用户名: 密码: 验证码:
黄土丘陵区土壤质量对植被自然恢复过程的响应与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤质量对植被自然恢复过程响应的研究对生态建设与环境效应评价有重要的科学价值。本论文针对黄土丘陵区退耕还林(草)工程环境效应评价的迫切需求,以黄土丘陵区典型草原带宁夏固原地区云雾山和森林草原过渡带延安燕沟流域为研究区,采用野外调查、室内土壤种子库萌发试验和土壤分析相结合的方法,研究了黄土丘陵区自然恢复过程中植被演替规律、土壤种子库特征及贡献,分析了土壤物理性质、化学性质、酶活性和微生物学性质的动态变化;基于相关分析、敏感性分析及主成分分析,筛选土壤质量的评价指标;运用综合指数法定量评价土壤质量对植被自然恢复过程的响应程度,以期为黄土丘陵区进行快速生态建设提供理论依据。主要结论如下:
     1)提出了植被自然恢复过程中土壤样品的采集深度:通过LSD分析了各土壤质量因子在土壤剖面土层之间的差异,表现为0~5cm>5~10cm>10~20cm,土层之间的差异程度随着植被恢复年限的增加而增强。表层(0~5cm)土壤性质对植被恢复的响应最为敏感,表层以下土层(5~10cm和10~20cm)土壤性质对植被恢复的响应敏感程度降低;结合主成分分析,发现0~5cm土层土壤可基本涵盖0-20cm土层95%以上的信息量,建议研究土壤质量对植被恢复过程的响应时应采集表层0-5cm土层土壤进行分析。既可以表现出土壤质量对植被恢复过程响应的敏感程度,又可以减少采样的工作量。
     2)阐明了自然恢复过程中植被演替规律:黄土丘陵区草原带植被群落演替以猪毛蒿与虫实等为主的一年生草本开始,逐步演替为多年生草本群落,最后形成以长芒草与大针茅为优势种的顶级群落;物种多样性呈波动性上升趋势,植被演替到后期,物种趋于多样化,群落达到稳定状态;土壤种子库密度为3542.5粒/m2,主要优势种为野艾蒿和鹅观草;地上植被物种数是土壤种子库的1.14倍,地面植被与土壤种子库的物种组成相似性系数变化于0.167~0.276之间。森林草原过渡带自然恢复过程中植被由一年生草本群落至多年生草本群落,进而演替到灌木群落,最终到达顶级乔木群落(杜梨林),物种多样性明显增加,植被演替到后期,灌木和乔木占据主要生态位,群落稳定性增强;土壤种子库密度为5889.29粒/m2,以野艾蒿和狗尾巴草为优势种,地上植被物种数是土壤种子库的1.69倍;地上植被与土壤种子库的物种相似性系数变化于0.235~0.421之间,黄土丘陵区土壤种子库对地面植被演替的贡献较少。
     3)分析了土壤团聚体对植被自然恢复过程的响应:采用Le Bissonnais(LB)法测定土壤水稳性团聚体含量,发现黄土丘陵区土壤团聚体破坏机制主要是土壤孔隙中的气泡爆破产生的消散作用。与传统方式湿筛法(Yoder)相比较,>0.5 mm团聚体含量和MWD均表现为FW 0.5mm团聚体由45.71%增加到88.92%,MWD由1.08mm增加到2.98mm;森林草原经过100a的自然恢复,>0.5mm团聚体由21.03%增加到80.89%,MWD由0.49mm增加到2.66mm。
     4)研究了土壤化学性质和生物学性质对植被自然恢复过程的响应:草原带土壤有机碳密度、氮密度、碱解氮含量、酶活性、呼吸速率,微生物量碳、氮在植被恢复0a~23a期间变化幅度较大,植被恢复23a~75a期间趋于平缓;土壤速效磷含量则呈先下降后趋于平缓的趋势;土壤C/N比变化范围为9.11~10.44;森林草原过渡带土壤有机碳密度、氮密度、碱解氮、酶活性、呼吸速率,微生物量碳、氮在植被恢复0~29a期间增加幅度较大,植被恢复29a~55a期间,呈下降趋势,植被恢复55a~100a期间再次增加;土壤速效磷含量呈现先下降后上升的趋势;土壤C/N比变化范围为8.70~11.79。
     5)筛选了土壤质量评价指标:基于相关性分析、敏感性分析及主成分分析,筛选土壤有机碳密度、MWD、氮密度、土壤脲酶、碱性磷酸酶、微生物量碳、微生物量氮和呼吸熵等8个指标来作为黄土丘陵区植被自然恢复过程中土壤质量评价指标体系。对比分析了基于筛选的8个土壤质量评价指标与基于测定的20个土壤质量因子计算的土壤质量综合指数(SQI),二者随植被恢复年限变化的趋势一致,验证了所选取的8个土壤质量评价指标体系具有较强的代表性和实用性。
     6)评价了土壤质量对植被自然恢复过程的响应:黄土丘陵区草原带植被自然恢复过程中,土壤质量变化可分为2个阶段,第一阶段是土壤质量快速增长阶段,发生在植被恢复0a~23a期间,SQI变化范围为0.052~0.742,土壤质量由较低水平向中等水平转化;第二阶段是土壤质量平稳变化阶段,发生在植被恢复23a~75a期间,SQI变化范围为0.615~0.722,土壤质量处于中等水平;森林草原过渡带植被恢复自然过程中,土壤质量变化可分为3个阶段,第一阶段是土壤质量显著上升阶段,发生在植被恢复0a~29a期间,SQI从0.107增加到0.454,土壤质量由低水平向较低水平转化;第二阶段是土壤质量下降趋势,发生在植被恢复29a~55a期间,此阶段由于草本群落退出优势地位,灌木的侵入使地表覆盖度减少,植物对土壤养分和水分的消耗大于积累,SQI由0.454降至0.242,土壤质量处于较低水平;第三阶段是土壤质量再次上升阶段,发生在植被恢复55a~100a期间,SQI由0.242增加到最大值0.823,土壤质量由较低水平向高水平方向转化。
The effect of vegetation natural restoration on soil quality is an important issue of environmental effect assessment on“the Grain for Green Project”. This doctoral dissertation took two research areas of the typical grassland zone (Guyuan, Ningxia province) and the transition area from grassland to forest zone (Yangou catchment, shaanxi province) as research sites to study soil quality responses to vegetation natural restoration. According to research methods of the field investigation, experiments of soil seed bank germination, soil property analysis, and statistic analysis, we studied the characteristics of vegetation succession and soil seed bank in the process of vegetation natural restoration; analyzed the response of soil physical, chemical, enzyme activity, microbiological properties to vegetation natural restoration processes; selected soil quality assessment indicators based on correlation analysis, sensitivity analysis, and principal component analysis; and also quantitatively evaluated response of soil quality to vegetation natural restoration processes through soil synthetical index method. The main results are as follows:
     1) Soil sampling depths during vegetation natural restoration was proposed. LSD analysis showed that there were significant differences of soil quality factors among 0-5, 5-10, and 10-20 cm layers of soil profile, the order was 0-5 cm>5-10 cm>10-20 cm. It showed that the differences between the soil layers increased with the increase of vegetation restoration years. The response of soil properties in the top layer (0-5cm) to vegetation restoration was the most sensitive, the sensitivity of other two layers (5-10cm and 10-20cm) decreased, compared to the top layer. Based on the principal component analysis, the soil property information in top layer could cover more than 95% of the information in the 0-20 cm soil layer. Hence, 0-5 cm soil layer could be best the soil layer to study the response of soil quality to vegetation natural restoration, this sample method could show sensitivity of response of soil quality to vegetation natural restoration and reduced sampling workload.
