用户名: 密码: 验证码:
长江口大型底栖动物生态学研究及日本刺沙蚕生物能量学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以长江口及邻近海域为调查区域,于2007年2月、5月、8月和11月,连续4个航次对该海域的大型底栖动物和部分环境因子进行了取样调查。研究内容涉及大型底栖动物的种类数量、生物量、丰度、生物多样性、次级生产力以及环境因子对大型底栖动物分布格局的影响。具体研究结果如下:
     1.在研究海域共采到大型底栖动物216种,其中多毛类113种(52.31%),软体动物42种(19.91%),甲壳类32种(14.35%),棘皮动物10种(4.63%),其它动物19种(8.80%)。年平均生物量和丰度分别为8.76 g/m2和139.18 ind/m2。其中春季种类数量、生物量和丰度分别为86种、6.96 g/m2和143.18 ind/m2;夏季分别为100种、4.71 g/m2和157.06 ind/m2;秋季分别为113种、20.25 g/m2和185.00 ind/m2;冬季分别为62种、3.11 g/m2和71.47 ind/m2。分析结果表明,大型底栖动物种类数量、生物量和丰度自长江口向东呈递增趋势。生物量和丰度均与水深和盐度呈显著或极显著的正相关关系;与化学耗氧量、总氮、总磷和悬浮体浓度呈显著或极显著的负相关关系。与历史资料比较,当前长江口海域大型底栖动物种类数量、生物量和丰度均低于二十年前的水平。
     2.为揭示长江口海域大型底栖动物多样性特征,采用物种丰富度指数(D)、物种均匀度指数(J)和香农威纳指数(H’)对其进行了分析。结果表明:四个航次平均物种丰富度指数分别是:春季1.23,夏季1.10,秋季1.41,冬季0.85;平均物种均匀度指数分别是:春季0.92,夏季0.89,秋季0.90,冬季0.94;平均香农威纳指数分别是:春季2.06,夏季1.72,秋季2.06,冬季1.74。多样性指数与环境因子的相关分析表明,均匀度指数和香农威纳指数与水深和盐度呈显著的正相关关系,与化学耗氧量、总氮、总磷和悬浮体含量呈显著的负相关关系。均匀度指数与所调查的环境因子没有显著的相关性。
     3.利用Brey的经验公式对调查海域进行了大型底栖动物次级生产力和P/B值的研究和计算。结果表明,长江口海域大型底栖动物年平均次级生产力为1.36 g(AFDW)/ (m2·a),自长江入海口向东呈递增趋势。其中多毛类年平均次级生产力为0.63 g(AFDW)/ (m2·a),占46.32%;软体动物年平均次级生产力为0.26 g(AFDW)/ (m2·a),占19.12%;甲壳类年平均次级生产力为0.25 g(AFDW)/ (m2·a),占18.38%;棘皮动物年平均次级生产力为0.12 g(AFDW)/ (m2·a),占8.82%;其它动物年平均次级生产力为0.10 g(AFDW)/ (m2·a),占7.35%。长江口海域大型底栖动物年平均P/B值为0.89,其中多毛类P/B值为1.75,软体动物P/B值为0.76,甲壳类P/B值为0.42,棘皮动物P/B值为0.86。
     4.根据2007年长江口海域大型底栖动物和环境调查数据,应用CANOCO软件对获得的大型底栖动物物种数据和环境因子数据进行了典范对应分析(CCA),并作出了物种、站位分布与环境因子关系的二维排序图。结果表明,长江口海域大型底栖动物群落可划分为3个类型。根据CCA给出了各类型与环境因子的相互关系表明,盐度、水深、营养盐含量、悬浮体浓度是影响长江口海域大型底栖动物分布格局的主要因素。
     日本刺沙蚕是我国和日本特有的多毛类物种,广泛的分布于我国的渤海和黄海等地区,并具有较高的经济价值。本文探讨了温度和盐度等环境因子对其代谢、能量收支和氮收支的影响,以期为日本刺沙蚕的人工养殖提供科学指导。主要研究结果如下:
     1.运用实验生态学的方法研究了体重、盐度(5、10、15、20、25、30和35)和温度(18、21、24、27和30 oC)对日本刺沙蚕呼吸和排泄的影响。三个不同的体重组(大:2.34±0.36 g,中:1.50±0.21 g,小:0.62±0.12 g)被用于盐度和温度实验中。结果表明:体重、盐度和温度均对日本刺沙蚕的耗氧率和排泄率产生显著性的影响(P<0.05)。耗氧率和排泄率均随体重的增加而降低,并且分别得出了二者与体重的回归关系式。在盐度5-35范围内,耗氧率和排泄率均随着盐度的增加而降低,盐度30时达到最小值,然后又随盐度的升高而升高。盐度和体重间的交互作用对日本刺沙蚕的耗氧率和排泄率均存在显著性影响(P<0.05)。在18-30 oC范围内,耗氧率随着温度的升高而升高,在27 oC时达到最高值,然后又随着温度的升高而降低。但温度对排泄率的影响呈波浪状曲线关系。温度和体重间的交互作用对日本刺沙蚕的耗氧率和排泄率均存在显著性影响(P<0.05)。整个实验中,日本刺沙蚕O:N比值的范围在5.97-463.22之间,说明随着环境的变化,其代谢供能物质也有明显的变化。
     2.对日本刺沙蚕在不同盐度下(15、20、25、30和35)的生长和能量收支情况进行了探讨。结果表明,其特定生长率(SGR)随盐度的升高而增加,在盐度30时达到最大值,然后又随盐度的继续升高而降低。沙蚕的摄食量、饵料转化率(FCE)和表观消化率(ADR)随盐度的变化趋势与此相似。在日本刺沙蚕的能量收支模式中,粪便能是其中较小的部分,不会对生长能的分配产生大的影响。在每一盐度下呼吸能都占据较大的比例。而排泄能随盐度的变化较剧烈。所以,呼吸能和排泄能主导着日本刺沙蚕的能量收支模式。总体上,盐度主要是通过影响沙蚕的摄食量、FCE和ADR或摄食能的分配而影响其生长。此外,本文还分别得出了沙蚕摄食量、排粪量、SGR、ADR、FCE、生长能占摄食能的比例、呼吸能占摄食能的比例、排泄能占摄食能的比例和粪便能占摄食能的比例与盐度的回归关系式。通过计算,日本刺沙蚕最佳生长盐度在27和30之间。日本刺沙蚕在5个盐度下的平均能量收支方程为:100C = 25.37G + 8.50F + 4.92U + 61.21R,式中C为摄食能;G为生长能;F为粪便能;U为排泄能;R为呼吸能。
     3.运用实验生态学的方法研究了17-29 oC范围内5个不同温度下日本刺沙蚕的生长和能量收支情况。沙蚕的生长以实验末体重和特定生长率(SGR)表示。其生长随温度的升高而增加,在26 oC时达到最大值,然后又随温度的继续升高而显著地降低。沙蚕的摄食量、饵料转化率(FCE)和表观消化率(ADR)随温度的变化趋势与此相似,但温度对ADR没有显著的影响。在日本刺沙蚕的能量收支模式中,粪便能是其中较小的部分,不会对生长能的分配产生大的影响。在每一温度下,呼吸能都占据较大的比例。而排泄能随温度变化较剧烈。呼吸能和排泄能主导着日本刺沙蚕的能量收支模式,对生长能的分配起着主要的影响。总体上,温度主要是通过影响沙蚕的摄食量、饵料转化率或摄食能的分配而影响其生长状况。此外,还分别得出了沙蚕摄食量、排粪量、特定生长率和饵料转化率与温度的回归关系式。通过对回归方程的计算,其最大摄食量在25.01 oC;最大饵料转化率在24.24 oC;最大特定生长率在24.73 oC。
     4.探讨不同盐度下(15、20、25、30和35)日本刺沙蚕对饵料中氮的利用情况。结果表明,盐度对日本刺沙蚕的摄食氮、生长氮、粪便氮、氮的饵料转化率和特定生长率均有显著性的影响,它们均有随盐度升高而增加的趋势,到达最大值后(盐度30左右),又随盐度的升高而下降。排泄氮随盐度的变化趋势与此相反。盐度对氮的表观消化率没有显著的影响。根据回归方程计算得到日本刺沙蚕的最佳氮生长盐度为28-29。实验结果还显示日本刺沙蚕在适宜盐度下获得较高的氮生长主要归因于较高的氮摄食和氮的饵料转化率。盐度对日本刺沙蚕氮收支各组分均存在显著性影响,其中排泄氮的比例在盐度25时最小,而后随盐度的升高或降低都明显增大,这与生长氮和粪便氮比例的变化趋势相反。粪便氮的比例变化并不剧烈,范围为7.50%-9.41%。因此,排泄氮的比例和生长氮的比例主导着日本刺沙蚕的氮收支模式。日本刺沙蚕在5个盐度下的平均氮收支方程为100CN=49.01GN+42.45UN+8.54FN,其中,CN为摄食氮;GN为生长氮;UN为排泄氮;FN为粪便氮。此外,作者还对水生动物氮收支的模式做了初步的探讨。
     5.探讨了不同温度下(17、20、23、26和29 oC)日本刺沙蚕的氮生长和氮收支情况。结果表明,温度对日本刺沙蚕的摄食氮、生长氮、氮的饵料转化率和特定生长率均有显著性的影响,它们均有随温度升高而增加的趋势,到达最大值后(26 oC),又随温度的升高而下降。温度对氮的吸收效率没有显著的影响。根据回归方程计算得到日本刺沙蚕的最佳氮生长温度为23-26 oC。实验结果还显示日本刺沙蚕在适宜温度下获得较高的氮生长主要归因于较高的氮摄食和氮的饵料转化率。温度对日本刺沙蚕氮收支各组分均存在显著性影响,其中排泄氮的比例在26oC最小,而后随温度的升高或降低都增大,这与生长氮和粪便氮比例的变化趋势相反。粪便氮的比例较小且变化不剧烈,范围为6.43-9.40%。因此,排泄氮的比例和生长氮的比例主导着日本刺沙蚕的氮收支模式。日本刺沙蚕在5个温度下的平均氮收支方程为100CN=49.2GN+43.3UN+7.5FN。
The macrobenthos and some environmental factors collected from 40 stations in the Changjiang estuary and adjacent waters were investigated in February, May, August and November, 2007. The species numbers, biomass, density, diversity, secondary production of macrobenthos in the regain were studied and analyzed. In addition, the relationship between the distribution of macrobenthos and environmental factors was also analyzed. The major results of the study are presented as follows: 1. From the material collected from 40 stations in the Changjiang Estuary in February, May, August and November, 2007, 216 macrobenthos species were found, in which 113 species were polychaetes, making up 52.31% of the total species, 42 species were mollusks, making up 19.91%, 32 species were crustaceans, making up 14.35%, 10 species were echinoderms, making up 4.63%, and 19 species were other groups of marine animals, making up 8.80%. The total mean biomass and density were estimated to be 8.76 g/m2 and 139.18 ind/m2, respectively. The average specie number, biomass and density in spring were respectively 86, 6.96 g/m2 and 143.18 ind/m2;100, 4.71 g/m2 and 157.06 ind/m2 in summer; 113, 20.25 g/m2 and 185.00 ind/m2 in autumn; 62, 3.11 g/m2 and 71.47 ind/m2 in winter. Data showed that distribution of species numbers, biomass and density in the estuary increased from Changjiang mouth to easten outside open sea. The biomass and density of macrobenthos were significantly positive correlated with depth and salinity. They had significantly negative correlation with the COD, TN, TP and TSM. Compared with history data in the same region, the species numbers, biomass and density were all lower than twenty years ago.
