用户名: 密码: 验证码:
Ti-Zr基团簇结构和物理化学性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
团簇研究是一个多学科交叉领域,在实验和理论上都取得了很大进步,不断有新的光、电、磁、热等物理性质和催化、反应活性等化学性质为人们所发现。过渡金属团簇由于其复杂的d电子结构表现出非常多样的物理化学性质,认识这些性质为新材料的设计、剪裁和修饰提供了良好的基础。
     本文利用密度泛函理论(DFT)系统地研究了钛-锆基团簇几何结构和物理化学性质,包括中性Tin、Zrn(n=2-10)团簇及它们的带电Tin+、Tin-、Zrn+和Zrn-团簇、混合团簇TinZrm(n+m≤6)的几何结构、稳定性和电子性质,同时研究了掺杂团簇TinFe、TinMn、 ZrnMn(n=1-8)的几何结构、稳定性和磁性等性质。研究结果表明:
     (1)对纯Tin、Zrn(n=2-10)团簇及它们的带电Tin+、Tin-、Zrn+和Zrn-团簇的可能结构进行了全优化,得到了多个低能异构体的稳定结构。Tin和Zrn团簇及它们的带电团簇在尺寸演化过程中都经历了从平面结构到立体结构再到中空笼状结构,笼状结构具有五边形或六边形结构单元。除Ti6以外,中性结构和正负离子团簇结构保持一致。以四角双锥为结构框架的Ti6、Ti8、Ti8+及Ti8-不满足团簇Ti。是由最稳定的Tin-1添加一个Ti原子得到的演化规律。Zrn团簇与其带电团簇的几何构型保持一致,在团簇生长过程中,除了n=8团簇的四角双锥戴两帽特殊结构,其它团簇都是在最稳定的Zrn-1团簇结构上添加Zr原子得到的。当n=6时Tin团簇平均键长变化较大,除Ti4+、Ti6和Ti9-以外,其它带电团簇比中性团簇平均键长稍长。Zrn团簇平均键长的变化充分反映了团簇结构的平面-立体-笼状结构发展规律,其带电团簇Zrn+和Zrn-平均键长与Zrn团簇相比,在平面向立体变化和成为笼状结构时平均键长变化较大。相对稳定性分析表明,Tin和Zrn团簇稳定性幻数规律与实验结果一致,在n=5,7都具有较高的稳定性,而Tin+、Tin-和Zrn+团簇在n=4,7时稳定性相对较高,Zrn-团簇稳定性规律与Zrn团簇稳定性规律一致。能隙、绝热电离势和绝热电子亲和能分析表明,Ti5、Ti7、Ti4+和Ti4-团簇有相对较高的化学稳定性,Ti6团簇的化学活性较强。Zrn和Zrn-团簇化学稳定性变化规律相同,Zr4+团簇化学稳定性较高。
     (2)对混合团簇TinZrm(n+m≤6)的稳定结构进行了全面搜索,得到了它们的基态结构。除了n+m=5以外,其它团簇中Zr原子倾向于聚集在一起形成最多的Zr-Zr键,Ti原子倾向于占据在Zr原子周围增加结构的稳定性,这一结果可由形成团簇的原子质量加以解释。混合一个Zr原子的TinZr团簇的结构由Ti组分决定,其它混合团簇结构由Zr组分决定。TinZrm团簇结构受尺寸和组分的双重影响,Ti-Ti、Zr-Zr和Ti-Zr键平均键长的变化非常复杂。相对稳定性分析表明,TinZrm团簇平均结合能随团簇尺寸和组分比例单调增加,能量二阶差分表明TiZr2、Ti3Zr、TiZr3、Ti3Zr2、Ti4Zr和TiZr4有较高的稳定性。受几何结构影响,TinZrm的能隙除了n+m=5时较大以外,随团簇尺寸增加能隙减小,化学稳定性逐渐降低。进一步综合垂直电离势和垂直电子亲和能分析得出Ti3Zr、Ti4Zr和Ti2Zr4团簇的化学稳定性较高。
     (3)研究了Fe、Mn原子掺杂的TinFe、TinMn和ZrnMn (n=1-8)团簇稳定结构,从团簇基态几何结构我们能够很清楚地总结出掺杂团簇的生长规律:4个原子时掺杂团簇结构向空间立体结构发展,n=3-4时,所形成的立体结构主要以三角锥框架为主;当n≥5时,掺杂团簇的结构主要是四角锥结构框架;当n=8时,掺杂原子Fe、Mn从团簇表面进入团簇内部形成内嵌结构。TinFe团簇中的Ti-Ti平均键长在团簇生长过程中基本保持不变,Ti-Fe、Ti-Mn和Zr-Mn平均键长的变化反映了其几何结构由平面到立体,再到掺杂原子内嵌的变化过程。与纯Ti团簇相比,TinFe团簇结合能变化不大,TinMn和ZrnMn团簇结合能与其纯团簇相比有所降低。TinFe团簇在团簇生长过程中稳定性不断增强,TiFe和Ti6Fe团簇具有较低的化学活性;TinMn和ZrnMn团簇中Ti5Mn、Ti7Mn和Zr5Mn团簇稳定性相对较高,Ti5Mn和Zr5Mn团簇化学稳定性较高。掺杂团簇磁矩分析表明,Ti3Fe、Ti4Fe、Ti8Fe、Ti4Mn、Ti5Mn和Ti6Mn团簇的总磁矩与纯Ti团簇相比增加;掺入Mn原子后ZrnMn团簇磁矩淬灭延迟。电荷布局分析表明,Ti、Zr原子与掺杂的Fe、Mn原子之间发生了电荷转移。Fe、Mn原子内部存在强烈的spd轨道杂化现象,Ti-Fe、Ti-Mn和Zr-Mn原子之间也存在较弱的杂化作用,这是引起掺杂团簇磁矩发生变化主要原因。
In resent years, study of cluster involved is an extensive field of multi-subjects and great progress has been made in the experimental and the theoretical research. Some new physical properties, such as light, electricity, magnetism and heat, have been discovered and chemical reactivity and especially catalytic activity have been known gradually. Transition metal clusters display very peculiar chemical and physical properties because of its complex electronic structures of the d shells. Understanding of these properties provides a good foundation for the design, cutting and modified of new materials.
     In this thesis, we investigated systemically geometry structures, physical and chemical properties of Ti-Zr based clusters. First, a particular effort have been done to obtain the structural and electronic properties of neutral small Tin and Zrn (n=2-10) clusters and their charged Tin+, Tin-, Zrn+and Zrn-clusters using density functional theory (DFT) method. Further, geometric structures, stabilities and electronic properties of bimetallic TinZrm(n+m≤6) clusters have been investigated systematically. Meanwhile, we study the structures, electronic properties and magnetism of Fe-doped Tin as well as Mn-doped Tin and Zrn clusters up to n=8by DFT.
     (1)A number of low-lying isomers for Tin, Zrn and their charged Tin+, Tin-,Zrn+and Zrn-clusters have been optimized and the ground-state geometries and typical stable isomers are determined. The results show that the planet geometries of small titanium and zirconium clusters convert to three dimensional structures and further convert to the hollow-caged-like structures with the increasing of the cluster size. The pentagonal and hexagonal arrays (n>8) are very favored energetically. The most stable structures of Tin cluster can be obtained by adding one Ti atom on the most stable structures of Tin-1without Ti6, Ti8, Ti8+and Ti8-. The geometric structures of the charged Zrn+and Zrn-clusters keep consistent with those of neutral Zrn clusters. It is noteworthy that the most stable structures of Zrn, Zrn+and Zrn-clusters can be obtained by adding one Zr atom to the most stable structures of Zrn-1,Zrn-1+and Zrn-1-clusters without n=8. Average bond length of Ti6cluster changes greatly and average bond length of Tin+and Tin-clusters without Ti4+, Ti6-and Ti9-is longer than that of Tin clusters. The change of average bond length fully reflects the growth trend of structures for the small zirconium clusters. For Zrn+and Zrn-clusters, average bond length shows a sharp feature compared with Zrn clusters at n=3,9. From the binding energies and second-order energy differences, we obtained that5-,7-atoms of Tin, Zrn and Zrn-clusters and4-,7-atoms of Tin+, Tin-and Zrn+clusters are the magic numbers. The calculated stability result for neutral clusters is in agreement with the experiment result. On the basis of the most stable structures, various electronic properties are analyzed including the HOMO-LUMO gaps, the adiabatic ionization potential and the adiabatic electron affinity. It is found that Ti5、Ti7、 Ti4+and Ti4-clusters are more stable in the chemical stability while Ti6cluster is stronger in chemical activity. In comparison with Zrn and Zrn-clusters, the change of relative chemical stability follow the same rend. For Zrn+clusters, it is more stable than its neighbours at n=4.