     2) Vegetation succession during natural restoration was clarified. At the grassland zone, plant community began with annual herb community mainly composed of Artemisia scoparia and Corispermum hyssopifolium, then succeeded to perennial herb community, at last formed climax community mainly composed of Stipa bungeana and Stipa grandis. Species diversity was volatility increased with the increase of restoration years. At the last succession stage, the dominant species tended to diversification, plant community was stable state. Density of soil seed bank was 3542.5 seeds/m2, main dominant species were Artemisia lavandulaefolia and Roegneria kamojii; the species of above-ground vegetation was 1.14 times than of soil seed bank; while the relative coefficient of species composition between above-ground plants and seed bank was varied from 0.167 to 0.276. At the transition area from grassland to forest zone, the process of vegetation succession began with annual herb community, succession followed shrub community, and lastly became tree community (Pyrus betulaefolia). With the increase of vegetation natural restoration years, species diversity increased distinctly, shrub and tree community occupied the dominant ecological niche at the last period of vegetation succession, plant community was stability. Density of soil seed bank was 5889.29 seeds/m2, main dominant species were Artemisia lavandulaefolia and Setaria viridis, the species of aboveground vegetation were 1.69 times than of soil seed bank; the relative coefficient of species composition between ground plants and soil seed bank was varied between 0.235 and 0.421. It explained that contribution of soil seed bank to species composition of above-ground was relatively small in the loessial hilly-gully region.
     3) Response of soil structure to vegetation natural restoration process was analyzed. Using Le Bissonnais (LB) methods, we measured soil water-stable aggregate content during vegetation natural restoration in the loessial hilly-gully region. It showed that the primary broken mechanism of soil aggregate was dissipation by“air explosion”in the soil. Comparing with the traditional method (Yoder Method), >0.5 mm aggregate content and MWD all showed FW0.5 mm aggregate content increased from 45.71% to 88.92%, MWD increased from 1.08 mm to 2.98 mm; at transition area from grassland to forest zone, during 100a vegetation natural restoration, >0.5 mm aggregate content increased from 21.03% to 80.89%, MWD increased from 0.49 mm to 2.66 mm.
     4) Response of soil chemical properties and biological properties to vegetation natural restoration process was researched. At the grassland zone, soil organic carbon density, nitrogen density, soil alkaline nitrogen, soil enzyme activity, soil respiration rate, soil microbial biomass C and soil microbial biomass N increased greatly within vegetation restoration of 23 years, then tended steady from 23a to 75a of vegetation restoration. Soil available phosphorus content decreased first and tended steady later. Soil C/N varied from 9.11 to 10.44. At the transition area from grassland to forest zone, soil chemical properties and biological properties increased greatly within vegetation restoration of 29 years, decreased from 29a to 55a of vegetation restoration, went up again from 55a to 100a of vegetation restoration; Soil available phosphorus content decreased first and increased later. Soil C/N change from 8.70 to 11.79.
     5) Soil quality indicators were selected. Based on correlation analysis, sensitivity analysis and principal component analysis, we chose MWD, soil organic carbon density, nitrogen density, soil urease, soil alkaline phosphatase, soil microbial biomass C, soil microbial biomass N and microbial respiration quotient as soil quality evaluation index during vegetation natural restoration in the loessial hilly-gully region. Contrasting analysis two way of SQI calculation which based on the 8 soil quality indexes and the 20 soil quality factors, we found that both of them had same change trend with vegetation restoration year. It tested and verified that the 8 soil quality evaluation indexes were highly representative and practicability.
     6) Response of soil quality to vegetation natural restoration process was assessed. At the grassland zone, during vegetation natural restoration, the change of soil quality had two stages, the first stage was rapidly growing stage of soil quality, which occurred within vegetation restoration of 23 years, SQI was from 0.052 to 0.742, soil quality transformed from the low level to the middle level; the second stage was slowly changing stage of soil quality, which occurred from 23a to 75a of vegetation restoration, SQI was from 0.615 to 0.722, soil quality was in middle level. At the transition area from grassland to forest zone, during vegetation natural restoration, the change of soil quality included three stages, the first stage was increasing significantly stage of soil quality, which occurred within vegetation restoration of 29 years, SQI increased from 0.107 to 0.454, soil quality transformed from low level to relatively lower level; the second stage was decreasing stage of soil quality, which occurred from 29a to 55a of vegetation restoration, during this period, the herbosa community exited dominant position, and then the shrub community invaded reducing vegetation coverage, and soil nutrient and moisture were consumed more than accumulated by plant, SQI decreased from 0.242 to 0.454, soil quality was in the lower level; the third stage was increasing stage of soil quality again, which occurred from 55a to 100a of vegetation restoration, SQI increased from 0.242 to 0.823, soil quality transformed from the relatively lower level to the high level.