     2. The richness index (D), species evenes index (J) and Shannon-Wiener index (H’), were used to study the diversity of macrobenthos in the Changjiang Estuary. The results showed the following: The average values of D of four cruises were 1.23 in spring, 1.10 in summer, 1.41 in autumn, 0.85 in winter; J of four cruise were 0.92 in spring, 0.89 in summer, 0.90 in autumn, 0.94 in winter; H’of four cruise were 2.06 in spring, 1.72 in summer, 2.06 in autumn, 1.74 in winter. J and H’were significantly positive correlated with depth and salinity. They had significantly negative correlation with the COD, TN, TP and TSM. J had no significantly correlation with any environmental factors.
     3. Based on the data obtained from 40 stations in 2007, the secondary production and P/B ratio in the Changjiang Estuary was calculated with Brey’s empirical formula. The results showed as the following: The distribution of secondary production in the estuary increased from Changjiang mouth to easten outside open sea. The mean value of secondry production in the studied area was 1.36 g(AFDW)/ (m2·a), in which 0.63 g(AFDW)/ (m2·a) was polychaetes, making up 46.32% of the total value, 0.26 g(AFDW)/ (m2·a) was mollusks, making up 19.12%, 0.25 g(AFDW)/ (m2·a) was crustaceans, making up 18.38%, 0.12 g(AFDW)/ (m2·a) was echinoderms, making up 8.82%, and 0.10 g(AFDW)/ (m2·a) was other marine animals, making up 7.35%. The mean P/B ratio of macrobenthos was 0.89, in which 1.75 was polychaetes, 0.76 was mollusks, 0.42 was crustaceans and 0.86 was echinoderms.
     4. Comprehensive investigation on macorbenthos and environmental factors in the Changjiang Estuary and adjacent waters were conducted in 2007. Canonial correspondence analysis (CCA) was applied to explore the relationship between macrobenthos and environmental factors using CANOCO. The results showed that the macrobenthos communities can be classified into three assemblages. The ordination of interrelation among the three assemblages and their correlation to the environmental variables were revealed by CCA; the result shows that salinity, depth, nutrient and total suspended particulate matter were major factors influencing the macorbenthors assemblage.
     The polychaete, Neanthes japonica, is a worm-like euryhaline species native to China and Japan. In China, this species inhabits the intertidal, shallow sandy-mud sediments and/or estuaries in the Bohai Sea and the Yellow Sea. Recently in China, N. japonica has been widely used as an ideal diet in shrimp aquaculture and as fishing bait, and marked with high commercial value. The aim of this study was to examine the effect of temperature and salinity on the metabolism, energy budget and nitrogen budget of N. japonica. The results of this study provide useful information for aquaculturists engaged in the artificial breeding of N. japonica. The major results of the study are presented as follows:
     1. In this study, the relations of body weight, salinity (5, 10, 15, 20, 25, 30 and 35) and temperature (18, 21, 24, 27 and 30 oC) to oxygen consumption and ammonia excretion of N. japonica were determined by bioeologics method. Three different groups in body weight (Large: 2.34±0.36 g, Middle: 1.50±0.21 g and Small: 0.62±0.12 g) were set for all experiments. The results were as follows: the rates of oxygen consumption and ammonia excretion of N. japonica were affected by body weight, salinity and temperature (P<0.05). The body weight was negatively related to the rates of oxygen consumption and ammonia excretion. Significant relationship between oxygen consumption rate/ammonia excretion rate and body weight was obtained. With salinity changed from 5 to 35, the rates of oxygen consumption and ammonia excretion decreased before 30 and then increased, indicating that both lower and higher salinity were adverse and certain salinity stress was necessary for enhancing the energy demand. Raising temperature from 18 to 30 oC, the oxygen consumption rate increased before 27 oC and then decreased. However, the relation of ammonia excretion and temperature seemed more complex. Moreover, significant effects (P<0.05) were obtained on salinity/temperature and body weight on oxygen consumption and ammonia excretion. The O:N (oxygen/nitrogen) ratio varied greatly in this case from 5.97 to 463.22, indicating that N. japonica can regulate the type of metabolic substrate against environment changes.