     (2) The equilibrium geometries and electronic properties of TinZrm (n+m≤6) clusters have been investigated by the density functional theory. The results indicate that Zr atoms tend to cluster together and form the most Zr-Zr bonds, while Ti atoms inclined to occupy the surface without n+m=5. As a result, aggregation of mixed clusters can be explained according to the atomic mass. When mixed one Zr atom, it is found that and the geometry and shape depends on the Titanium composition in mixed clusters. The structures of other clusters are controlled by the zirconium composition. Change of the average bond length of Ti-Ti, Zr-Zr and Ti-Zr bonds is very complicated because of the influence of cluster size and composition. The average binding energy increases monotonously with the increasing n+m. As for the second-order energy difference, it is found that TiZr2, Ti3Zr, TiZr3, Ti?Zr2, Ti4Zr and TiZr4clusters are more stable than their neighboring clusters. By geometric structures effect, the HOMO-LUMO gaps generally decrease and then the chemical stability decreases with the increasing n+m except that the larger band gaps occurs at n+m=5. Further combined with the vertical ionization potential and vertical electronic affinity, Ti3Zr, Ti4Zr and Ti2Zr4clusters are less reactive.
     (3) we have systematically studied the equilibrium geometries, electronic, and magnetic properties of TinFe, TinMn and ZrnMn (n=1-8) clusters using the density functional theory. The growth pattern on the basis of the ground-state structures can be easily summarized. From n=3, the geometric structures trend to form the three dimensional structures. The stable structures are based on triangular pyramidal units for n=3-4and on square pyramidal units for n≥5. The Fe and Mn atoms remain slowly getting trapped beyond n=8. Average bond length of Ti-Ti bonds is almost equal for TinFe clusters. But, the change of average bond length for Ti-Fe, Ti-Mn, Zr-Mn bond correspond with that of geometric structures which are from planet to spatial and then to trapped structures. Compared with pure Ti clusters, the binding energy of TinFe clusters changes little. The binding energy of TinMn and ZrnMn clusters is less than the corresponding pure clusters. The stability of TinFe clusters increases with the increase of the cluster size and TiFe and Ti6Fe clusters are less reactive. For TinMn and ZrnMn clusters, the relative stability of Ti5Mn、Ti7Mn and Zr5Mn clusters are better than their neighbours. It is also found that clusters are more stable in the chemical stability at n=5. The total magnetic moment of Ti3Fe、Ti4Fe、Ti8Fe、Ti4Mn、Ti5Mn and Ti6Mn clusters increases compared with pure Ti clusters. Mixed with Mn atom, the magnetic moment quenching of ZrnMn clusters is delayed. Mulliken charge population analysis indicated that the internal electron transfer in Fe and Mn atoms and charge transfer between Ti. Zr atoms and Fe. Mn atoms occur. The hybridized behavior of the delocalized s-,p-and the unfilled d-electrons is stronger within Fe and Mn atoms, while weaker in the Ti-Fe, Ti-Mn and Zr-Mn atoms, which is the major cause of the magnetic moment change.
引文
[1]Kroto H. W., Heath J. R., O'Brien S. C., et al. C60:Buckminsterfullerene[J]. Nature,1985, 318(6042):162-163
    [2]江元生.结构化学[M].北京:高等教育出版社,1997:216
    [3]王广厚.团簇物理学[J].物理,1995,24(1):13-19
    [4]Jaklevic R. C., Lambe J., Mikkor M., et al. Observation of electron standing waves in a crystalline box[J]. Physical Review Letters,1971,26(2):88-92
    [5]Jiao F., Frei H. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts[J]. Angewandte Chemie International Edition,2009,48(10): 1841-1844
    [6]Zheng J., Dickson R. M. Individual Water-Soluble Dendrimer-Encapsulated Silver Nanodot Fluorescence[J]. Journal of the American Chemical Society,2002,124(47): 13982-13983
    [7]Lin S. Y., Chen N. T., Sum S. P., et al. Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging[J]. Chemical Communications,2008,39:4762-4764
    [8]Yu J., Choi S., Richards C. I., et al. Live Cell Surface Labeling with Fluorescent Ag Nanocluster Conjugates[J]. Photochemistry and Photobiology,2008,84(6):1435-1439
    [9]Baibich M. N., Brato J. M., Fert A., et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices[J]. Physical Review Letters,1988,61(21):2472-2475
    [10]Berkowitz A. E., Mitchell J. R., Carey M. J., et al. Giant magnetoresistance in heterogeneous Cu-Co alloys[J]. Physical Review B,1992,68(25):3745-3748
    [11]Becker E. W., Beir K., Henkes W. Strahlen aus kondensierten Atomen und Molekeln im Hochvakuum[J]. Z. fur Physik,1956,146(3):333-338
    [12]Powers D. E., Hansen S. G., Geusic M. E., et al. Supersonic copper clusters [J]. Journal of Chemical Physics,1983,78(6):2866-2881
    [13]Akiko O., Kunio T. Neutral silicon clusters produced by laser ablation in vacuum[J]. Applied Surface Science,1998.127-129(1-2):362-367
    [14]Bekkerman A. D., Dzhemilev N. K., Verkhoturov S. V., et al. The unimolecular decays of Aln+ and Cun+ sputtered clusters:a comparison between competitive decay modes[J]. Vacuum, 1996,47(5):405-407
    [15]De Boer B. G., Stein G. D. Production and electron diffraction studies of silver metal clusters in the gas phase Surface Science[J]. Surface Science,1981,106(1-3):84-94
    [16]Kenzo H., Akitaka S., Akihito M., et al. The small binding energies of the negative cluster ions:SF5- (SF6)1, SF6-(SF6)1 and F (SF6)n (n=1 and 2), in the gas phase[J]. Chemical Physics Letters,1995,241(5-6):623-626
    [17]Arratia-Perez R. The M6S8L6 clusters:an example in cluster and condensed phase chemistry [J]. Chemical Physics Letters,1993,213(5-6):547-553
    [18]Gougeon P., Potel M., Sergent M., et al. New superconducting ternary molybdenum chalcogenides with condensed Mo &, clusters[J]. Physica B&C,1985,135(1-3):386-390
    [19]Lyon I., Henkel T., Ros D. Formation of Sim+ and SimCn±clusters by C60± sputtering of Si[J]. Applied Surface Science,2010,256(21):6480-6487
    [20]Zimmermann S., Urbassek H. M. Sputtering of Au by cluster impact[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2007,255(1):208-213
    [21]King B. V., Veryovkin I. V., Moore J. F., et al. Formation of neutral clusters during sputtering of gold[J]. Surface Science,2009,603(5):819-825
    [22]Buiu O., Leclerc J. L., Yan S. H., et al. Production of large metallic clusters by thermal evaporation[J]. Applied Surface Science,1999,144-145(1-4):668-671
    [23]Barnes M. C., Jeon I. D., Kim D. Y., et al. Generation of charged clusters during thermal evaporation of gold[J]. Journal of Crystal Growth,2002,242(3-4):455-462
    [24]Shosuke M. Evolution of the collective mode resonance in free silver clusters grown by thermal evaporation in noble gas[J]. Physics Letters A,191.155(8-9):510-515
    [25]Kudryashov S. I., Kim B. K., Kim J. I., et al. Time-of-flight mass spectroscopic detection of new elemental and mixed small atomic clusters in the laser evaporation of carbon nitride[J].Mendeleev Communications,1999.9(1):1-2
    [26]Sontag H., Weber R. Matrix-isolation spectroscopy of small antimony clusters[J]. Chemical Physics,1982,70(1-2):23-28