引文
1.安青树,林向阳. 1996.宝华山优势植物土壤种子库的初步研究[J].植物生态学报, 20(1): 41-50.
    2.安韶山,黄懿梅,郑粉莉. 2005a.黄土丘陵区草地土壤脲酶活性特征及其与土壤性质的关系[J].草地学报, 13(3): 233-237.
    3.安韶山,黄懿梅,刘梦云,等. 2005b.宁南宽谷丘陵区土壤肥力质量对生态恢复的响应[J].水土保持研究, 12(3):22-26.
    4.安韶山,黄懿梅,李壁成,等. 2006.黄土丘陵区植被恢复中土壤团聚体演变及其与土壤性质的关系[J].土壤通报, 7(1): 46-50.
    5.白军红,王庆改,丁秋祎,等. 2008.不同芦苇沼泽湿地土壤全氮季节动态变化和氮储量研究(简报)[J].草业学报, 17(2): 162-165.
    6.白文娟,焦菊英,张振国. 2007.安塞黄土丘陵沟壑区退耕地的土壤种子库特征[J].中国水土保持科学, 5(2): 65-72.
    7.白文娟. 2006.黄土丘陵区退耕地土壤种子库特征及其对植被恢复的响应[D].中国科学院水土保持研究所.
    8.程积民,万慧娥,杜峰. 2001.黄土高原半干旱区退化灌草植被的恢复与重建[J].林业科学, 37(4): 50-57.
    9.程积民,万惠娥. 2006.黄土高原草地土壤种子库与草地更新[J].土壤学报, 43(4): 679-683.
    10.曹慧,杨浩,孙波,等. 2002.不同种植时间菜园土壤微生物生物量和酶活性变化特征[J].土壤, (4): 197-200.
    11.曹慧,孙辉,杨浩. 2003.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报, 9(1): 105-109.
    12.曹敏,唐勇,张建侯,等. 1997.西双版纳热带森林土壤种子库储量和优势成分[J].云南植物研究, 19(2): 177-183.
    13.陈国潮. 1999.土壤微生物量测定方法现状及其在红壤上的应用[J].土壤通报, 30(6): 284-287.
    14.陈劲松,宋会兴,彭远英,等. 1999.嘉陵江流域南充金城山森林群落生物多样性研究[J].四川师范学院学报(自然科学版), 20(2): 190-197.
    15. D.希勒尔著. 1988.土壤物理学概论[M].陕西人民教育出版社.
    16.邓自发,周兴民,王启基. 1997.青藏高原矮篙草草甸种子库的初步研究[J].生态学杂志, 16(5): 19-23.
    17.戴全厚,刘国彬,姜峻,等. 2008.黄土丘陵区不同植被恢复模式对土壤酶活性的影响[J].中国农学通报, 24(9): 429-434.
    18.丁函,胡海波,王人潮. 2007.半干旱区土壤酶活性与其理化及微生物的关系[J].南京林业大学学报(自然科学版), 31(2):13-18.
    19.傅伯杰,郭旭东,陈利顶,等. 2001.土地利用变化与土壤养分的变化[J].生态学报, 21(6): 927-931.
    20.傅伯杰,马克明,周华峰,等. 1998.黄土丘陵区土地利用结构对土壤养分分布的影响[J].科学通报, 43(22): 2444-2448.
    21.巩杰,陈利顶,傅伯杰,等. 2006.黄土丘陵区小流域植被恢复的土壤养分效应研究[J].水土保持学报, 19(1): 93-96.
    22.巩杰,陈利顶,傅伯杰,等. 2004.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报, 15(12):2292-2296.
    23.高维森. 1991.土壤抗蚀性指标及其适用性初步研究[J].水土保持学报, 5(2): 60-65.
    24.关松荫. 1987.土壤酶及其研究法[M].北京:农业出版社.
    25.郝文芳,梁宗锁,陈存根,等. 2005.黄土丘陵沟壑区弃耕地群落演替与土壤性质演变研究[J].土壤肥料科学. 121(8): 226-231.
    26.郝占庆,郭水良. 2003.长白山北坡草本植物分布与环境关系的典范对应分析[J].生态学报, 23(10): 2000-2008.
    27.何振立. 1994.土壤微生物量的测定方法:现状和展望[J].土壤学进展, 22(4): 36-44.
    28.胡月明,万洪富,吴志峰,等. 2001.基于GIS的土壤质量模糊变权评价[J].土壤学报, 38(3): 266-274.
    29.胡亚林,汪思龙,黄宇,等. 2005.凋落物化学组成对土壤微生物学性状及土壤酶活性的影响[J].生态学报, 25(10): 2663-2668.
    30.焦菊英,马祥华,白文娟,等. 2005.黄土丘陵沟壑区退耕地植物群落与土壤土壤环境因子的对应分析[J].土壤学报, 42(5): 744-752.
    31.焦峰,温仲明,焦菊英,等. 2005.黄土丘陵区退耕地土壤养分变异特征[J].植物营养与肥料学报, 11(6): 24-30.
    32.焦峰,温仲明,焦菊英,等. 2006.黄丘区退耕地植被与土壤水分养分的互动效应[J].草业学报, 15(2): 79-84.
    33.李裕元,邵明安. 2004.子午岭地区植被自然恢复过程中植物多样性的变化[J].生态学报, 24(2): 252-260.
    34.李博.普通生态学[M]. 1993.呼和浩特:内蒙古大学出版社, 135-138.
    35.李学垣. 2001.土壤化学[M].北京:高等教育出版社.
    36.卢升高,竹蕾,郑晓萍. 2004.应用Le Bissonnais法测定富铁土中团聚体的稳定性及其意义[J].水土保持学报, 18(1): 7-11.
    37.刘济明,钟章成. 2000.梵净山拷树群落的种子雨、种子库及更新[J].植物生态学学报, 24(4): 402-407.
    38.刘雨,郑粉莉,安韶山,等. 2007.燕沟流域退耕地土壤有机碳、全氮和酶活性对植被恢复过程的响应[J].干旱地区农业研究, 25(6): 220-226.