     2. The growth and energy budget of polychaete, N. japonica at five salinity levels (15, 20, 25, 30 and 35 ppt) with a total sample of four replicates for each level, were investigated in this study. Results indicate that the growth, as indicated by final dry weight and specific growth rate (SGR), significantly increased with increasing salinity, with the maximum level at 30 ppt salinity, and then decreased at the highest salinity level. A similar tendency was observed in food consumption, food conversion efficiency (FCE) and apparent digestive rate (ADR). For the pattern of energy allocation, faeces energy was only a small component of the energy budget, and did not have the capability to greatly influence the proportion of energy intake allocated to growth. The respiration metabolism significantly increased as salinity decreased and accounted for a large portion of energy intake for each salinity treatment. The nitrogen excretion was acute with changing salinity. Therefore, respiration energy and excretion energy of the energy budget were the major factors influencing the proportion of energy intake allocated to growth. These results revealed that salinity mainly affected the polychaete’s growth by influencing food consumption, FCE, ADR, or energy allocation to growth. In addition, regression equations described and obtained the relationship among food consumption, faecal production, SGR, ADR, FCE, proportion of energy intake allocated to growth (G/C), respiration (R/C), excretion energy (U/C), faeces (F/C) and salinity. As calculated from these regression equations, the optimal salinity range for the growth of N. japonica may be between 27 and 30 ppt. The average energy budget of N. japonica under five salinity treatments was: 100C = 25.37G + 8.50F + 4.92U + 61.21R, where C was food energy, G was growth energy, F was faeces energy, U was excretion energy and R was respiration energy.
     3. Growth and energy budget of the polychaete, Neanthes japonica, at various temperatures (17, 20, 23, 26 and 29 oC) were investigated in this study. The growth, as indicated by final dry weight and specific growth rate (SGR), increased with increasing temperature, with the maximum level at 26 oC, and then decreased significantly at 29 oC. A similar trend was observed in feeding rate, food conversion efficiency (FCE) and apparent digestive rate (ADR). However, no significant differences were detected in ADR among all the temperature treatments. For the pattern of energy allocation, faeces energy was only a small component of energy budget and had little influence on the proportion of food energy allocated to growth. The metabolic energy accounted for a large portion of energy intake for each temperature treatment. The nitrogen excretion was acute with changing temperature. The two expenditure terms (respiration energy and excretion energy) of energy budget were the major factors influencing the proportion of food energy allocated to growth. These results revealed that temperature affected the growth of N. japonica mainly by influencing feeding rate and FCE. In addition, regression equations described the relationship between feeding rate, faecal production, SGR, FCE and temperature were obtained. Optimum temperature for feeding rate, FCE and SGR were estimated at 25.01 oC, 24.24 oC and 24.73 oC, respectively, from the regression equations.
     4. In the present study, the effect of salinity on nitrogen growth and nitrogen budget of N. japonica was investigated at 15, 20, 25, 30 and 35 by bioeologics method. The result showed that nitrogen consumption, nitrogen growth, nitrogen faeces, nitrogen food conversion efficiency and specific growth rate were significantly affected by salinity. They all increased with increasing salinity, peaked at about 30, and then decreased with increasing salinity. Reversed tendency was observed in nitrogen excretion. There was no significant differences in nitrogen apparent digestive rate among all salinity treatments. As calculated from regression equations, the optimal salinity range for nitrogen growth of N. japonica might be 28~29. The results indicated that the high nitrogen growth of the polychaete at suitable salinity mainly resulted from the significant increase of nitrogen consumption and nitrogen food conversion efficiency at corresponding salinity. All part of nitrogen budget were significantly affected by salinity. The minimum of proportion of nitrogen excretion was at salinity 25, above or below the salinity, the value decreased, which was reversed with the proportion of nitrogen growth and faeces. The proportion of nitrogen excretion was the major factor influencing the nitrogen budget model. The average nitrogen budget of N. japonica under five salinity treatments was: 100CN=49.01GN+42.45UN+8.54FN, where CN was nitrogen consumption, GN was nitrogen growth, UN was nitrogen excretion and FN was nitrogen faeces. In addition, primary discussion on the nitrogen budget of aquatic animals was made.
     5. The effect of temperature on nitrogen growth and nitrogen budget of Neanthes japonica was investigated at 17, 20, 23, 26 and 29 oC by bioeologics method. The results showed that nitrogen consumption, nitrogen growth, nitrogen food conversion efficiency and specific growth rate were significantly affected by temperature. They all increased with increasing temperature, peaked at about 26 oC, and then decreased with increasing temperature. There was no significant differences in nitrogen absorption efficiency among all temperature treatments. As calculated from regression equations, the optimal temperature range for nitrogen growth of N. japonica might be 23~26 oC. The results indicated that the high nitrogen growth of the polychaete at suitable temperature mainly resulted from the significant increase of nitrogen consumption and nitrogen food conversion efficiency at corresponding temperature. All parts of nitrogen budget were significantly affected by temperature. The minimum of proportion of nitrogen excretion was at 26 oC, above or below the temperature, the value decreased, which was reversed with the proportion of nitrogen growth and faeces. The proportion of nitrogen excretion and nitrogen growth were the major factors influencing the nitrogen budget model. The average nitrogen budget of N. japonica under five temperature treatments was: 100CN=49.2GN+42.3UN+7.5FN.
引文
别兹鲁柯夫.论中国东海北部的沉积物及底栖动物区系.海洋与湖沼,1958, 1(3):269-315.
    毕洪生,冯卫.胶州湾底栖生物多样性初探.海洋科学,1996,7:37-40.
    白志毅,何学军,李思发.尼罗罗非鱼幼鱼氮收支与饲料组成关系.上海水产大学学报, 2003, 12(4): 298-302.
    崔亦波.鱼类生物能量学的理论与方法.水生生物学报, 1989, 13(4): 369-383.
    蔡立哲,洪华生,黄玉山,香港维多利亚港大型底栖生物群落的时空变化.海洋学报,1997,19(2): 65-70.
    蔡立哲,林鹏,余书生,等,深圳河口泥滩多毛类动物的生态研究.海洋环境科学,1998,17(l): 41-47.
    蔡立哲,马丽,高阳.海洋底栖动物多样性指数污染程度评价标准的分析.厦门大学学报,2002,41(5):641-646.
    蔡晓明.生态系统生态学.北京:科学出版社,2000:15-16.
    戴国梁.长江口及其邻近水域底栖动物生态特点.水产学报,1991,15(2): 104-116.
    邓可,张志南,黄勇,等.南黄海典型站位底栖动物粒径谱及其应用.中国海洋大学学报, 2005,35(6):1005-1010.
    古丽亚诺娃EФ,刘瑞玉.黄海潮间带生态学研究.中国科学院海洋研究所研究丛刊,1958,1(2): 1-41.