    [27]Gruszecka A., Szymanska-Chargot M., Smolira A., et al. Laser desorption/ionization of carbon clusters[J]. Vacuum,2008,82(10):1083-1087
    [28]Singhal A., Yang J. C., Gibson J. M. STEM-based mass spectroscopy of supported Re clusters[J]. Ultramicroscopy,1997,67(1-4):191-206
    [29]Knight W. D., Clemenger K., De Heer W. A., et al. Electronic shell structure and abundances of sodium clusters[J]. Physical Review Letters,1984,52(24):2141-2143
    [30]Datta D., Bhattacharyya S. R., Shyjumon I., et al. Production and deposition of energetic metal nanocluster ions of silver on Si substrates [J]. Surface and Coatings Technology,2009, 203(17-18):2452-2457
    [31]Xu Y, Sun Z. G, Qiang Y, et al. Preparation and magnetic properties of CoPt and CoPt: Ag nanocluster films[J]. Journal of Magnetism and Magnetic Materials,2003,266(1-2): 164-170
    [32]Kiichirou K., Yasutomo N., Minoru A., et al. Photoelectron spectroscopy of binary Au cluster anions with a doped metal atom:AunM-(n=2-7), M=Pd, Ni, Zn, Cu, and Mg[J]. Chemical Physics Letters,2006,422(1-3):62-66
    [33]Kiichirou K., Masaaki M., Atsushi N., et al. Photoelectron spectroscopy of palladium- doped gold cluster anions:AunPd-(n=1-4)[J]. Chemical Physics Letters,2002,358(3-4): 224-230
    [34]de Heer W. A. The physics of simple metal clusters:experimental aspects and simple models[J]. Review of Modern Physics,1993,65(3):611-676
    [35]Broyer M. Metallic character of small metal aggregates as a function of their atomic structure[J]. Journal of Non-Crystalline Solids,1993,156-158:783-793
    [36]Katakuse I., Ichihara T., Fujita Y., et al. Mass distributions of copper, silver and gold clusters and electronic shell structure[J]. International Journal of Mass Spectrometry and Ion Processes,1985,67(2):229-236
    [37]Rabin I., Schulze W., Winter B. Electronic-shell effects in small double charged lead clusters[J]. Physical Review B,1989,40(15):10282-10285
    [38]Zhang X., Li G. L., Xing X. P., et al. Formation of binary alloy clusterions from group-14 elements and cobalt and comparison with solid-state alloys[J]. Rapid Communications in Mass Spectrometry,2001,15(24):2399-2403
    [39]Xing X. P., Tian Z. X., Liu H. T., et al. Magic bimetallic cluster anions of M/Pb (M=Au, Ag and Cu) observed and analyzed by laser ablation and time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2003,17(13):1411-1415
    [40]Katakuse I., Ichihara T., Fujita Y., et al. Mass distributions of copper, silver and gold clusters and electronic shell structure[J]. International Journal of Mass Spectrometry and Ion Processes,1985,67(2):229-236
    [41]Sakurai M., Watanabe K., Sumiyama K., et al. Magic numbers in transition metal (Fe, Ti, Zr, Nb, and Ta) clusters observed by time-of-flight mass spectrometry [J]. Journal of Chemical Physics,1999,111(1):235-238
    [42]Sakurai M., Watanabe K., Sumiyama K., et al. Magic numbers in Fe clusters produced by laser vaporization source[J]. Journal of the Physical Society of Japan,1998,67(8):2571-2573
    [43]Lian L., Su C. X., Armentrout P. B. Collision-induced dissociation of Ti+n (n=2-22) with Xe:Bond energies, geometric structures, and dissociation pathways[J]. Journal of Chemical Physics,1992,97(6):4084-4093
    [44]Leopold D. G., Ho J., Lineberger W. C. Photoelectron spectroscopy of mass-selected metal cluster anions. I. Cun-, n=1-10[J]. Journal of Chemical Physics,1987,86(4):1715-1726
    [45]Ho J., Ervin K. M., Lineberger W. C. Photoelectron spectroscopy of metal cluster anions: Cun-,Agn-,and Aun-[J]. Journal of Chemical Physics,1990.93(10):6987-7002
    [46]Wang L. S.,Cheng H. S., Fan J. Photoelectron spectroscopy of size-selected transition metal clusters:Fen-, n=3-24[J]. Journal of Chemical Physics,1995,102(24):9480-9493
    [47]Ho J., Polak M. L., Ervin K. M., et al. M Photoelectron spectroscopy of nickel group dimers:Ni2-, Pd2', and Pt2-[J]. Journal of Chemical Physics,1993,99 (11):8542-8551
    [48]Doverstal M., Lindgren B., Sassenberg U., et al. The 3П0u→X3△1g band system of jet-cooled Ti2[J]. Journal of Chemical Physics,1992,97 (10):7087-7092
    [49]Wu H., Desai S. R., Wang L. S. Electronic structure of small titanium clusters:emergence and evolution of the 3d band[J]. Physical Review Letters,1996,76(2):212-215
    [50]Liu S. R., Zhai H. J., Castro M, et al. Photoelectron spectroscopy of Tin- clusters (n=1-130)[J]. Journal of Chemical Physics,2003,118(5):2108-2115
    [51]Arrington C. A., Blume T., Morse M. D., et al. Bond strengths of transition metal diatomics:Zr2, YCo, YNi, ZrCo, ZrNi. NbCo, and NbNi[J]. Journal of Physical Chemistry, 1994.98(5):1398-1406
    [52]Hu Z., Zhou Q., Lombardi J. R., et al. Physics and Chemistry of Finite Systems:From Clusters to Crystals[M]. Jena P., Khanna S. N., Rao B. Boston:Kluwer K., Dordrecht,1992: 969
    [53]Anderson A. B. Structures, binding energies, and charge distributions for two to six atom Ti, Cr, Fe, and Ni clusters and their relationship to nucleation and cluster catalysis[J]. Journal of Chemical Physics,1976,64(10):4046-4055
    [54]Wei S. H., Zeng Z., You J. Q., et al. A density-functional study of small titanium clusters[J]. Journal of Chemical Physics,2000,113(24):11127-11133
    [55]Zhao J. J., Qiu Q., Wang B. L., et al. Geometric and electronic properties of titanium clusters studied by ultrasoft pseudopotential[J]. Solid State Communications,2001,118(3): 157-161
    [56]Wang C. C, Zhao R. N., Han J. G. Geometries and magnetisms of the Zrn(n=2-8) clusters: The density functional investigations [J]. Journal of Chemical Physics,2006,124(19): 194301-194308
    [57]赵文杰,雷雪玲,闫玉丽等.密度泛函理论研究Zrn(n=2-16)团簇的基态结构及其稳定性 [J].物理学报,2007,56(9):5209-5217
    [58]Salazar-Villanueva M., Hernandez Tejeda P. H., Pal U., et al. Stable Tin (n=2-15) Clusters and Their Geometries:DFT Calculations[J]. Journal of Physical Chemistry A,2006,110(5): 10274-10278
    [59]Castro M., Liu S. R., Zhai H. J., et al. Structural and electronic properties of small titanium clusters:A density functional theory and anion photoelectron spectroscopy study [J]. Journal of Chemical Physics,2003.118(5):2116-2123
    [60]Wang J. L., Wang G. H., Zhao J. J., et al. Density-functional study of Ann-(n=2-20) clusters:Lowest-energy structures and electronic properties [J]. Physical Review B,2002, 66(3):035418-035423
    [61]Bulusu S., Zeng X. C. Structures and relative stability of neutral gold clusters: Aun(n=15-19)[J]. Journal of Chemical Physics,2006,125(15):154303-154307
    [62]Han Y. K. Structure of Aug:Planar or nonplanar?[J]. Journal of Chemical Physics,2006, 124(2):024316-024318
    [63]Kabir M., Mookerjee A., Bhattacharya A. K. Structure and stability of copper clusters:A tight-binding molecular dynamics study [J]. Physical Review A,2004,69(4):043203-043212
    [64]Bauschlicher C. W., Langhoff S. R., Partridge H. Theoretical study of the homonuclear tetramers and pentamers of the group IB metals (Cu, Ag, and Au)[J]. Journal of Chemical Physics,1990,93(11):8133-8137
    [65]Zhao J., Luo Y., Wang G. Tight-binding study of structural and electronic properties of silver clusters[J]. European Physical Journal D,2001,14(3):309-316.