    39.刘世梁,傅伯杰,刘国华,等. 2006.我国土壤质量及其评价研究的进展[J].土壤通报, 37(1): 137-143.
    40.刘灿然,马克平. 1997.生物群落多样性的测度方法-V,生物群落物种数目的估计方法[J].生态学报, 17(6): 601-610.
    41.刘立新,董云社,齐玉春. 2007.草地生态系统土壤呼吸研究进展[J].地理科学进展, 23(4): 35-42.
    42.刘钧. 2007.长源自然保护区土壤物理性质的空间分析[D].华南农业大学.
    43.刘金福,洪伟,吴承祯. 2002.中亚热带几种珍贵树种林分土壤团粒结构的分维特征[J].生态学报, 22(2): 197~205.
    44.刘守龙,苏以荣,黄道友,等. 2006.微生物商对亚热带地区土地利用及施肥制度的响应[J].中国农业科学, 39(7): 1411~1418.
    45.刘庆,周立华. 1996.青海湖北岸植物群落与土壤环境因子关系的初步研究[J].植物学报, 38(8): 887-894.
    46.刘庆,周立华. 2003.青海湖北岸植物群落与土壤环境因子关系的初步研究[J].武汉植物学研究, 31(2): 129-136.
    47.吕春花. 2009.黄土高原子午岭地区土壤质量对植被恢复过程的响应[D].西北农林科技大学博士论文.
    48.劳家柽. 1988.土壤农化分析手册[M].北京:农业出版社.
    49.骆士寿,陈步峰,陈永福,等. 2000.海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量[J].林业科学研究, 13(2): 123-128.
    50.鲁萍,郭继勋,朱丽,等. 2002.东北羊草草原主要植物群落土壤过氧化氢酶活性的研究[J].应用生态学报. 13(6): 675-679.
    51.马祥华,焦菊英. 2005a.黄土丘陵沟壑区退耕地自然恢复植被特征及其与土壤环境的关系[J].中国水土保持科学, 3(2): 15-22.
    52.马祥华,焦菊英,白文娟. 2005b.黄土丘陵沟壑区退耕植被恢复地土壤水稳性团聚体的变化特征[J].干旱地区农业研究, 3(3): 69-74.
    53.马克平. 1994.生物多样性的测度方法,生物多样性研究的原理和方法[M].北京:中国科学技术出版社, 141-166.
    54.彭镇华,董林水,张旭东,等. 2005.黄土高原水土流失严重地区植被恢复策略分析[J].林业科学研究, 18(4): 471-478.
    55.彭新华,张斌,赵其国. 2003.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报, 23(10): 2176-2183.
    56.彭文英,张科利,陈瑶,等. 2005.黄土坡耕地退耕还林后土壤性质变化研究[J].自然资源学报, 20(2): 272-278.
    57.彭少麟. 1987.广东热带森林群落的生态优势度[J].生态学报, 7(1): 36-42.
    58.秦伟,朱清科,刘中奇,等. 2008.黄土丘陵沟壑区退耕地植被自然演替系列及其植物物种多样性特征[J].干旱地区研究. 25(4): 507-513.
    59.邱莉萍. 2006.黄土高原植被恢复生态系统土壤质量变化及调控措施[D].陕西杨凌,西北农林科技大学博士论文.
    60.邱莉萍,张兴昌. 2006.子午岭不同土地利用方式对土壤性质的影响[J].自然资源学报, 21(6): 965-972.
    61.曲国辉,郭继勋. 2003.松嫩平原不同演替阶段植物群落和土壤特性的关系[J].草业学报, 12(1): 18-22.
    62.任天志,Stefano Grego. 2000.持续农业中的土壤生物指标研究.中国农业科学, 33(1): 68-75.
    63.沈菊培,陈振华,陈利军,等. 2005.草甸棕壤水稻田磷酸酶活性及对施肥措施的响应[J].应用生态学报, 16(3): 583-585.
    64.宋永昌. 2001.植被生态学[M].上海:华东师范大学出版社, 598~599.
    65.苏永中,王芳,张智慧,等. 2007.河西走廊中段边缘绿洲农田土壤性状与团聚体特征[J].中国农业科学, 40(4): 741-748.
    66.苏静,赵世伟. 2005.植被恢复对土壤团聚体分布及有机碳、全氮的影响[J].水土保持研究. 12(3): 44-46.
    67.孙波,赵其国. 1999.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展, 18(2): 118- 128.
    68.孙嘉良,丁峰. 2009.区域自然植被及其恢复的调查与思考[N].科技致富向导.
    69.孙丽芳. 2007.黄土高原植被恢复对土壤碳、氮储量及水稳性团聚体分布的影响[D].中国农业科学院农业环境与可持续发展研究所.
    70.孙炳寅,朱长生. 1989.互花米草(Spartina atterniflora)草场土壤微生物生态分布及某些酶活性的研究[J].生态学报, 9(3): 240-244.
    71.唐勇,曹敏,张建侯,等. 1997.刀耕火种对山黄麻林土壤种子库的影响[J].云南植物研究, 19(4): 423-428.
    72.田均良,梁一民,刘普灵,等. 2003.黄土高原丘陵区中尺度生态农业建设探索[M].郑州:黄河水利出版.
    73.滕晓慧,曹成有,富瑶,等. 2007.不同年龄小叶锦鸡儿固沙群落土壤酶活性及微生物生物量的变化[J].生态环境, 16(3): 1030-1034.
    74.王国梁,刘国彬,侯喜禄. 2002.黄土高原丘陵沟壑区植被恢复重建后的物种多样性研究[J].山地学报, 20(2): 182-187.
    75.王刚,梁学功. 1995.沙坡头人工固沙区的种子库动态[J].植物学报, 37(3) : 231-237.
    76.王明玖. 2000.内蒙古贝尔加针茅草原群落植物繁殖[J].生态学研究, 9: 16-21.
    77.王辉,任继周. 2004.子午岭主要森林类型土壤种子库研究[J].干旱区资源与环境, 18(3): 30-136.
    78.王晓宁,向家平,赵廷宁,等. 2009.晋西黄土丘陵沟壑区植被演替规律研究[J].水土保持通报, 29(3): 103-108.