    龚志军,谢平,阎云君.底栖动物次级生产力研究的理论与方法.湖泊科学, 2001, 13(1): 79-88.
    龚志军.长江中游浅水湖泊大型底栖动物的生态学研究[D]. 2002,武汉:中国科学院水生生物研究所.
    韩洁,张志南,于子山.渤海大型底栖动物丰度和生物量的研究.青岛海洋大学学报,2001,31(6):889-896.
    郝占庆,郭水良,叶吉.长白山北坡木本植物分布于环境关系的典范对应分析.植物生态学报,2003,27(6):733-741.
    姜祖辉,王俊,唐启升.菲律宾蛤仔生理生态学研究.海洋水产研究,1999,20(1):40-44.
    刘瑞玉,徐凤山.黄东海底栖动物区系的特点.海洋与湖沼, 1963, 5(4):306-321.
    刘瑞玉,崔玉衍,林光宇等.浙江近海底栖生物生态研究.见:浙江省水产资源调查委员会(编),浙江近海渔业资源调查报告,1964,27:154-173.
    李永祺,丁美丽.海洋污染生物学.北京:海洋出版社. 1991,445-449.
    罗秉征,沈焕庭.三峡工程与河口生态环境. 1994.北京:科学出版社:238-250.
    刘瑞玉,徐凤山.长江口区底栖生物及三峡工程对其影响的预测.海洋科学集刊,1992,33:237-247.
    栾青衫,孙军,宋书群,沈志良,俞志明.长江口夏季浮游植物群落与环境因子的典范对应分析.植物生态学报,2007,31(3):445-450.
    雷思佳.温度对中华鳖稚鳖氮收支的影响.华中农业大学学报, 2007, 26(1): 85-89.
    刘勇,线薇薇,孙世春,吴耀泉.长江口及其邻近海域大型底栖动物生物量、丰度和次级生产力的初步研究.中国海洋大学学报,2008,38(5):749-756.
    卢敬让,赖伟,堵南山.应用底栖动物监测长江口南岸污染的研究.青岛海洋大学学报,1990,20(2):32-44.
    李健,孙修涛,赵法箴.水温和溶解氧含量对中国对虾摄食量影响的观察.水产学报, 1993, 17(4): 333-346.
    莱莉C M,帕森斯T R,著.张志南,周红译.底栖生物.见:生物海洋学导论[M].青岛:青岛海洋大学出版社, 2000:153-192.
    陆健健.河口生态学. 2003.北京:海洋出版社.
    林岿旋,张志南,王睿照.东黄海典型站位底栖动物粒径谱研究.生态学报,2004,24(2):241-245.
    李新正,王洪法,张宝林.胶州湾大型底栖动物次级生产力初探.海洋与湖沼,2005,36(6):527-533.
    刘建勇,邓兴超,绍杰.体重和温度对方斑东风螺耗氧率和排氨率的影响.中国水产科学,2005,12(3):239-244.
    李宝泉,李新正,王洪发,王永强,王金宝,张宝林.长江口附近海域大型底栖动物群落特征.动物学报,2007,53(1):76-82.
    李晋鹏,上官铁梁,孟东平,郭东正等.山西吕梁山南段植物群落的数量分类和排序研究.应用与环境生物学报,2007,13(5):615-619.
    马建新,刘爱英,王世信.日本刺沙蚕的生态特性及在对虾养殖中的应用.海洋科学, 1998, 3(1): 7-8.
    渠晓东,曹明,邵美玲,蔡庆华.雅砻江(锦屏段)及其主要支流的大型底栖动物.应用生态学报,2007,18(1):158-162.
    任广法.长江口及邻近海域溶解氧的分布变化.海洋科学集刊,1992,33:139-151.
    孙瑞平,吴宝铃,杨德渐.中国海日本刺沙蚕研究.山东海洋学院学报, 1980, 10(3): 100-110.
    孙道元,董永庭.长江口及其邻近水域多毛类生态特点.海洋科学集刊,1986,27:175-187.
    孙道元,徐凤山.长江口区枯,丰水期后底栖动物分布特点.海洋科学集刊,1992,33:217-235.
    孙儒泳.动物生态学原理.北京:北京师范大学出版社,2001:394-401.
    沈国英,施并章.动物种群产量的测定方法.见:海洋生态学.北京:科学出版社, 2002: 253-259.
    唐质灿,徐凤山.东海大陆架区底栖生物数量分布和群落的初步分析.见:中国科学院海洋研究所(编),东海大陆架论文集. 1978,156-164.
    腾瑜,王印庚,王彩理.沙蚕的营养分析与功能研究.海洋科学进展, 2004, 22(2): 215-218.
    田相利,董双林,王芳.不同温度对中国对虾生长及能量收支的影响.应用生态学报,2004,15(4):678-682.
    吴宝铃,孙瑞平,杨德渐.中国多毛类研究.北京:海洋出版社,1981.
    吴宝铃,丘建文.青岛多齿围沙蚕的生产量.生态学报, 1992, 1(1): 61-67.
    王希升,王广成,曹建亭.日本刺沙蚕的养殖.齐鲁渔业, 2003, 20(2): 7-8.
    王睿照,张志南.海洋底栖生物粒径谱的研究.海洋湖沼通报,2003,4:61-68.
    温小波,库夭梅,罗静波.温度、体重及摄食状态对克氏源螯虾代谢的影响.华中农业大学学报,2003,22(2):154-156.
    王玲,陈爱华,赵啸,王亮,张剑诚,周一兵.温度和体重对双齿围沙蚕呼吸和排泄的影响.大连水产学院学报,2004,19(3):176-181.
    王翠红,张金屯.汾河水库水源河着生硅藻群落的DCCA研究.中国环境科学, 2004,24(1):28-31.
    王银东,熊邦喜,陈才保.环境因子对底栖动物生命活动的影响.浙江海洋学院学报, 2005, 24(3): 253-257.
    王备新,徐东炯,杨莲芳,沈丽娟.常州地区太湖流域上游水系大型底栖无脊椎动物群落结构特征及其与环境的关系.生态与农村环境学报. 2007,23(2):47-51.
    王翠红,张金屯.汾河太原段水体浮游藻类群落DCCA研究.农业环境科学学报, 2006,25(6):1588-1593.
    徐兆礼,蒋玫.长江口底栖动物生态研究.中国水产科学,1999,6(5):59-62.
    线薇薇,朱鑫华.温度和体重对褐牙鲆氮收支的影响.海洋科学集刊, 2002(44): 200-205.
    线薇薇,刘瑞玉,罗秉征.三峡水库蓄水前长江口生态与环境.长江流域资源与环境, 2004,13(2): 119-123.
    许巧情,刘俊,黄华伟.温度对橄榄蛏耗氧率和排氨率的影响.湛江海洋大学学报,2005,25(1):51-55.
    于子山,王诗红,张志南,周宇.紫彩血蛤的生物扰动对沉积物颗粒垂直分布的影响.青岛海洋大学学报,1999,29(2): 279-282.
    于子山,张志南,韩洁.渤海大型底栖动物次级生产力的初步研究.青岛海洋大学学报,2001,31(6):867-871.
    叶属峰,陆健健.长江口泥螺的种群特征及其生态学意义.长江流域资源与环境,2001,10(3):216-222.
    叶属峰,陆健健.长江口泥螺种群夏季的空间格局分析.动物学研究,2001,22(2):131-136.
    袁兴中,陆健健.长江口潮沟大型底栖动物群落的初步研究.动物学研究,2001,22(3):211-215.