    [66]Bonacic-Koutecky V., Cespiva L., Fantucci P., et al. Effective core potential-configuration interaction study of electronic structure and geometry of small neutral and cationic Ag,, clusters:Predictions and interpretation of measured properties [J]. Journal of Chemical Physics,1993,98(10):7981-7994
    [67]Bonacic-Koutecky V., Cespiva L., Fantucci P., et al. Effective core potential-configuration interaction study of electronic structure and geometry of small anionic Ag,, clusters:Predictions and interpretation of photodetachment spectra[J]. Journal of Chemical Physics,1994,100(1):490-506
    [68]Fujima N., Yamaguchi T. Shell structure of electronic state of icosahedral Al and Cu clusters[J]. Journal of the Physical Society of Japan,1989,58(4):1334-1346
    [69]Oviedo J., Palmer R. E. Amorphous structures of Cu. Ag, and Au nanoclusters from first principles calculations [J]. Journal of Chemical Physics.2002,117(21):9548-9551
    [70]Cremaschi P., Whitten J. L. Chemisorption Theory:Dissociation of H2 on Ti (0001)[J]. Physical Review Letters,1981,46(18):1242-1244
    [71]Du A. J., Smith S. C., Yao X. D., et al. First-Principle Study of Adsorption of Hydrogen on Ti-Doped Mg(0001) Surface[J]. Journal of Physical Chemistry B,2006,110(43): 21747-21750
    [72]Vegge T. Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory[J]. Physical Chemistry Chemical Physics,2006,8(42): 4853-4861
    [73]Dhilip Kumar T. J., Weck P. F., Balakrishnan N. Evolution of Small Ti Clusters and the Dissociative Chemisorption of H2 on Ti[J]. Journal of Physical Chemistry C,2007.111(20): 7494-7500
    [74]Sheng X., Zhao G., Zhi L. Evolution of Small Zr Clusters and Dissociative Chemisorption of H2 on Zr Clusters[J]. Journal of Physical Chemistry C.2008,112(46): 17828-17834
    [75]Dhilip Kumar T. J., Tarakeshwar P., Balakrishnan N. Structural, energetic, and electronic properties of hydrogenated titanium clusters[J]. Journal of Chemical Physics,2008,128(19): 194714-194725
    [76]Tarakeshwar P., Dhilip Kumar T. J., Balakrishnan N. Nature of Hydrogen Interaction and Saturation on Small Titanium Clusters [J]. Journal of Physical Chemistry A,2008,112(13): 2846-2854
    [77]Zhao G. F., Zeng Z. Geometrical and electronic structures of AumAgn(2≤m+n≤8)[J]. Journal of Chemical Physics,2006,125(1):014303-014314
    [78]Fuentealba P., Padilla-Campos L. Electronic properties of small bimetallic LinCum (n,m≤ 4) clusters. A comparison with Lin and Cun clusters[J]. International Journal of Quantum Chemistry,2005,102(5):498-505
    [79]唐典勇,金诚,邹婷等.金镍二元团簇结构和电子性质的理论研究[J].化学学报,2009,67(14):1539-1546
    [80]Zhou Y. H., Zeng Z., Ju X. The structural and electronic properties of CumAgn(m+n=6) clusters[J]. Microelectronics Journal,2009,40(4-5):832-834
    [81]张秀荣,高从花,吴礼清等WnNim(n+m≤7:m=1,2)团簇电子结构与光谱性质的理论研究[J].物理学报,2010,59(8):5429-5438
    [82]Venkataramanan N. S. Structures of small NixTiy (x+y≤5) clusters:A DFT study [J]. Journal of Molecular Structure:THEOCHEM,2008,856 (1-3):9-15
    [83]王艺平,董昆明,黄海晟等ZrNi金属玻璃中ZrNi团簇形成的量子化学研究[J].厦门大学学报(自然科学版),2000..39(6):786-792
    [84]朱纯,李春森,谭凯等TixNy团簇结构的密度泛函研究[J].化学学报,2005,63(19):1807-1812
    [85]朱俊,金蓉ZrnPdm(n+m≤5)混合团簇的密度泛函研究[J].原子与分子物理学报,2008,,25(6):1328-1334
    [86]Wang H. L., Hu N., Tao D. J., et al. Structural and electronic properties of phosphorus-doped titanium clusters:A DFT study [J]. Computational and Theoretical Chemistry,2011,977(1-3):50-54
    [87]Lu Z. H., Cao J. X. First-principles calculations for titanium monoxide clusters TinO (n= 1-9) [J]. Chinese Physics B,2008,17(9):3336-3342
    [88]雷雪玲,祝恒江,王先明等.用密度泛函理论研究ZrnB(n=1-13)团簇的结构及性质[J].物理化学学报,2008,24(9):1655-1661
    [89]Xiang J., Wei S. H., Yan X. H., et al. A density-functional study of Al-doped Ti clusters: TinAl(n=1-13)[J]. Journal of Chemical Physics,2004,120(9):4251-4257
    [90]Du J. G., Sun X. Y., Jiang G. Structures, chemical bonding, magnetisms of small Al-doped zirconium clusters[J]. Physics Letters A,2010,374(6):854-860
    [91]盛勇,毛华平,涂铭旌TinMg(n=1-10)掺杂团簇的密度泛函研究[J].物理学报,2008,57(7):4153-4138
    [92]齐凯天,杨传路,李兵等.TinLa(w=1-7)的密度泛函研究[J].物理学报,2009,58(10):6956-6961
    [93]Du J. G., Sun X. Y., Jiang G. A DFT study on small M-doped titanium (M=V, Fe, Ni) clusters:structures, chemical bonds and magnetic properties [J]. European Physical Journal D, 2009,55(1):111-120
    [94]任凤竹,王渊旭,田付阳等.密度泛函理论研究ZrnCo(n=1-13)团簇的结构和磁性[J].物理学报,2008,56(4):2165-2173
    [95]赵文杰,王清林,任凤竹等.第一性原理计算ZrnFe(n=2-13)团簇的基态结构及其磁性[J].物理学报,2007,56(10):5746-5753
    [96]Zhao G. F., Sheng X. F., Zhi L. L., et al. Density-functional study of structural, electronic, and magnetic properties of the ZrnCr (n=2-14) clusters[J]. Journal of Molecular Structure: THEOCHEM,2009,908(1-3):40-46
    [97]Yang C. L., Wang M. S., Sun M. Y., et al. Dominant role of the interstitial 4d transition-metal in TM@ZrZ12(TM=Y-Cd, Z=0,±1) icosahedral cages [J]. Chemical Physics Letters,2008,457(1-3):49-53
    [98]Thomas L. H. The calculation of atomic fields [J]. Mathematical Proceedings of the Cambridge Philosophical Society,1927,23(5):542-548
    [99]Hohenberg P., Kohn W. Inhomogeneous electron gas[J]. Physical Review,1964,136(3B): B864-B871
    [100]Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review,1965,140(4A):A1133-A1138
    [101]von Barth U., Hedin L. A local exchange-correlation potential for the spin polarized case[J]. Journal of Physics C:Solid State Physics,1972,5(13):1629-1642
    [102]Perdew J. P., Zunger Alex. Self-interaction correction to density-functional approximations for many-electron systems [J]. Physical Review B,1981,23(10):5048-5079
    [103]Vosko S. H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis[J]. Canadian Journal of Physics, 1980,58(8):1200-1211
    [104]Perdew J. P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B,1992,45(23):13244-13249
    [105]Langreth D. C., Perdew J. P. Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works[J]. Physical Review B,1980,21(12): 5469-5493
    [106]Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Physical Review B,1986,33(12):8822-8824
    [107]Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A,1988,38(6):3098-3100
    [108]Perdew J. P. in Electronic Structure of Solids'91 [M]. Ziesche P., Eschrig H. Berlin: Akademie Verlag,1991:11
    [109]Adamo C., Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:The mPW and mPWIPW models[J]. Journal of Chemical Physics,1998,108(2):664-675
    [110]Lee C., Yang W.. Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B,1988,37(2):785-789
    [111]Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters,1996,77(18):3865-3868
    [112]Becke A. D. A new mixing of Hartree-Fock and local density-functional theories[J]. Journal of Chemical Physics,1993,98(2):1372-1377
    [113]Stephens P. J., Devlin F. J., Chabalowski C. F., et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. Journal of Physical Chemistry,1994,98 (45):11623-11627
    [114]Xu X., Goddard W. A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties [J]. Proceedings of the National Academy of Sciences USA,2004,101(9):2673-2677
    [115]Chawla S., Voth G. A. Exact exchange in ab initio molecular dynamics:An efficient plane-wave based algorithm[J]. Journal of Chemical Physics,1998,108(12):4697-4700
    [116]Rung E., Gross E. K. U. Density-Functional Theory for Time-Dependent Systems[J]. Physical Review Letters,1984,52(12):997-1000
    [117]Hessler P., Park J., Burke K. Several Theorems in Time-Dependent Density Functional Theory[J]. Physical Review Letters,1999,82(2):378-381
    [118]Nakajima T., Hirao K. A new relativistic theory:a relativistic scheme by eliminating small components (RESC)[J]. Chemical Physics Letters,1999,302(5-6):383-391