    79.王力,邵明安,侯庆春. 2001.黄土高原土壤干层初步研究[J].西北农林科技大学学报(自然科学版). 29(4): 34-38.
    80.王百群,刘国彬. 1999.黄土丘陵区地形对坡面土壤养分流失的影响[J].水土保持学报, (2): 18-22.
    81.王伯荪,于世孝,彭少麟,等. 1996.植物群落试验手册[M].广州:广东教育出版社, 100-103.
    82.王清奎,汪思龙. 2005.土壤团聚体形成与稳定机制及影响因素[J].土壤通报, 36(3): 415-421.
    83.王军,傅伯杰,邱扬,等. 2002.黄土高原小流域土壤养分的空间异质性[J].生态学报, 22(8): 1174-1178.
    84.王晓龙,胡锋,李辉信,等. 2006.红壤小流域不同土地利用方式对土壤微生物量碳氮的影响[J].农业环境科学学报. 25(1): 143-147.
    85.王效举,龚子同. 1996.亚热带小区域水平上土壤质量时空变化的定量化评价[J].热带亚热带土壤科学, 5(4): 229-231.
    86.王效举,龚子同. 1998.红壤丘陵小区域不同利用方式下土壤变化的评价和预测[J].土壤学报, 35(1): 135-139.
    87.王建国,杨林章,单艳红. 2001.模糊数学在土壤质量评价中的应用研究[J].土壤学报, 38(2): 176-183.
    88.温仲明,焦峰,刘宝元,等. 2005.黄土高原森林草原区退耕地植被自然恢复与土壤养分变化[J].应用生态学报. 16(11): 2025-2029.
    89.温远光,元昌安,李信贤,等. 1998.大明山中山植被恢复过程植物物种多样性的变化[J].植物生态学报, 22(1): 33-40.
    90.奚为民. 1997.雾灵山国家自然保护区森林群落物种多样性研究[J].生物多样性, 5(2): 121-125.
    91.熊利民,钟章成,李旭光,等. 1992.亚热带常绿林不同演替阶段土壤种子库的初步研究[J].植物生态学与地植物学报, 16( 3): 249-257.
    92.熊毅. 1983.土壤胶体[M].北京:科学出版社, 290-291.
    93.熊东红,贺秀斌,周红艺. 2005.土壤质量评价研究进展[J].世界科技研究与发展, 2, 71-75.
    94.谢晋阳,陈灵芝. 1997.中国暖温带若干灌丛群落多样性问题的研究[J].植物生态学报, 21(3): 197-207.
    95.谢小伟,郭水良,黄华. 2003.浙江金华市区地面苔藓植物分布与土壤环境因子关系研究[J].武汉植物研究, 21(2): 129-136.
    96.许明祥,刘国彬,赵允格. 2005.黄土丘陵区土壤质量评价指标研究[J].应用生态学报, 16(10): 1844-1848.
    97.徐艳,张凤荣,段增强,等. 2005.区域土壤有机碳密度及碳储量计算方法探讨[J].土壤通报, 36(6): 836~839.
    98.徐阳春,沈其荣,冉炜. 2002.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报, 1(39), 89-95.
    99.杨跃军,李向阳,王保平. 2001.森林种子库与天然更新[J].应用生态学报, 12(2): 304-308.
    100.杨允非,祝廷成. 1991.草木植物群落种子群落种子雨的初步研究[J].植物学通报, 6(1): 48-51.
    101.杨允非,祝岭. 1995a.松嫩平原盐碱植物群落种子库的比较分析[J].植物生态学, 19(2): 144-148.
    102.杨允非,祝宁. 1995b.松嫩平原碱化草甸朝鲜碱茅种子散布机制的分析[J].植物学报, 37(3): 222-230.
    103.杨小波,陈明智,吴庆书. 1999.热带地区不同土地利用系统土壤种子库的研究[J].土壤学报, 36(3): 327-332.
    104.杨万琴,王开运. 2002.土壤酶研究动态与展望[J].应用与环境生物学报, 8(5): 564-570.
    105.杨培岭,罗远培,石元春. 1993.用粒径的重量分布表征的土壤分形特征[J].科学通报, 38(20): 1896-1899.
    106.杨万勤,王开运. 2002.土壤酶研究动态与展望[J].应用与环境生物学报, 8(5): 564-570.
    107.严昶升. 1988.土壤肥力研究方法[M].北京:农业出版社.
    108.姚槐应,何振立,黄昌勇. 1999.红壤微生物量氮的周转期及其研究意义[J].土壤学报, 8, 36(3): 387-394.
    109.易志刚,蚁伟民,周丽霞,等. 2005.鼎湖山主要植被类型土壤微生物生物量研究[J].生态环境, 14(5):727-729.
    110.喻理飞,朱首谦,叶镜中,等. 2002.退化喀斯特森林自然恢复过程中群落动态研究[J].林业科学, 25(1): 1-7.
    111.于顺利,蒋高明. 2003.土壤种子库的研究进展及若干研究热点[J].植物生态学报, 27(4): 552-556.
    112.于群英. 2001.土壤磷酸酶活性及其影响因素研究[J].安徽技术师范学院学报, 15(4): 5-8.
    113.俞慎,李振高. 1994.熏蒸提取法测定土壤微生物量研究进展[J].土壤学进展, 22(6): 42-50.
    114.张金屯. 2004.黄土高原植被恢复与建设的理论和技术问题[J].水土保持学报, 8(5): 120-124.
    115.张志权. 1999.土壤种子库与矿业废弃地植被恢复研究I. Leonard瓶-罐装置在土壤种子库检测中的应用[J].生态学杂志, 18(3): 70-74.
    116.张志权,束文圣. 2000.引入土壤种子库对铅锌尾矿废弃地植被恢复的作用[J].植物生态学报, 24(5):601-607
    117.张咏梅,何静. 2003.土壤种子库对原有植被恢复的贡献[J].应用与环境生物学报. 9(3): 326-332.
    118.张咏梅,周国逸,吴宁. 2004.土壤酶学的研究进展[J].热带亚热带植物学报, 12(1): 83-90.