    袁兴中,陆健健.长江口底栖动物功能群分布格局及其变化.生态学报,2002,22(12):2054-2061.
    杨严鸥,解绶启,熊邦喜等.饵料质量对丰鲤和奥尼罗非鱼氮及能量收支的影响.水生生物学报, 2004, 28(4): 337-343.
    袁伟,张志南,于子山.胶州湾西部海域大型底栖动物多样性的研究.生物多样性,2007,15(1):53-60.
    张志南,图立红,于子山.黄河口及其邻近海域大型底栖动物的初步研究:生物量,青岛海洋大学学报,1990a,20(2): 45-52.
    张志南,图立红,于子山.黄河口及其邻近海域大型底栖动物的初步研究:生物与沉积环境的关系,青岛海洋大学学报,1990b,20(2): 37-45.
    张志南,孙文林,于子山,等.日本刺沙蚕大规模移植的生态学研究.海洋与湖沼, 1993, 24(5): 520-526.
    周一兵,谢祚浑.虾池中日本刺沙蚕次级生产力的研究.水产学报, 1995, 19(2): 140-150.
    张硕,董双林,王芳.中国对虾(Penaeus chinensis)氮收支的初步研究.海洋学报, 1999, 21(6): 81-86.
    张志南,周宇,韩洁,于子山,生物扰动实验系统(AFS)的基本结构和工作原理.海洋科学,1999,6: 28-30.
    张志南,水层——底栖藕合的某些进展.青岛海洋大学学报,2000,30(1): 115-122.
    张志南,周宇,韩洁,于子山.应用生物扰动实验系统(Annular Flux System)研究大型滤食性双壳类的生物沉降作用.青岛海洋大学学报,2000,30(2): 270-276.
    张金屯.数量生态学.北京:科学出版社. 2004,144-165.
    朱晓君,陆健健.长江口九段沙潮间带底栖动物的功能群.动物学研究,2003,24(5):355-361.
    章飞军,童春富,张衡.长江口潮下带春季大型底栖动物的群落结构.动物学研究,2007,28(l):47-52.
    Allen K.R. Some aspects of the production and cropping of freshwaters. Transaction of the Royal Society of New Zealand, 1949, 77: 222-228.
    Allen K.R. A study of a trout population. New Zealand Marine Department Fisheries Bulletin, 1951, 10: 1-238.
    Abele L.G., Walters K. Marine benthic diversity: a critique and alternative explanation. J. Biogeogr., 1979, 6: 115-126.
    Arnzt W.E., Gili J.M., Reise K. Unjustifiably ignored: reflections on the role of benthos in marine ecosystem. In:Gray JS, Ambrose W.J. and Szaniawska (eds.), Biogeochemical cycling and sediment ecology. Kliwer Academic Publishers. 1998: 105-124.
    An Z., Dong Y. and Dong S. Temperature effects on growth-ration relationships of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture, 2007, 272: 644-648.
    Beadle, L. C. The effect of salinity changes on the water content and respiration of marine invertebrates. J. Exp. Biol. 1931, 8: 211-227.
    Beamish F.W. Ration size and degistion in large bass, Micropterus salmoides Lacepede. Can. J. Zool. 1972, 50: 153-164.
    Brett J. R. M., and Wottoon D. D. D.. Physiological energetics. Academic Press, New York, 1979, 279-352.
    Beis, I., A. Manousis and J. Barrett, 1980. Studies on the respiration of polychaete Ophelia bicornis. Comp. Biochem. Physiol. 67A: 303-305.
    Brey T. Estimating productivity of macrobenthic invertebrates form biomass and mean individual weight. Meeresforsch. 1990, 32: 329-343.
    Benke A.C. Concepts and patterns of invertebrate production in running waters. Verh. Int. Verein. Limnol., 1993, 25: 15-38.
    Briggs J.C. Species diversity: land and sea compared. Syst. Biol., 1994, 43: 130-135.
    Brandt A. Abundance, diversity and community patterns of epibenthic and benthic boundary layer peracarid crustaceans at 75°N off East Greenlnad. Polar Biol., 1997, 17: 159-174.
    Brown, A. C. Effect of natural and laboratory diet on the O:N ratio in juvenile lodsters (Homarus americanus). Comp. Biochem. Physiol. 2006, 144A: 93-97.
    Clarke G.L., Edmondson W.T., Richer W.E. Mathematical formulation of biological productivity. Ecological Monographys, 1946, 16: 336-337.
    Cloern J.M. Does the benthos control phytoplankton biomass in South San Fnarcisco Bay? Mar. Eeol. Porg. Ser., 1982, 9: 191-202.
    Corey, P. D., Leith, D. A. and English M. J. A growth model for coho salmon including effects of varying ration allotments and temperature. Aquaculture, 1983, 30: 125-143.
    Crisp D.J. Energy flow measurements. ln: Holme NA and Mclntyre AD.(eds.), Methods for the Study of Marine Benthos(2nd edition). Blackwell Oxford, 1984: 284-372.
    Carfoot, T. H. Animal Energetics. 1987, Academic Press, New York, 407-515.
    Cui Y. B. and Wootton R. J. Bioenergetics of growth of a cyprind Phoxinu phoxinus: the effect of ration , temperature and body size on food consumption, facaecal production and nitrogenous excretion. J. Fish. Biol. 1988, 33: 431-443.
    Cui, Y. Bioenergetics of fishes: Theory and methods. Acta. Hydrobiol. Sin. 1989, 13(4): 369-381.
    Cater C G, Brafield A E. The bioenergetics of grass carp, Ctenopharyngodon idella, the influence of body weight, ration and dietary composition on nitrogenous excretion. Journal of Fish Biology, 1992(41): 533-543.
    Cui,Y. B., Chen S. L. and Wang S. M. Effect of temperature on the energy budget of the grass carp, Ctenopharyngodon idella Val. Oceanologia et Liminologia Sinica,1995, 26(2): 169-174.
    Coleman N., Gason A., Poore G.C.B. Hihg species richness in the shallow marine waters ofsouth-east Austarlia. M.ar. Ecol. Prog. Ser., 1997, 154:17-26.
    Dermott R.W., Kalff J., Leggett W.C. Production of Chironomus, Procladius, andChaoborus at different levels of phytoplankton biomass in Lake Memphremagog, Quebec Vermont. Journal of Fosheris Research of Canada, 1977, 34: 2001-2007.
    Dangott, L. J. and R. C. Terwilliger, 1986. The role of extracellular hemoglobins in the oxygen consumption of the burrowing polychaete, Euzonus mucronata (Treadwell). J. Exp. Mar. Biol. Ecol. 97: 193-204.
    Dauvin J.C., Zouhiri S. Suprabenthic crustacean fauna of a dense Ampelisca community from the English Channel. J. Mar. Biol. Ass. U.K., 1996, 76: 909-929.
    Dolah R.F., Hyland J.L., Holland A.F. A benthic index of biological integrity for assessing habitat quality in estuaries of the southeastern USA. Marine Environmental Research, 1999, 48:269-283.
    Elliot J. M. Energy losses in the waste products of brown trout (Samlo troutta L.). J. Anim. Ecol. 1976, 45: 561-580.
    Edgar G.J. The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production. Journal of Experimental Marine Biology and Ecology, 1990, 114: 165-174.
    Ehrlich P.R., Wilson E.O. Biodiversity studies: Science and Policy. Science, 1991, 253: 758-762.
    Flemister, L. J. and Flemister, S. C. Chloride ion regulation and oxygen consumption in the crab Ocypode albicans (Bosq). Biol. Bull. 1951, 101: 259-273.