    [119]Nakajima T., Hirao K. The higher-order Douglas-Kroll transformation[J]. Journal of Chemical Physics,2000,113(18):7786-7789
    [120]Wang F., Li L. A singularity excluded approximate expansion scheme in relativistic density functional theory[J]. Theoretical Chemistry Accounts:Theory, Computation, and Modeling (Theoretica Chimica Acta),2002,108(1):53-60
    [1]Cremaschi P., Whitten J. L. Ti-H Interactions in small metal clusters[J]. Chemical Physics Letters,1984,111(3):215-218
    [2]Bushnell J. E., Maitre P., Kemper P. R., et al. Binding energies of Ti+(H2)1-6 clusters:theory and experiment[J]. Journal of Chemical Physics,1997,106(24):10153-10167
    [3]Cao L. J., Ai H. Q., Zheng L. M., et al. Theoretical study on the interaction of neutral and charged TiN(N=1-7) clusters with one nitrogen molecule [J]. Journal of Molecular Structure: THEOCHEM,2010.948(1-3):65-70
    [4]Liang C. P., Gong H. R. Structural stability, mechanical property and phase transition of the Ti-H system[J]. International Journal of Hydrogen Energy,2010,35(20):11378-11386
    [5]Dhilip Kumar T. J., Tarakeshwar P., Balakrishnan N. Structural, energetic, and electronic properties of hydrogenated titanium clusters [J]. Journal of Chemical Physics,2008,128(19): 194714-194725
    [6]Dhilip Kumar T. J., Weck P. F., Balakrishnan N. Evolution of Small Ti Clusters and the Dissociative Chemisorption of H2on Ti[J]. Journal of Physical Chemistry C,2007,111(20): 7494-7500
    [7]Sakurai M., Watanabe K., Sumiyama K., et al. Magic numbers in transition metal (Fe, Ti, Zr. Nb, and Ta) clusters observed by time-of-flight mass spectrometry[J]. Journal of Chemical Physics,1999.111(1):235-238
    [8]Russon L. M., Heldecke S. A., Birke M. K., et al. Photodissociation measurements of bond dissociation energies:Ti+2. V+2, Co+2, and Co+s[J]. Journal of Chemical Physics,1994,100(7): 4747-4755
    [9]Cosse C., Fouassier M.. Mejean T. et al. Dititanium and divanadium[J]. Journal of Chemical Physics,1980,73(12):6076-6085
    [10]Arrington C. A., Blume T., Morse M. D., et al. Bond strengths of transition metal diatomics:Zr2, YCo, YNi, ZrCo, ZrNi, NbCo, and NbNi[J]. Journal of Physical Chemistry, 1994,98(5):1398-1406
    [11]Hu Z., Zhou Q., Lombardi J. R., et al. Physics and Chemistry of Finite Systems:From Clusters to Crystals[M]. Jena P., Khanna S. N., Rao B. Boston:K. Kluwer, Dordrecht,1992: 969
    [12]Lian L., Su C. X.. Armentrout P. B. Collision-induced dissociation of Ti+n (n=2-22) with Xe:Bond energies, geometric structures, and dissociation pathways[J]. Journal of Chemical Physics,1992,97(6):4084-4093
    [13]Anderson A. B. Structures, binding energies, and charge distributions for two to six atom Ti, Cr, Fe, and Ni clusters and their relationship to nucleation and cluster catalysis[J]. Journal of Chemical Physics,1976,64(10):4046-4055
    [14]Wei S. H., Zeng Z., You J. Q., et al. A density-functional study of small titanium clusters[J]. Journal of Chemical Physics,2000,113(24):11127-11133
    [15]Castro M., Liu S. R., Zhai H. J., et al. Structural and electronic properties of small titanium clusters:A density functional theory and anion photoelectron spectroscopy study [J]. Journal of Chemical Physics,2003,118(5):2116-2123
    [16]Salazar-Villanueva M., Hernandez Tejeda P. H., Pal U.. et al. Stable Ti,7 (n=2-15) Clusters and Their Geometries:DFT Calculations [J]. Journal of Physical Chemistry A,2006,110(5): 10274-10278
    [17]Zhao J. J., Qiu Q., Wang B. L., et al. Geometric and electronic properties of titanium clusters studied by ultrasoft pseudopotential[J]. Solid State Communication,2001,118(3): 157-161
    [18]Wang S. Y, Yu J. Z., Mizuseki H. First-principles study of the electronic structures of icosahedral TiN(N=13,19,43,55) clusters[J]. Journal of Chemical Physics,2004,120(18): 8463-8468
    [19]Frisch M. J., Trucks G. W., Schlegel H. B., et al. GAUSSIAN 03, Revision A.1, Gaussian Inc., Pittsburgh PA,2003
    [20]Slater J. C. Quantum Theory of Molecular and Solids. Vol.4:The Self-Consistent Field for Molecular and Solids[M]. New York:McGraw-Hill,1974:583
    [21]Vosko S. H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis[J]. Canadian Journal of Physics, 1980,58(8):1200-1211
    [22]Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A,1988,38(6):3098-3100
    [23]Perdew J. P., Chevary J. A., Vosko S. H., et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B,1992,46(11):6671-6687
    [24]Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Physical Review B,1986,33(12):8822-8824
    [25]Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B,1988,37(2):785-789
    [26]Hay P. J., Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals[J]. Journal of Chemical Physics, 1985,82(3):299-311
    [27]Hay P. J.. Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. Journal of Chemical Physics,1985, 82(1):270-283
    [28]Hay P. J., Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi[J]. Journal of Chemical Physics,1985,82(1): 284-298
    [29]Dolg M., Stoll H., Preuss H., et al. Relativistic and correlation effects for element 105 (hahnium, Ha):a comparative study of M and MO (M=Nb, Ta, Ha) using energy-adjusted ab initio pseudopotentials[J]. Journal of Physical Chemistry,1993,97(22):5852-5859
    [30]Stevens W. J., Krauss M., Basch H., et al. Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms[J]. Canadian Journal of Chemistry,1992,70(2):612-630
    [31]Wu H. B., Desai S. R., Wang L. S. Electronic Structure of Small Titanium Clusters: Emergence and Evolution of the 3d Band[J]. Physical Review Letters,1996,76(2):212-215
    [1]Joppien M., Muller R., Wormer J., et al. Observation of cluster-specific excitations in XeN clusters[J]. Physical Review B,1993,47(19):12984-12987
    [2]Lee S., Fan C., Wu T., et al. Cluster size effects on CO oxidation activity, adsorbate affinity. and temporal behavior of model Aun/Ti02 catalysts[J]. Journal of Chemical Physics,2005, 123(12):124710-124722
    [3]Assadollahzadeh B., Schwerdtfeger P. A systematic search for minimum structures of small gold clusters Aun(n=2-20) and their electronic properties[J]. Journal of Chemical Physics.2009,131(6):064306-064316
    [4]Hiura H., Miyazaki T., Kanayama Toshihiko. Formation of Metal-Encapsulating Si Cage Clusters[J]. Physical Review Letters,2001,86(9):1733-1736
    [5]Sanchez-Paisal Y., Sanchez-Portal D., Ayuela A. Ab initio calculations of zirconium adsorption and diffusion on graphene[J]. Physical Review B,2009,80(4):045428-045427
    [6]Chen M. S.,Kumar D., Yi C. W.. et al. The Promotional Effect of Gold in Catalysis by Palladium-Gold[J].Science,2005,310(5746):291-293
    [7]Sheppard S. E., Trivelli A. P. H., Loveland R. P. Studies in photographic sensitivity:Ⅵ. The formation of the latent image[J]. Journal of the Franklin Institute,1925,200(1):51-86
    [8]Negishi Y, Nobusada K., Tsukuda T. Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(Ⅰ)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals[J]. The Journal of the American Chemical Society,2005,127(14):5261-5270
    [9]Russier V., Pileni M. P. Optical absorption spectra of arrays of metal particles from cluster calculations:cluster size and shape effects[J]. Surface Science,1999,425(2-3): 313-325
    [10]Kirkwood D. A., Winkel J. F., Stace A. J. Photochemical processes on transition metal atoms and small clusters[J]. Chemical Physics Letters,1995,247(4-6):332-338
    [11]Suzuki S., Wakabayashi T, Matsuura H., et al. Size selection and focusing of neutral carbon clusters[J]. Chemical Physics Letters,1991,182(1):12-16
    [12]Wang J. L., Zhao J. L., Ding F, et al. Thermal properties of medium-sized Ge clusters[J]. Solid State Communications,2001,117(10):593-598
