves[C].New York:Spring-Verlag.1991.179-197.
    [195]Saikonen K,Wali P,Helander M,et al.Evolution of endophyte-plant symbioses[J].Trends in Plant Science.2004,9(6):275-280.
    [196]官珊,钟国华,孙之潭等.植物内生真菌的研究进展.仲恺农业技术学院学报,18(1):61-66,200
    [197]Shoresh M,Yedidia I,Chet I.2005.Involvement of jasmonic acid/ethylene Signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T-203[J].Phytopathology,95:76-84
    [198]Marra R,Patrizia A,Virginia C,et al.2006.Study of the three-way interaction between Trichoderma atroviride,plant and fungal pathogens by using a proteomics approach Curr.Genet.DOI10.1007/s 00294-006-0091-0
    [199]蒋立科,黄有凯等.H-13木霉对水稻硝酸还原酶及氮、磷、钾的影响[J].安徽农业大学学报.2003,44(2):69-73
    [200]朱双杰,张立付,高智谋等.哈茨木霉TH-1菌株对植物的促生作用及其机制(摘要).中国植物病理学会,2008年学术年会论文集:548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700