    Fenucci J. L. and Casa F. A. The assimilation of protein and carbonhydrate from prepared pellet diets by the shrimp. J. World Maricult. Soc. 1982, 13: 134-135.
    From J. and Rasmussen G. A growth model, gastric evacuation and body composition in rainbow trout, Salmo gairdneri Richardson. Dana Charlottenlund, 1984, 3: 134-135.
    Forcucci D., and Lawrence J. M. Effect of low salinity on the activity, feeding, growth and absorption efficiency of Luidia clathrata (Echinodermata: Asteroidea). Mar. Biol., 1986, 92: 315-321.
    Frid C.L.J., Buchanan J.B., Garwood P.R. Short communication: variability and stability: twenty-two years of monitoring of Northumberland. ICES J. Mar. Sci., 1996, 53: 978-980.
    Gray J. S. Animal Sediment relationship. In: Oceanography and Marine Biology: An AnnualReview. London: Allen and Unwin. 1978, 223-261.
    Gray J. S. The Eeology of Marine Sediments- An introduction to the structure and function of benthic communities. Cmabridge Univesrity Perss, 198l.
    Graham A. A., Burns C.W. Production and ecology of benthic chironmid larvae in Lake Hayes, New Zealand, awarm-moomictic eutrophic lake. Internationale Revue der Gesmten Hydrohiologie, 1983, 68: 351-377.
    Guerin J. L. and Stickle W. B. Effect of salinity gradients on the tolerance and bioenergetics of juvenile blue crabs (Callinectes sapidus) from waters of different environmental salinities. Mar. Biol., 1992, 114: 391-396.
    Grassle J.G., Maciolek N.J. Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am. Nat., 1992, 139: 313-341.
    Gray J. S. Is deep-sea species diversity really so high? Species diversity of the Nowegain continental shelf. Mar. Eeol. Prog. Ser., 1994, 112: 205-209.
    Gambi, M. C., Castelli, A. Giangrande, A. Lanera, P. Prevedelli, D. and Zunarelli-Vandini R. Polychaetes of commercial and applied interest in Italy: an overview. Men. Mus. Natn. Hist. Nat., 1994, 162: 593-603.
    Gray J. S. Is coastal biodiversity as high as that of the deep sea? In:Eleftheriou, A., Ansell AD. And Smith CJ.(eds.), Biology and eeology of shallow coastal waters. Olsen and Olsen, Fredensborg, 1995, 23: 181-184.
    Guerin J. L, and Stickle W. B. Effect of salinity on survival and bioenergetics of juvenile lesser blue crabs, Callinectes similes. Mar. Biol., 1997, 129: 63-69.
    Gray J.S., Poore G.C.B., Ugland K.L., Wilson R.S. Coastal and deep-sea benthic diversities compared. Mar. Eeol. Porg. Ser., 1997, 159: 97-103.
    Graf.G., Rosenberg R. Bioresuspension and biodeposion: a review. J. Mar. Systems, 1997, 11: 269-278.
    Hagerman, L. The oxygen consumption of Crangon vulgaris (Fadricius) (Crustacea, Natantia) in relation to salinity. Ophelia, 1970, 7: 283-292.
    Haberfield, E. C., L. W. Haas and C. S. Hammen. Early ammonia release by a polychaete Nereis virens and a crab Carcinus maenas in diluted sea water. Comp. Biochem. Physiol. 1975, 52A: 501-503.
    Hamill S.F., Qadri S.U., Mackie G.L. Production and turnover ratio of Pisidium casertanum in the Ottawa River near Ottawahull, Canada. Hydrobiologia, 1979, 62: 225-230.
    Holme N.A., Mclntyre A.D. Mehtods for the study of marine benthos. Blackwell Scientific Publicatinos. Oxford, 1984: 387.
    Hily C. Is the activity of benthic suspension feeders a factor controlling water quality in the Byay of Brest? Mar. Eeol. Porg. Ser., 1991, 69: 179-188.
    Hauer F.R., Benke A.C. Rapid growth of snag dwelling chironomids in a blackwater river: the influence of temperature and discharge. Journal of North American Benthological Society, 1991, 10: 154-164.
    Honda H, Kikuchi K. Nitrogen budget of polychaete Perinereis nuntia fed on feces of japonanese flounder. Fisheries Science, 2002(68): 1304-1308.
    Hulathduwa Y. D., Stickle W. B. and Brown K. M. The effect of salinity on survival, bioenergetics and predation risk in the mud crabs Panopeus simpsoni and Eurypanopeus depressus. Mar. Biol., 2007, 152: 363-370。
    Han, K. N., Lee, S. W. and Wang, S. Y. The effect of temperature on the energy budget of the Manila clam, Ruditapes philinarum. Aquacult. Int., 2008, 16: 143-152.
    Jensen K.T. Macrozoobenthos on an intertidal mudflat in the Danish Wadden Sea: comparisons of surveys made in the 1930s, 1940s and 1980s. Helander Meeresunter, 1992, 46: 363-376.
    Josefson A.B., Jensen N.J., Aertebjerg G. The benthos community structure anomaly in the late 1970s and early 1980s-a result of a major food pulse? J. Exp. Mar. Biol. Eeol., 1993, 172: 31-45.
    Jackson J.B.C. Community unity? Science, 1994, 264: 1412-1413.
    Kinne, O. Physiological aspects of animal life in estuaries with special reference to salinity. J. Sea Res., 1966, 3: 222-244.
    Karen, L. and C. T. Robert. Aspects of nitrogen metabolism in the terebellid polychaete Pista pacifica Berkeley. Comp. Biochem. Physiol. 1975, 52A: 367-369.
    Kajak Z. Role of invertebrate predator in benthos. In: Murray D.A., eds. Chironomidae. Ecology, Systematic, Cytology and Physiology. Oxford: Pergamon Press, 1980, 339-347.
    Kristensen, E. Comparison of polychaete (Nereis spp.) ventilation in plastic tube and natural sediment. Mar. Ecol. Prog. Ser., 1983, 12: 307-309.
    Kamreworff E., Christensen H. Benthic community respiration in relation to sedimentation of Phytoplankton in the esund. Ophelia, 1986, 26: 269-284.
    Kikuchi E. Contribution of the polychaete, Neanthes japonica (Izuka), to the oxygen uptake and carbon dioxide production of an intertidal of the Nanakita River Estuary, Japan. Journal of Marine Biology and Ecology, 1986(97): 81-93.
    Kikuchi E. Effect of the brackish deposit-feeding polychaete Notomastus sp. (Capitellidae) and Neanthes japonica (Izuka) (Nereidae) on sedimentary O2 consumption and CO2 production rates. Journal of Marine Biology and Ecology, 1987(114): 15-25.
    Kroncke I. Long-term change in North Sea benthos. Senckenbergiana Marit, 1995, 26: 73-80.
    Koskela J., Pirhonen J. and Jobling M. Feed intake, growth rate and body composition of juvenile Baltic salmon exposed to different constant temperatures. Aquacult. Int., 1997, 5: 351-360.
    Katsanevakis S., Stephanopoulou S., Miliou H. Moraitou-Apostolopoulou M. and Verriopoulos G. Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature. Mar. Biol. 2005, 146: 725-732.
    Katersky R. S., and Carter C. G. A preliminary study on growth and protein synthesis of juvenile barramundi, Lates calcarifer at different temperatures. Aquaculture, 2007, 271: 157-164.
    Lowenstein, O. The respiratory rate of Gammarus chevreuxi in relation to differences in salinity. J. Exp. Biol. 1935, 12: 217-221.