    [13]Doverstal M., Karlsson L., Lindgren B., et al. Resonant two-photon ionization spectroscopy studies of jet-cooled Zr2[J]. Journal of Physics B:Atomic, Molecular and Optical Physics,1998,31(4):795-803
    [14]Bauschlicher C. W., Partridge H., Langhoff S. R., et al. A theoretical study of the low-lying states of Ti2 and Zr2[J]. Journal of Chemical Physics,1991,95(2):1057-1063
    [15]Klotzbucher W. E., Ozin G. A. Optical spectra of hafnium, tungsten, rhenium and rhthenium atoms and other heavy transition-matel atoms and small clusters(Zr1,2, Pd1,2, Au1,2,3) in noble-gas matrixs[J]. Inorganic Chemistry.1980,19(12):3767-3776
    [16]Arrington C. A., Blume T., Morse M. D., et al. Bond strengths of transition metal diatomics:Zr2, YCo,YNi, ZrCo, ZrNi, NbCo,and NbNi[J]. Journal of Physical Chemistry. 1994,98(5):1398-1406
    [17]Hu Z., Zhou Q., Lombardi J. R., et al. Physics and Chemistry of Finite Systems:From Clusters to Crystals[M]. Jena P., Khanna S. N., Rao B. K. Boston:Kluwer, Dordrecht,1992: 969
    [18]Haouari H., Wang H., Craig R. J., et al. Resonance Raman spectrum and excitation profile of massselected zirconium trimers[J]. Journal of Chemical Physics,1995,103(22): 9527-9529
    [19]Dai D., Balasubramanian K. Twelve electronic states and potential energy surface of Zr3[J]. Chemical Physics Letter,1994,231 (4-6):352-358
    [20]Dai D., Balasubramanian K. Electronic states of Zr4[J]. Chemical Physics Letters,1992, 193(6):565-572
    [21]Majumdar D., Balasubramanian K. Theoretical study of the electronic states of Zrs[J]. Chemical Physics Letters,1997,279(5-6):403-410
    [22]Sakurai M., Watanabe K.. Sumiyama K., et al. Magic numbers in transition metal (Fe, Ti, Zr, Nb, and Ta) clusters observed by time-of-flight mass spectrometry[J]. Journal of Chemical Physics,1999,111(1):235-238
    [23]Bastug T., Erkoc S., Hirata M., et al. Zirconium microclusters:Molecular dynamics simulations and density functional calculations[J]. Physica E,2000,8(3):223-229
    [24]Wang C. C., Zhao R. N., Han J. G. Geometries and magnetisms of the Zrn(n=2-8) clusters: The density functional investigations [J]. Journal of Chemical Physics,2006,124(19): 194301-194308
    [25]赵文杰,雷雪玲,闫玉丽等.密度泛函理论研究Zrn(n=2-16)团簇的基态结构及其稳定性 [J].物理学报,2007,56(9):5209-5217
    [26]Vosko S. H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis[J]. Canadian Journal of Physics, 1980,58(8):1200-1211
    [27]Slater J. C. Quantum Theory of Molecular and Solids. Vol.4:The Self-Consistent Field for Molecular and Solids[M]. New York:McGraw-Hill 1974:583
    [28]Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B,1988,37(2):785-789
    [29]Perdew J. P., Chevary J. A., Vosko S. H., et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B,1992,46(11):6671-6687
    [30]Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A,1988,38(6):3098-3100
    [31]Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Physical Review B,1986.33(12):8822-8824
    [32]Hay P. J., Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals[J]. Journal of Chemical Physics, 1985,82(3):299-311
    [33]Dolg M., Stoll H., Preuss H., et al. Relativistic and correlation effects for element 105 (hahnium, Ha):a comparative study of M and MO (M= Nb, Ta, Ha) using energy-adjusted ab initio pseudopotentials[J]. Journal of Physical Chemistry,1993,97(22):5852-5859
    [34]Hay P. J., Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi[J]. Journal of Chemical Physics,1985,82(1): 284-298
    [35]Hay P. J., Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. Journal of Chemical Physics,1985, 82(1):270-283
    [36]Stevens W. J., Krauss M., Basch H., et al. Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms[J]. Canadian Journal of Chemistry,1992,70(2):612-630
    [1]Zhao G. F., Zeng Z. Geometrical and electronic'structures of AumAgn (2≤m+n<8)[J]. Journal of Chemical Physics,2006,125(1):014303-014314
    [2]Lloyd L. D., Johnston R. L., Salhi S., et al. Theoretical investigation of isomer stability in platinum-palladium nanoalloy clusters[J]. Journal of Materials Chemistry,2004,14(11): 1691-1704
    [3]Lee H. M., Ge M., Sahu B. R., et al. Geometrical and Electronic Structures of Gold, Silver, and Gold-Silver Binary Clusters:Origins of Ductility of Gold and Gold-Silver Alloy Formation[J]. Journal of Physical Chemistry B,2003,107(37):9994-10005
    [4]Andriotis A. N., Mpourmpakis G., Froudakis G. E., et al. Magnetic enhancement and magnetic reduction in binary clusters of transition metal atoms[J]. Journal of Chemical Physics,2004,120(24):11901-11904
    [5]Mpourmpakis G., Froudakis G. E.. Andriotis A. N., et al. Role of Co in enhancing the magnetism of small Fe clusters[J]. Physical Review B,2005,72(10):104417-104423
    [6]Portales H., Saviot L., Duval E., et al. Resonant Raman scattering by quadrupolar vibrations of Ni-Ag core-shell nanoparticles[J]. Physical Review B.2002,65(16): 165422-165426
    [7]Hoshino K., Naganuma T.. Watanabe K., et al. Ionization energies of cobalt-vanadium bimetallic clusters (ConVm)[J]. Chemical Physics Letter,1995,239(4-6):369-372
    [8]Cottancin E., Lerme J., Gaudry M., et al. Size effects in the optical properties of AunAgn embedded clusters[J]. Physical Review B,2000,62(8):5179-5185
    [9]Joshi A. M., Tucker M. H., Delgass N. W., et al. CO adsorption on pure and binary-alloy gold clusters:A quantum chemical study [J]. Journal of Chemical Physics,2006,125(19): 194707-194717
    [10]Neumaier M., Weigend F., Hampe O., et al. Reactions of mixed silver-gold cluster cations AgmAun+(m+n=4,5,6) with CO:Radiative association kinetics and density functional theory computations[J]. Journal of Chemical Physics,2006,125(10):104308-104317
    [11]Derosa P. A., Seminario J. M., Balbuena P. B. Properties of Small Bimetallic Ni-Cu Clusters[J]. Journal of Physical Chemistry A,2001,105 (33):7917-7925
    [12]高勃,严晓东,陈静等.激光立体成形Ti-Zr合金腐蚀性能研究[J].实用口腔医学杂志,,2006,22(3):325-328
    [13]庄鹏辉,刘晓鹏,李志念等.TiZr氢化物掺杂NaAlH4的储氢性能[J].中国有色金属学报,2008,18(4):671-675
    [14]Wan C. B., Ju X., Qi Y., et al. Synchrotron X-ray diffraction and X-ray photoelectron spectroscopy studies of NaAlH4 containing Ti-Zr hydride additives[J]. Journal of Alloys and Compounds,2009,486(1-2):436-441
    [15]Berlanga-Ramirez E. O., Aguilera-Granja F., Montejano-Carrizales J., et al. Structural and magnetic properties of CoRh nanoparticles[J]. Physical Review B,2004,70(1): 014410-014418
    [16]Aguilera-Granja F., Vega A., Rogan J., et al. Theoretical investigation of free-standing CoPd nanoclusters as a function of cluster size and stoichiometry in the Pd-rich phase: Geometry, chemical order, magnetism, and metallic behavior [J]. Physical Review B,2006, 74(22):224405-224416
    [17]Polak M., Rubinovich L. Computational study of ternary alloy nanocluster compositional structures:Ni-Cu-Rh versus Ni-Cu-Pd[J]. International Journal of Nanoscience,2004,3(4-5): 625-630
    [18]Nakazawa T., Igarashi T., Tsuru T., et al. Ab initio calculations of Fe-Ni cluster[J]. Computational Materials Science,2009,46(2):367-375
    [19]Meshcheryakov V. F., Fetisov Y. K., Stashkevich A. A., et al. Magnetic and microwave properties of nanocomposite films on the basis of Fe-Co-Ni particles of various shapes[J]. Journal Applied Physics,2008,104(6):063910-063917
    [20]Rollmann G., Sahoo S., Entel P. Structural and magnetic properties of Fe-Ni clusters[J]. Physica Status Solidi A,2004,201(15):3263-3270
    [21]Zhen L., Gong Y. X., Jiang J. T., et al. Electromagnetic properties of FeNi alloy nanoparticles prepared by hydrogen-thermal reduction method[J]. Journal of Applied Physics, 2008,104(3):034312-034314
    [22]Venkataramanan N. S. Structures of small NixTiy (x+y<5) clusters:A DFT study[J]. Journal of Molecular Structure:THEOCHEM,2008.856 (1-3):9-15