    119.张俊华,常庆瑞,贾科利,等. 2003.黄土高原植被恢复对土壤肥力质量的影响研究[J].水土保持学报, 17(4): 38-41.
    120.张继义,赵哈林. 2003.植被(植物群落)稳定性研究评述[J].生态学杂志, 22(4): 42-48.
    121.张玲. 2004.太白山土壤种子库储量与物种多样性的垂直格局[J].地理学报, 59(6): 880-888.
    122.张琪,方海兰,史志华,等. 2007.侵蚀条件下土壤性质对团聚体稳定性影响的研究进展[J].林业科学, 43(增刊1): 77-81.
    123.张保华,何毓蓉. 2006.长江上游几种林地表层土壤侵蚀率及与相关土壤性质关系[J].水土保持研究, 13(4): 220-225.
    124.张劲峰,宋洪涛,耿云芬,等. 2008.滇西北亚高山不同退化林地植被与土壤养分特征[J].生态学杂志. 27(7): 1064-1070.
    125.张成娥,梁银丽,贺秀斌. 2002.地膜覆盖玉米对土壤微生物量的影响[J].生态学, 22(4): 508- 512.
    126.张崇邦,金则新,施时迪. 2003.天台山不同林型土壤微生物区系及其熵值(qMB,qCO2)[J].生物学杂志, 22(2): 28-31.
    127.张帆,黄凤球,肖小平,等. 2009.冬季作物对稻田土壤微生物量碳、氮和微生物熵的短期影响[J].生态学报, 29(2): 734-738.
    128.张建辉. 1992.长江上游川江流域林业土壤资源评价[J].资源开发与保护, 8(2): 83-87.
    129.张庆费,宋永昌,由文辉. 1999.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报. 2(2): 174-179.
    130.张文辉,卢涛,马克明,等. 2004.岷江上游干旱河谷植物群落分布的环境与空间因素分析[J].生态学报, 24(3):552-559.
    131.张元明,陈亚宁,张道远. 2003.塔里木河中游植物群落与土壤环境因子的关系[J].地理学报, 58(1): 109-117.
    132.赵金柱,张建庭,池映翔,等. 2006.保护和恢复植被是防治土地退化的重要措施[J].内蒙古水利. (1): 24-25.
    133.赵刚,尤文忠,邢兆凯,等. 2008.柞蚕场封山育林对植被恢复的影响[J].辽宁林业科技, (4): 1-5.
    134.郑晓萍,卢升高. 2005.富铁土团聚体稳定性的表征及其物理学机制[J].浙江大学学报(农业与生命科学版), 31(3): 305~310.
    135.郑华,欧阳志云,易自力,等. 2004.红壤侵蚀区恢复森林群落物种多样性对土壤生物学特性的影响[J].水土保持学报, (4): 137-141.
    136.郑昭佩,刘作新. 2003.土壤质量及其评价[J].应用生态学报, 14(1): 131-134.
    137.郑粉莉. 1996.子午岭林区植被破坏与恢复对土壤演变的影响[J].水土保持通报, 16(5): 41-44.
    138.朱桂林,山仑,刘国彬. 2004.黄土高原农牧交错带植被恢复途径[J].中国水利, 8: 30-31.
    139.朱志诚. 1993a.陕北黄土高原植被基本特征及其土壤性质的影响[J].植被生态学与地植物学学报, 17(3): 280-286.
    140.朱志诚,黄可. 1993b.陕北黄土高原森林草原过渡带植被恢复演替初步研究[J].山西大学学报, 16(1): 94-100.
    141.朱祖祥主编, 1982.土壤学(上册)[M].北京:农业出版社.
    142.朱显谟. 1989.黄土高原土壤和农业[M].北京:农业出版社.
    143.郑洪元. 1986.生态系统研究中土壤呼吸、土壤酶活性及土壤生物量的测定[J].生态学杂志, 5(1): 50-53.
    144.周礼恺. 1987.土壤酶学[M].北京:科学出版社.
    145.周庆,刘有美,黄锦龙. 1997.桉树林地酶活性研究初报[J].华南农业大学学报, 18(2): 46- 50.
    146.周桦,宇万太,姜子绍. 2008.不同土地利用方式对土壤微生物生物量氮的影响[J].土壤通报, 39(4): 734-737.
    147.邹厚远,程积民,周麟. 1998.黄土高原草原植被的自然恢复演替及调节[J].水土保持研究, 5(1): 126-138.
    148.祝宁,王义弘. 1992.刺五加生殖生态学研究(II):种子扩散、种子库及更新[J].东北林业大学学报, 20(5): 12-17.
    149.祝宁,郭维明. 1996.生境异质性对刺五加种子萌发的影响及其种子库动态[J].生态学报, 16(4): 408-413.
    150. Anderson, T H. 1990. Application of eco-physiological quotients on microbial biomasses from soils of different cropping histories[J]. Soil Biology and Biochemistry, 221: 251-255.
    151. Anderson, T H. 2003. Microbial eco-physiological indicators to asses soil quality [J]. Agriculture, Ecosystems and Environment, 98: 285-293.
    152. Anderson T H, Domsch K H. 1985. Maintenance carbon requirements of activity-metabolizing microbial population under in situ conditions [J]. Soil Boilogy &Biochemistry, 17:197-203.
    153. Abdul K S, Katayama A, Kimura. 2000. Activities of some soil enzymes in different land use system after deforestation in hilly areas of west Lampung, south Sumatra, Indonesia [J]. Soil Sci., 80: 91-97.
    154. Acosta-Martinez V, Zobeck T M, Gill T E, et al. 2003. Enzyme activities and microbial community structure in semiarid agricultural soils [J]. Biology and Fertility of Soils, 3: 216-227
    155. Adel J, Behnam H, Younes A, et al. 2003. Soil seed Bank in the Arasbaran proested area of Iran and their significance for conservation management[J]. Boil conserve. 109: 425-431.
    156. Arshad M A, Martin S. 2002. Identifying critical limits for soil quality indicators in agro-ecosystem. Agric. Ecosyst. Environ, 88: 153~160.
    157. Augusto L, Dupouey J L, Picard J F, Ranger J. 2001. Potential contribution of the seed bank in coniferous plantations to the restoration of native deciduous forest vegetation[J].Acta Oecol, 22: 87-98.