    Levine, D. M., and Sulkin, S. D. Partitioning and utilization of energy during the larval development of the xanthid crab, Rithropanopeus harrisii (Gould). J. Exp. Mar. Biol. Ecol., 1979, 40: 247-257.
    Ladle M., Welton J.S., Rass J.A. Larval growth and production of three species of Chironomidae from an experimental recirculating stream. Archiv fur Hydrohiologie, 1984, 102: 201-214.
    Lopez, R.L., Levinton, J.S. Eeology of deposit-feeding animals in marine sediments. Q. Rev. Biol., 1987, 62: 235-260.
    Lalli C.M., Parsons T.R. Biological Oceanography: An Introduction. Elsevier, Amsterdam, 1993: 261
    Lopez J.E., Franceseh O., Dorrio A. and Parra S. Long term variation of the infaunal benthos of La Coruna Bay (NW SPain): results from a 12-year study (1982-1993). Sci. Mar., 1995, 59: 49-61.
    Levinton J.S. Marine biology, function, biodiversity, ecology. Oxford Univ. Press, NewYork, 1995.
    Leung K Y, Chu J, Wu R S. Nitrogen budgets for the areolated grouper Epinephelus arolatus cultured under laboratory conditions and in open-sea cages. Marine Ecology Progress Series, 1999(186): 271-281.
    Li X.Z., Wang JB., Wang H.F. Secondary production of macrobenthos from the east China Sea. Chinese Journal of Applied and Environmental Biology, 2005, 11(4): 459-462.
    Li X.Z., Yu Z.S., Wang J.B. Secondary production of macrobenthos in the southern yellow sea. Chinese Journal of Applied and Environmental Biology, 2005, 11(6): 702-705.
    Mclntyre A.D. The meiofauna of sub-littoral muds. J. Mar. Niol. Ass. UK. 1964. 44: 665-674.
    Macleod M. G. Effects of salinity on food intake, absorption and conversion in the rainbow trout Salmo gairdneri. Mar. Biol., 1977, 43: 93-102.
    Margalef R. The organization of space. Oikos, 1979, 33: 152-159.
    Menzie C.A. Production ecology of Cricotups sylvestris in a shallow estuarine cove. Limnology and Oceanography, 1981, 26: 467-481.
    MeCall P.S., Tevesz M.J.S., (eds.), Animal-Sediment Relations: The Biogenic Alteration of Sediments. Plenum Press, NewYork. 1982: 586.
    Mayzaud P. and Conover R. J. O:N atomic ratio as a tool to describe zooplankton metabolism. Mar. Ecol. Prog. Ser. 1988, 45: 289-302.
    Mathur, S. Temperature and size dependent oxygen consumption in Lymnaea luteola (LAMARK). J. Aqu. Biol. Fish. 1995, 2: 59-64.
    Miao, S., and Tu, S. Modeling thermal effect on growth of Chinese shrimp Penaeus chinensis (Osbeck). Ecol. Model., 1995, 80: 187-196.
    Masilamoni, J. G., Nandakumar, K. Jesudoss, K. S. Azariah, J. Satapathy K. K. and Nair, K. V. Influence of temperature on the physiological responses of the bivalve Brachidontes striatulus and its significance in fouling control. Mar. Env. Res. 2002, 53: 51-63.
    Mcallen, R., Walker, D. and Taylor, A. The environmental effects of salinity and temperature on the oxygen consumption and total body osmolality of the marine flatworm Procerodes littoralis. J.Exp. Mar.e Biol. Ecol. 2002, 268: 103-113.
    Nithart, M., E. Alliot and C. Salen-Picard. Production, respiration and ammonia excretion of twopolychaete species in a north Norfolk saltmarsh. J. Mar. Biol. Asso. UK 1999, 79: 1029-1037.
    O’Riordan C.A., Monismith S.G., Koseff J.R. The bed hydrodynmaics on model bivalve filtration rates. Arch. Hydrobiol. Spec. Issues Adv. Limnol., 1995, 47: 247-254.
    Olive, P. L. W.. Polychaeta as a world resource: a review of patterns of exploitation as sea angling baits and the potential for aquaculture based production. Men. Mus. Natn. Hist. Nat., 1994, 162: 603-610.
    Olive, P. L. W. Polychaete aquaculture and polychaete science: a mutual synergism. Hydrobiologia, 1999, 402: 175-183.
    Prosser, C. L. and Brown, F. A. Comparative Animal Physiology. 1961, Saunders: Philadelphia.
    Pearson T.H., Josefson A.B., Roseberg R. Petersen’s benthic stations revisited.Ⅰ. Is the Kattegat becoming eutrophic? J. ExP. Mar. Biol. Ecol., 1985, 92: 157-206.
    Paine R.T. In: Marine Rocky Shore and Community Ecology: An Experimentalist’s Perspective.Excellence in Ecology, Ecology Institute,Germany, 1994, 4:152.
    Post, J. R. and J. A. Lee. Metabolic ontogeny of teleost fish. Can. J. Fish. Aqu. Sci. 1996, 53: 910-923.
    Pechenik J.A., Berard R. and Kerr L. Effects of reduced salinity on survival, growth, reproductive success, and energetic of eurhaline polychaete Capitella SP. J. Exp. Mar. Biol. Ecol., 2000, 254: 19-35.
    Qiu Jianwen, Wu Baoling. Production dynamics and production of Neanthes japonica (IZUKA) in a shrimp pong. Chinese Journal of Oceanology and Limnology, 1993, 4(5): 360-367.
    Richer W.E. Production and utilization of fish populations. Ecological Monographs, 1946, 16: 373-391.
    Rhoads D.C., Young D.K. The influence of deposit-feeding organisms on sediment stability and community trophic structure. Jounral of Marine Research, 1970, 28: 150-178.
    Rosenberg D.W., Wiens A.P., Saether O.A. Life history of Cricotopus bicinctus in the For Simpson ares, Northwest Territoties. Journal of the Fisheries Research Roard of Canade, 1977, 34: 247-253.
    Rychly J. Nitrogen balance in troutⅡ. Nitrogen excretion and retention after feeding diets with varying protein and carbohydrate levels. Aquaculture, 1980(20): 343-350.
    Regnault, M. Nitrogen excretion in marine and fresh-water Crustacea. Biol. Rev. 1987, 62: 1-24.
    Reise K., Schubert A. Macorbenthos turnover in the subtidal Wadden Sea: the Norderaue revisited after 60years. Helander Meeresunter, 1987, 41: 69-82.
    Ricklefs R.E. Community diversity: Relative roles of local and regional processes. Science, 1987, 235: 167-171.
    Rosenberg R., Gray J.S., Josefson A.B., Pearson T.H., Petersen’s benthic stations revisited.Ⅱ.Is the Oslorfjord and easten Skagerrak enriched? J. Exp. Mar. Biol. Eeol., 1987, 105: 219-251.
    Russell, N. R., Fish, J. D. and Wootton, R. J. Feeding and growth of juvenile sea bass: the effect of ration and temperature on growth rate and efficiency. J. Fish. Biol., 1996, 49: 206-220.
    Roast, S. D., Widdows, J. and Jones, M. B. Respiratory responses of the estuarine mysid Neomysis integer (Peracarida: Mysidacea) in relation to a variable environment. Mar. Biol. 1999, 133: 643-649.
    Ruyet, J. P., Mahe, K. Bayon, N. L. and Delliou, H. L. Effect of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture, 2004, 237: 269-280.