    [23]朱纯,李春森,谭凯等Ti.Ny团簇结构的密度泛函研究[J].化学学报,2005,63(19):1807-1812
    [24]王艺平,董昆明,黄海晟等ZrNy金属玻璃中ZrNi团簇形成的量子化学研究[J].厦门大学学报(自然科学版),2000,39(6):786-792
    [25]Rastsvetaeva R. K., Khomyakov A. P. Crystal structure of a hyperzirconium analogue of eudialyte[J]. Crystallography Reports,2000,45(2):219-221
    [26]Castro M., Liu S. R., Zhai H. J. Structural and electronic properties of small titanium clusters:A density functional theory and anion photoelectron spectroscopy study[J]. Journal of Chemical Physics,2003,118(5):2116-2123
    [27]Wei S. H., Zeng Z., You J. Q., et al. A density-functional study of small titanium clusters[J]. Journal of Chemical Physics,2000,113(24):11127-11133
    [28]Salazar-Villanueva M.. Hernandez Tejeda P. H., Pal U.. et al. Stable Tin(n=2-15) Clusters and Their Geometries:DFT Calculations[J]. Journal of Physical Chemistry A,2006. 110(5):10274-10278
    [29]Wang S. Y.,Yu J. Z., Mizuseki H. First-principles study of the electronic structures of icosahedral TiN(N=13,19,43,55) clusters[J]. Journal of Chemical Physics,2004,120(18): 8463-8468
    [30]Wang C. C., Zhao R. N., Han J. G. Geometries and magnetisms of the Zrn(n=2-8) clusters: The density functional investigations [J]. Journal of chemical physics,2006,124(19): 194301-194308
    [31]赵文杰,雷雪玲,闫玉丽等.密度泛函理论研究Zrn(n=2-16)团簇的基态结构及其稳定性[J].物理学报?2007,56(9):5209-5217
    [32]Frisch M. J., Trucks G. W., Schlegel H. B., et al. GAUSSIAN 03, Revision A.1, Gaussian Inc., Pittsburgh PA,2003
    [33]Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B,1988,37(2):785-789
    [34]Stephens P. J., Devlin F. J., Chabalowski C. F., et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. Journal of Physical Chemistry,1994.98 (45):11623-11627
    [35]Hay P. J., Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. Journal of Chemical Physics,1985, 82(1):270-283
    [36]Hay P. J., Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi[J]. Journal of Chemical Physics,1985.82(1): 284-298
    [37]Hay P. J., Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals[J]. Journal of Chemical Physics, 1985,82(1):299-310
    [38]张秀荣,高从花,吴礼清等WnNim(n+m≤7;m=1,2)团簇电子结构与光谱性质的理论研究[J].物理学报,2010,59(8):5429-5438
    [39]Russon L. M., Heldecke S. A., Birke M. K., et al. Photodissociation measurements of bond dissociation energies:Ti+2, V+2, Co+2, and Co-3[J]. Journal of Chemical Physics,1994, 100(7):4747-4755
    [40]Cosse C., Fouassier M., Mejean T., et al. Dititanium and divanadium[J]. Journal of Chemical Physics,1980.73(12):6076-6085
    [41]Doverstal M., Karlsson L., Lindgren B., et al. Resonant two-photon ionization spectroscopy studies of jet-cooled Zr2[J]. Journal of Physics B:Atomic, Molecular and Optical Physics,1998,31(4):795-803
    [42]Arrington C. A., Blume T., Morse M. D., et al. Bond strengths of transition metal diatomics:Zr2, YCo, YNi, ZrCo, ZrNi, NbCo, and NbNi[J]. Journal of Physical Chemistry, 1994,98(5):1398-1406
    [43]Langenberg J. D., Morse M. D. Bond energies of transition metal dimers:TiZr, TiNb, and ZrV[J]. Chemical Physics Letters,1995,239(1-3):25-30
    [1]Li J., Li X., Zhai H. J., et al. Au20:A Tetrahedral Cluster[J]. Science,2003,299(5608): 864-867
    [2]Yu Z. T., Almlof J. Jahn-Teller distortions in the octahedral nickel (Ni6) cluster[J]. Journal of Physical Chemistry,1991,95(23):9167-9169
    [3]Vega A., Balbas L. .C, Dorantes-Davila J., et al. Calculation of the magnetic properties of FeN clusters embedded in 3d transition-metal matrices[J]. Computational Materials Science, 1994,2(3-4):463-467
    [4]Michelini M. C., Diez R. P., Jubert A. H. Density functional calculations of Ni5 and Ni6 clusters[J]. Journal of Molecular Structure:THEOCHEM,1999,490(1):181-188
    [5]Wang M., Huang X. W., Du Z. L., et al. Structural, electronic, and magnetic properties of a series of aluminum clusters doped with various transition metals[J]. Chemical Physics Letters, 2009,480(4-6):258-264
    [6]Pramann A., Koyasu K., Nakajima A., et al. Band gap shiftings in Co-doped Nbn(n=3-15) clusters:influence of Co 3d electrons on the electronic structure [J]. International Journal of Mass Spectrometry,2003,229(1-2):77-82
    [7]Zhang D. B., Shen J., Chen N. X. Continuation calculations of boron-(aluminum-, titanium-, and nickel-) doped La13 clusters[J]. Journal of Chemical Physics,2005,123(15): 154313-154321
    [8]Sakurai M., Watanabe K., Sumiyama K., et al. Magic numbers in transition metal (Fe, Ti, Zr, Nb, and Ta) clusters observed by time-of-flight mass spectrometry [J]. Journal of Chemical Physics,1999,111(1):235-238
    [9]Chen J. L., Wang C. S., Jackson K. A., et al. Theory of magnetic and structural ordering in iron clusters[J]. Physical Review B,1991,44(12):6558-6561
    [10]Castro M., Salahub D. R. Density-functional calculations for small iron clusters:Fen, Fen+, and Fen- for n≤5[J]. Physical Review B,1994,49(17):11842-11852
    [11]Dieguez O., Alemany M. M. G., Rey C., et al. Density-functional calculations of the structures, binding energies, and magnetic moments of Fe clusters with 2 to 17 atoms[J]. Physical Review B,2001,63(20):205407-205412
    [12]Samah M., Moula B. Ab initio study of structural, electronic and magnetic properties of iron clusters Fen (n=2-13)[J]. Revista Mexicana de Fisica,2011,57(2):166-171
    [13]Jo Y., Lee K. Electronic structure and magnetism of Feg and Fe15 clusters [J]. Journal of Magnetism and Magnetic Materials,2001,226-230:1045-1047
    [14]Sun Q., Wang Q., Yu J. Z., et al. Effects of cluster-cluster interactions on the structure and magnetic properties in (Fe6)2[J]. Materials Science and Engineering:A,1998.241(1-2): 137-140
    [15]陈金春Fen(n=2-20)团簇的结构、电子和磁性对大小的依赖[J].苏州大学学报,2005,21(3):43-48
    [16]Die D., Kuang X. Y., Guo J. J., et al. First-principle study of AunFe (n=1-7) clusters[J]. Journal of Molecular Structure:THEOCHEM,2009,902(1-3):54-58
    [17]Wang B. R., Wang J., Ma Q. M., et al. Structures and magnetic ordering of MnnFe (n=1-12) clusters[J]. Solid State Communications,2008,147(1-2):53-56
    [18]Wang L. M., Baiy J., Lechtkenz A., et al. Magnetic doping of the golden cage cluster M@Au16-(M=Fe,Co,Ni)[J]. Physical Review B.2009,79(3):033413-033416
    [19]Chen X., Deng K. M.. Xiao C. Y., et al. Geometric and magnetic properties of the neutral MPb10 and [MPb10]2 clusters (M=Fe, Co, Ni)[J]. Computational and Theoretical Chemistry,2011,971(1-3):73-76
    [20]Hou X. J., Janssens E., Lievens P., et al. Theoretical study of the geometric and electronic structure of neutral and anionic doped silver clusters, Ag5X0.- with X=Sc, Ti, V, Cr, Mn, Fe, Co,and Ni [J]. Chemical Physics,2006,330(3):365-379
    [21]张兆辉,彭元东.锰在永磁材料中的应用[J].中国锰业,2007,23(2):42-45
    [22]Pederson M. R., Reuse F., Khanna S. N. Magnetic transition in Mnn(n=2-8) clusters[J]. Physical Review B,1998,58(9):5632-5636
    [23]Nayak S. K., Rao B. K., Jena P. Equilibrium geometries, electronic structure and magnetic properties of small manganese clusters[J]. Journal of Physics:Condensed Matter, 1998,10(48):10863-10877
    [24]Harris J., Jones R. O. Density functional theory and molecular bonding.Ⅲ.Iron-series dimmers[J]. Journal of Chemical Physics,1979,70(2):830-841
    [25]Nesbet R. K. Heisenberg Exchange Interaction of Two Mn Atoms[J]. Physical Review, 1964,135(2A):A460-465
    [26]Bobadova-Parvanova P., Jackson K. A., Srinivas S., et al. Emergence of antiferromagnetic ordering in Mn clusters [J]. Physical Review A,2003,67(6): 061202-061205
    [27]Jones N. O., Khanna S. N., Tunna Baruah, et al. Classical Stern-Gerlach profiles of Mn5 and Mn6 clusters[J]. Physical Review B,2004,70(4):045416-045420
    [28]洪家岁,王娴,谭凯等.锰团簇Mn5和Mn6几何结构与磁性的分析[J].化学学报,2006,64(10):1064-1067