    158. Bolton H, Elliot, L F, Papendick R I, et al. 1985. Soil microbial biomass and selected soil enzyme activities: Effect of fertilization and cropping practices [J]. Soil Biol.&biochem, 17: 297-302.
    159. Burns, R.G..Soil Enzymes [M]. New York: Academic Press, 1978.
    160. Badiane N N Y, Chotte J L, Pate E, et al. 2001. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions [J]. Applied Soil Ecology, 18(3): 229-238.
    161. Bomkens M J M, Roth C B, Nelson D W. 1977. Erodibility of selected clay subsoils in relation to physical and chemical properties[J]. Soil Sci. Soc. Am. J., 41: 954-960.
    162. Bryan R B. 1968. The development use and efficiency of indices of soil erodibility [J]. Geoderma, 25-26.
    163. Bertiller M B. 1998. Spatial patterns of the germinable soil seed bank in northern Patagonia [J].Seed Science Research, 8(1): 39-45.
    164. Csontos P, Horanszky A, Kalapos T, et al. 1997. Seed bank of pinus nigra plantations in dolomite rock grassland habitats, and its implicatuins for restoring grassland vegetation[J]. Annales Historico Naturales Musei Nationalis Hungarici, 88: 69-77.
    165. Coffin D P, Lauenroth W K. 1989. Spatial and temporal variation in the seed bank of semiarid grassland[J]. American Journal of Botany, 76: 53-58.
    166. Carwood N C. 1983. Seed germination in a seasonal tropical forest in Panama: a community study [J]. Ecol Monographs, 3:159-181.
    167. Chisci G, Bazzoggi P, Mbagwu J S C. 1989. Comparison of aggregate stability indices of soil classification and assessment of soil management practices[J]. Soil Technology, 2, 113-133.
    168. Critchley C N R, chambers B J, Fowbert J A, et al. 2002. Association between lowland grassland plant communities and soil properties[J]. Biological Conservation, 105: 199-215.
    169. De, Ploey J, Poesen J. 1985. Aggregate stability, runoff generation and interrill erosion. In: Geomorphology and Soils [J] (eds K.S. Richards, R.R. Arnett & S. Ellis), Allen and Unwin, London. 99-120.
    170. Dilly O, Munch J C. 1998. Ratios between estimates of microbial biomass content and microbiol activity in soils [J]. Biology and Fertility of Soils, 27: 374-379.
    171. Dick R P. 1994. Soil enzyme activities as indicators of soil quality. In: Doran J.W.,Coleman D. C., Bezdicek D. F. and Stewart B. A.,Editors, Defining soil quality for a sustainable environment,SSSA, Madison, 107-124.
    172. Dick R P, Brcakwill D, Turco R. 1996. Soil enzyme activities and biodiversity measurements as integrating biological indicators. In: Doran J .W. and Jones A.J. Editors, Handbook of Methods for Assessment of soil quality, SSSA, Madison USA, 247-272.
    173. Dick R P. 1997. Soil enzyme activities as integrative indicators ofsoil health [A]. In: Pankhurst C E, Doube B M, Gupta V V S R (eds.). Biological Indicators of Soil Health [C]. Walling-ford: CAB International, 121-156.
    174. Elton, C. S. 1958. The reasons of conservation. London: Chapman & Hall, 143-153.
    175. Emerson W W. 1967. Acassofocation of soil aggregate based on their coherence in water[J]. Australian Journal of Soil Reseach, S, 47-57.
    176. Foster S A, 1985. Janson C H. The relationship between seed size and establishment condition in tropical woody plants[J]. Ecology, 66: 773~780.
    177. Fan J, Hao M D. 2003. Effects of long-term rotation and fertilization on soil microbial biomass carbon and nitrogen[J]. Res. Soil Water. Cons, 10(10): 85-87.
    178. Fu B J, Chen L D, Ma K M, et al. 2000. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China[J]. Catena, 39: 69-78.
    179. Fu B J, Liu S L, Chen L D, et al. 2003, Comparing the soil quality changes of different land uses determined by two quantitative methods. Journal of Environmental Sciences, 15(2): 167-172.
    180. Guo Hong Wang. 2002. Plant traits and soil chemical variable during a secondary vegetation succession in abandoned fields on the Loess Plateau [J]. Acta Botanica Sinica, 44(8): 990-998.
    181. Grieve I C. 1980. The magnitude and significance of soil structural stability declines under cereal cropping [J]. Catena, 7, 79-85.
    182. Guardia R, Gallart F, Ninot J M. 2000. Siol seed bank and seedling dynamics in badlands of the Upper Liogregat basin(Pyrenees)[J].Catena. 40: 189-202.
    183. Holmes P M. 2002. Depth distribution and composition of seed bank in alian-invaded and uninvaded fynbos vegetation [J]. Austral Ecology, 27: 110-120.
    184. Haynes, R J. 1993. Effect of sample pretreatment on aggregate stability measured by wet sieving or turbidimetry on soils of different cropping history [J]. Journal of Soil Science, 44, 261-270.
    185. Insam H, Mitchell C C, Dormaar J F. 1991. Relationship of soilmicrobialbiomass and activitywith fertilization practice and crop yield of three ultisols [J]. Soil Biol Biochem, 23: 459-464.
    186. Jonlan D,Kremer R J,Bcrgficld W A, et al. 1995. Evaluation of,crohial methods as potential indicators of soil quality in historical argriculture fields. Biol Fcrli Soils, 19(4): 297-302.
    187. Jenkinson D, Ladd L N. 1981. Microbial biomass in soil: measurement and turnover [A]. In: Paul E A, Ladd J N (eds). Soil Biochemistry (Vol.5) [C]. New York: Marcel Dekker, 415-471.
    188. Jenkison, Laddjn. 1981. Soil Biochemistry[M]. v. Paule E. A. &Ladd J. N. (eds), Marcelkckke INC.
    189. Jenkinson D S, Ladd J N. 1981. Microbial biomass in soil measurement and turnover[J]. Soil Biochemistry, 5: 415-471.