    [29]Briere T. M., Sluiter M. H. F., Kumar V.,et al. Atomic structures and magnetic behavior of Mn clusters[J]. Physical Review B,2002,66(6):066412-066417
    [30]Shen N. F., Wang J. L., Zhu L. Y. Ab initio study of magnetic properties of bimetallic Con-1Mn and Con-1V clusters[J]. Chemical Physics Letters,2008,467(1-3):114-119
    [31]Wang B. R., Ma Q. M., Liu Y, et al. Small FenMn clusters:Magnetic order and magnetic moment[J]. Solid State Communications,2009,149(5-6):210-213
    [32]Lv J., Zhang F. Q., Jia J. F., et al. First-principles study of structural, electronic and magnetic properties of Co13-nMn (w=1.2, M=Mn, V and Al) clusters[J]. Journal of Molecular Structure:THEOCHEM,2010,955(1-3):14-22
    [33]Die D., Kuang X. Y, Guo J. J., et al. Density functional theory study of AunMn(n=1-8) clusters[J]. Journal of Physics and Chemistry of Solids,2010,71(5):770-775
    [34]Mu Y. W., Han Y, Wang J. L., et al. Structures and magnetic properties of Pdn clusters (n=3-19) doped by Mn atoms[J]. Physical Review A,2011,84(5):053201
    [35]Xiang J., Wei S. H., Yan X. H., et al. A density-functional study of Al-doped Ti clusters: TinAl (n=1-13)[J]. Journal of Chemical Physics,2004,120(9):4251-4257
    [36]盛勇,毛华平,涂铭旌TinMg(n=1-10)掺杂团簇的密度泛函研究[J].物理学报,2008,57(7):4153-4138
    [37]齐凯天,杨传路,李兵等TiLa(n=1-7)的密度泛函研究[J].物理学报,,2009,58(10):6956-6961
    [38]Du J. G., Sun X. Y., Jiang G. A DFT study on small M-doped titanium (M=V, Fe, Ni) clusters:structures, chemical bonds and magnetic properties [J]. European Physical Journal D, 2009,55(1):111-120
    [39]Lu Z. H., Cao J. X. First-principles calculations for titanium monoxide clusters TinO (n=1-9) [J]. Chinese Physics B,2008,17(9):3336-3342
    [40]Wang H. L., Hu N., Tao D. J., et al. Structural and electronic properties of phosphorus-doped titanium clusters:A DFT study [J]. Computational and Theoretical Chemistry,2011(1-3),977:50-54
    [41]Delly B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. Journal of Chemical Physics,1990.92(1):508-517
    [42]Delley B. From molecules to solids with the DMol3 approach[J]. Journal of Chemical Physics,2000,113(18):7756-7764
    [43]Vosko S. H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis[J]. Canadian Journal of Physics, 1980,58(8):1200-1211
    [44]Perdew J. P. in Electronic Structure of Solids'91 [M]. Ziesche P.,Eschrig H. Berlin: Akademie Verlag,1991:11
    [45]Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters.1996,77(18):3865-3868
    [46]Becke A. D. A new mixing of Hartree-Fock and local density-functional theories[J]. Journal of Chemical Physics,1993,98(2):1372-1377
    [47]Russon L. M., Heldecke S. A., Birke M. K., et al. Photodissociation measurements of bond dissociation energies:Ti+2, V+2, Co+2, and Co+3[J]. Journal of Chemical Physics.1994. 100(7):4747-4755
    [48]Cosse C., Fouassier M., Mejean T., et al. Dititanium and divanadium[J]. Journal of Chemical Physics,1980,73(12):6076-6085
    [49]Castro M., Liu S. R., Zhai H. J. Structural and electronic properties of small titanium clusters:A density functional theory and anion photoelectron spectroscopy study [J]. Journal of Chemical Physics,2003,118(5):2116-2123
    [50]Wei S. H., Zeng Z., You J. Q., et al. A density-functional study of small titanium clusters[J]. Journal of Chemical Physics,2000,113(24):11127-11133
    [51]Salazar-Villanueva M., Hernandez Tejeda P. H., Pal U., et al. Stable 7in(n=2-15) Clusters and Their Geometries:DFT Calculations[J]. Journal of Physical Chemistry A,2006, 110(5):10274-10278
    [52]顾娟,王山鹰,苟秉聪.Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究[J].物理学报,2009,58(5):3338-3351
    [1]Christensen A., Stoltze P., Norskov J. K. Size dependence of phase separation in small bimetallic clusters[J]. Journal of Physics:Condensed Matter,1995,7(6):1047-1057
    [2]Liu H. B., Pal U., Perez R., et al. Structural Transformation of Au-Pd Bimetallic Nanoclusters on Thermal Heating and Cooling:A Dynamic Analysis[J]. Journal of Physical Chemistry B,2006,110(11):5191-5195
    [3]Darby S., Mortimer-Jones T. V.. Johnston R. L., et al. Theoretical study of Cu-Au nanoalloy clusters using a genetic algorithm [J]. Journal of Chemical Physics.2002.116(4): 1536-1550
    [4]Paz-Borbon L. O., Johnston R. L., Barcaro G., et al. A Mixed Structural Motif in 34-Atom Pd-Pt Clusters[J]. Journal of Physical Chemistry C,2007,111(7):2936-2941
    [5]Rossi G., Rapallo A., Mottet C., et al. Magic Polyicosahedral Core-Shell Clusters[J]. Physical Review Letters,2004,93(10):105503-105506
    [6]Paz-Borbon L. O.. Johnston R. L., Barcaro G., et al. Structural motifs, mixing, and segregation effects in 38-atom binary clusters[J]. Journal of Chemical Physics,2008,128(13): 134517-134528
    [7]Mariscal M. M., Dassie S. A., Leiva E. P. M. Collision as a way of forming bimetallic nanoclusters of various structures and chemical compositions[J]. Journal of Chemical Physics, 2005,123(18):184505-184510
    [8]Molenbroek A. M., Norskov J. K., Clausen B. S. Structure and Reactivity of Ni-Au Nanoparticle Catalysts[J]. Journal of Physical Chemistry B,2001,105(23):5450-5458
    [9]Lang S. M., Claes P., Cuong N. T. Copper doping of small gold cluster cations:Influence on geometric and electronic structure[J]. Journal of Chemical Physics,2011,135(22): 224305-224316
    [10]Ferrando R., Fortunelli A., Rossi G. Quantum effects on the structure of pure and binary metallic nanoclusters [J]. Physical Review B,2005,72(8):085449-085456
    [11]Nonose S., Sone Y., Onodera K., et al. Structure and reactivity of bimetallic cobalt-vanadium (ConVm) clusters [J]. Journal of Physical Chemistry,1990,94(7):2744-2746
    [12]Hoshino K., Naganuma T., Watanabe K., et al. Ionization potentials of gold-sodium (AunNam) bimetallic clusters[J]. Chemical Physics Letters,1993,211(6):571-574
    [13]Keki S., Nagy L., Deak G., et al. Bimetallic silver-gold clusters by matrix-assisted laser desorption/ionization[.T]. Journal of the American Society for Mass Spectrometry,2004, 15(10):1455-1461
    [14]Yeretzian C. Electronic structure effects in bimetallic MxN clusters (M=alkali, N=divalent metal)[J]. Journal of Physical Chemistry,1995,99(1):123-130
    [15]Heinebrodt M., Malinowski N., Tast F.. et al. Bonding character of bimetallic clusters AunXm(X=Al,In, Cs)[J]. Journal of Chemical Physics,1999,110(20):9915-9921
    [16]Alonso J. A. Electronic and Atomic Structure, and Magnetism of Transition-Metal Clusters[J]. Chemical Reviews,2000,100(2):637-677
    [17]Ferrando R.. Jellinek J.. Johnston R. L. Nanoalloys:From Theory to Applications of Alloy Clusters and Nanoparticles[J]. Chemical Reviews,2008,108(3):845-910
    [18]Zhao G. F., Sheng X. F., Zhi L. L., et al. Density-functional study of structural, electronic, and magnetic properties of the ZrnCr (n=2-14) clusters[J]. Journal of Molecular Structure: THEOCHEM,2009,908(1-3):40-46
    [19]Du J. G., Sun X. Y., Jiang G. Structures, chemical bonding, magnetisms of small Al-doped zirconium clusters[J]. Physics Letters A,2010,374(6):854-860
    [20]Yang C. L., Wang M. S., Sun M. Y., et al. Dominant role of the interstitial 4d transition-metal in TM@ZrZi2(TM=Y-Cd, Z=0, 1) icosahedral cages[J]. Chemical Physics Letters,2008,457(1-3):49-53
    [21]赵文杰,王清林,任凤竹等.第一性原理计算ZrnFe(n=2-13)团簇的基态结构及其磁性[J].物理学报,2007,56(10):5746-5753
    [22]任凤竹,王渊旭,田付阳等.密度泛函理论研究ZrnCo(n=1-13)团簇的结构和磁性[J].物理学报,2008,57(4):2165-2173
    [23]金蓉,谌晓洪.密度泛函理论对ZrnPd团簇结构和性质的研究[J].物理学报,2010,59(10):6955-6962
    [24]雷雪玲,祝恒江,王先明等.用密度泛函理论研究ZrnB(n=1-13)团簇的结构及性质[J].物理化学学报,2008,24(9):1655-1661
    [25]Wang C. C., Zhao R. N., Han J. G. Geometries and magnetisms of the Zrn(n=2-8) clusters: The density functional investigations[J]. Journal of Chemical Physics,2006,124(19): 194301-194308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700