    190. Jens K, Zimmerman, John B, et al. 2000. Barriers to forest regeneration in an abandoned pastures in Puerto Rico[J]. Restore Ecod, 8(4): 350-359.
    191. Kawannbe S, Oshida T, Nakamura H, et al. 1997. A comparison of the buried seed population in pastures with high and low frequency of broadleaf dock most noxious weed in the intensive pastures [J]. Grassland Science, 43(3): 237-242.
    192. Kennedy A. C, R. J. Papendick. 1995. Microbial characteristics of soil quality [J]. Journal of Soil and Water Conservation, 50: 243-248.
    193. Kowaljow E, Mazzarino MJ. 2007. Soil restoration in semiarid Patagonia:chemical and biological response to different compost quality[J]. Soil Biology & Biochemistry, 39:1580-1588.
    194. Leck M A, Parker V T, Simpson R L. 1989. Ecology of Soil Seed Banks [M]. London: Academic Press, 328-310.
    195. Levy G J, Miller W P. 1997.Aggregate stabilities of some southeastern U. S. Soils [J]. Soil Sci.Soc. Am. J, 61: 1176-1182.
    196. Larson W E,F. J. 1994. Pierce.in: Defining Soil Quality for a sustainable environment[J]. Soil Science Society of America, Inc,Maclison, Wisconsin USA, 37-52.
    197. Loch, R. J. 1994. A method for measuring aggregate water stability with relevance to surface seal development [J]. Australian Journal of Soil Science, 32: 687-700.
    198. Leck M A, Leck C F. 1998. A ten-year seed bank study of old field succession in central New Jersey [J]. the Torrey Botanical Society, 125(1): 11-32.
    199. Le Bissonnais. 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology [J]. European Journal of Soil Science, 47: 425-437.
    200. Le Bissonnais Y, Arrouays D. 1997. Aggregate stability and assessment of soil crustability and erodibility II. Application to humic loamy soils with various organic carbon contents[J]. European Journal of Soil Science, 48: 39-48.
    201. Matkin, E. A., Smart. 1987. A comparison of tests of soil structural stability [J]. Journal of Soil Science, 38, 123-135.
    202. Miller F P, Wal M K. 1994. Land use issues and sustainability of agriculture [J]. Trans. of 15th ICSS, Mexico, 7: 1-6.
    203. Navie S C, Pogers R.W. 1997. The relatioship between attibutes of plants represented in the germinable seed bank and stockong pressure in a semi-arid subtropical rangeland [J]. Australian J. Botany, 45(6): 1055-1071.
    204. Odeh I O A, Chittleborough D J, McBratney A B. 1991. Elucidation of soil2landform interrelationships by canonical ordination analysis[J] . Geoderma, 49 : 1-32.
    205. Purig, Ashmanm. 1992. Relationship between soilmicrobial biomass and grossN mineralization[J]. Soil Biochem, 30: 251-256.
    206. Pauwels J M., Gabridls D, Eeckout G.. 1976.Evaluation of different criteria to assess the stability of the soil surface[J]. Mededelingen van de Landbouwhogeschool Gent, 41: 135-139.
    207. Perfect E, Kay B D, van Loon, at el. 1990. Factors influencing soil structural stability within a growing season [J]. Soil Science Society of America Journal, 54, 135-139.
    208. Roberts H A. 1981. Seed Banks in Soil. Advances in Applie[J]. Biology, 6: 1-55.
    209. Smith, J L, paulea. 1991. The significance of soil microbial biomassestimztion [M], In Soil Biochemistry V. 6, Jean Marcbollag & Gstotzky{eds}Marcel Dekker, INC.
    210. Sharma, K L, Mandal U K, Srinivas K, et al. 2005. Long-term soil management effects on crop yieldsand soil quality in a dryland Alfisol [J]. Soil & Tillage Research, 83: 246-259.
    211. Silvertown J W. 1982. Introduction to plant population ecology [M].London press: Longman.
    212. Singh J S, Raghubanshi A S, 1989. Singh R S, et al. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna [J].Nature, 338: 499-500.
    213. Stevenson F J. 1986. Cycles of soil carbon, nitrogen, phosphorus, sulfur, micro-nutrients [M]. New York: John Willy& Sons.
    214. Su DBLG, Li Yonghong, Yong Shipeng, Sa Ren. Germinasle soil seed bank of artemisiu grassland andits response to grazing [J]. Acta Ecol Sin, 2000, 20(1): 43-48.
    215. Stevenson. 1985. Cycles of soil carbon, nitrogen, phorus, sulfur, micronutrients[M]. Johm Wileey & Sons, INC.
    216. Singh J S, Reghbanshi A S, Singh R S, et a1. 1989. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna [J]. Nature, 33 (8): 499~500.
    217. Sparling G P. 1992. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter.Australia Journal of Soil Research, 30: 195-207.
    218. Turrion M-B, Lopez O, Lafuente F, et al. 2007. Soil phosphorus forms as quality indicators of soils under different vegetation covers[J]. Science of the Total Environment, 378:195-198.
    219. Tilman, D. Doeing, J. A. 1994. Biodiversity and stability in grasslands[J]. Nature, 367: 363-365.
    220. Thompson K. 1978.The occurrence of buried viable seeds in relation to enviromental nradiets[J]. J. Biogeogr, 5: 425-430.
    221. Turco R F, et al. 1994. Microbial Indicators of Soil Quality, in: Defining Soil Quality for a Sustainable Environment[J], Soil Science Society of America, Inc., Madison, Wisconsin, USA, 73-90.
    222. Whipple S A. 1978.The relationship of buried, germinating seeds to vegetation in an old-growth Colorade sub-alpine forest [J]. Can. J. Bot, 56: 1505-1509.
    223. Yoder, R. E. 1936. A direct method of aggregate analysis of soils and a study of the physical nature of erosion [J]. Journal of American Society of Agronomy, 28: 337-351.
    224. Zhang J, Oxley R R B. 1994. A comparison of three methods of multivariate analysis of upland grasslands in North Wales[J]. Journal of Vegeta2 tion Science, 5: 71-76.
    225. Zagal E, Munoz C, Quiroz M, et al. 2009. Sensitivity of early indicators for evaluating quality changes in soil organic matter [J]. Geoderma.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700