    Sander H.L. Oceanography of Long Island Sound, 1952-4. X. The biology of marine bottom communities. Bulletin of the Bingham Oceanographic Collection, 1956, 15: 345-414.
    Solorzano, L. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 1969, 14: 799-801.
    Siebers, D., Lucu, C. Sperling, K. R. and Eberlein, K. Kinetics of osmoregulation in the crab Carcinus maenas. Mar. Biol. 1972, 17: 291-303.
    Sander, F. A comparative study of respiration in two tropical marine polychaetes. Comp. Biochem. Physiol. 1973, 46A: 311-323.
    Shumway, S. E. The effects of body size, oxygen tension and mode of life on the oxygen uptake rates of polychaetes. Comp. Biochem. Physiol. 1979, 64A: 273-278.
    Shirley T. C., and Stickle W. B. Responses of Leptasterias hexactis (Echinodermata: Asteroidea) to low salinityⅡ. Nitrogen metabolism, Respiration and energy budget. Mar. Biol., 1982, 69: 155-163.
    Shumway S. E. Oxygen consumption and salinity tolerance in four Brazilian crabs. Crustaceana, 1983, 44: 76-82.
    Stickle W.B., Rice S. D. and Moles A. Bioenergetics and survival of the marine snail Thais lima during long-term oil exposure. Mar. Biol., 1984, 80: 281-289.
    Stout R.J., Taft W.H. Growth patterns of a chironomid shredder on fresh and senescent tag alder leaves in two Michigan streams. Journal of Freshwater Ecology, 1985, 3: 147-153.
    Soule M.E. Conservation Biology: The Science of Scarcity and Diversity. Sunderland, MA: Sinaue, 1986.
    Sasaki, G. C., Capuzzo J. M. and Biesiot P. Nutritional and bioenergetic considerations in the development of the American lobster, Homarus americanus. Can. J. Fish. Aqu. Sci. 1986, 43: 2311-2319.
    Storey A.W. Influence of temperature and food quality on the life history of an epiphytic chironomid. Entomologica Scandinavica, 1987, 29: 339-347.
    Shumway, S. E., Christine B. and David D. Oxygen consumption and feeding rates of the sabellid polychaete, Myxicola infundibulum (Renier). Comp. Biochem. Physiol. 1988, 90A: 425-428.
    Schmidt-Nielsen, K. 1990. Animal Physiology. Cambridge University, Cambridge.
    Schaff T., Levin L., Blair N., Master D., Pope R., Boehme S. Spatial heterogeneity of benthos on the Carolina continental slope: lagre(100km)- scale variation. Mar. Eeol. Prog. Ser. 1992, 88: 143-160.
    Sarda R., Foreman K., Valiela l. Long-term changes of macroinfaunal assemblages in experimentally enriched salt marsh tidal creeks. Biol. Bull., 1994, 187: 282-283.
    Sierra, E., Diaz, F. and Espina, S. Energy budget of Ictalurus punctatus exposed to constant and fluctuating temperatures. Riv. Ital. Acquac., 1999, 34: 71-81.
    Sun, L., Chen, H. and Huang, L. Effect of temperature on growth and energy of juvenile cobia (Rachycentron canadum). Aquaculture, 2006, 261: 872-878.
    Sun, L., Chen H. and Huang L. Growth, faecal production, nitrogenous excretion and energy budget of juvenile yellow grouper (Epinephelus awoara) relative to ration level. Aquaculture, 2007, 264: 228-235.
    Thorson G. Bottom communities (sublittoral or shallow shelf). In: Hedgepheth J.W. (eds.), Treaties on Marine Ecology and Palaeecology. Geological Society of America, 1957: 461-534.
    Tsuchiya, M. and Y. Kurihara, 1979. The feeding habits and food sources of the deposit-feedingpolychaete, Neanthes japonica (Izuka). J. Exp. Mar. Biol. Ecol. 36: 79-89.
    Ter Braak C.F. Cannonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 1986, 67: 1167-1179.
    Tokeshi M. Resource utilization, overlap and temporal community dynamics: a null model analysis of fan epiphytic chironomid community. Journalof Animal Ecology, 1986, 55: 491-506.
    Tumbiolo M L. An empirical model for the prediction of secondary production in marine benthic invertebrate population. Journal of the Marine Biologyical association of the United Kingdom, 1994, 54: 197-222.
    Thomas C. W., Crear B. J. and Hart P. R. The effect of temperature on survival, growth, feeding and metabolic activity of the southern rock lobster, Jasus edwardsii. Aquaculture, 2000, 185: 73-84.
    Tian X. L., and Dong S. L. The effects of thermal amplitude on the growth of Chinese shrimp Fenneropenaeus chinensis (Osbeck, 1765). Aquaculture, 2006, 251: 516-524.
    Whittaker R.H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 1960, 30: 279-338.
    Welch H. E. Relationship between assimilation efficiencies and growth efficiencies for aquatic consumers. Ecology, 1968, 49: 755-759.
    Woodin S.A. Adult-larval interactions in dense faunal assemblages: patterns of abundnace. Journal of Marine Research, 1976, 34: 25-41.
    Widdows J. Physiological in dices of stress in Mytilus edulis. J. Mar. Biol. Ass. UK. 1978, 58: 125-142.
    Williams S. F., and Caldwell R. S. Growth, food conversion and survival of 0-group English sole (Parophrys vetulus Girard) at five temperatures and five rations. Aquaculture, 1978, 15: 129-139.
    Wells, R. M. G., Jarvis P. J. and Shumway S. E. Oxygen uptake, the circulatory system, and haemoglobin function in the intertidal polychaete Terebella haplochaeta (Ehelers). J. Exp. Mar. Biol. Ecol. 1980, 46: 255-277.
    Welch H.E. Jorgenson J.K., Curtis M.F. Emergence of Chironomidae in fertilized and natural lakes at Saqvaqjuac, N.W.T. Canadian Journal of Fisheres and Aquatic Science, 1988, 45: 731-739.
    Weisberg S.B., Ranasinghe J.A., Dauer D.M. An estuarine benthic index of biotic integrity for Chesapeake Bay. Estuaries, 1997, 20(1):149-158
    Walker B.H. Biodiversity and ecological redundancy. Conservation Biodiversity, 1992, 6: 18-23.
    Warwick R.M. Biodiversity and production on the sea floor. In:Hempel, G. (eds.),The ocean and the poles,grand challenges for European cooperation. Fischer, stuttigart, 1997: 217-226.
    Wu, B. and S. Sun. Ammonia and urea excretion of the nemertean Procephalothrix simulus Iwata: effect of salinity, temperature, body weight and amputation. J. Exp. Mar. Biol. Ecol. 2006, 337: 13-18.
    Yukihira, H., Lucas, J. S. and Klumpp, D. W. Comparative effects of temperature on suspension feeding and energy budgets of the pearl oysters, Pinctada margaritifera and P. maxima. Mar. Ecol. Prog. Ser. 2000, 195: 179-188.
    Wang F., Dong S. L., Dong S. S., Huang G. Q., Zhu mC. B. and Mu Y. C. The effect of light intensity on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture, 2004, 234: 475-483.
    Xie X. J. and Sun R. Pattern of energy allocation in the southern catfish (Silurus meridioalis Chen) J. Fish. Biol. 1993, 42: 197-207.
    Zenkevich L.A. Biology of the Seas of the U.S.S.R. (Translation by Botcharskaya, S.), George Allen & Unwin Ltd., London, 1963: 955.
    Zhu C. B., Dong S. L., Wang F, and Huang G. Q. Effect of Na/K ratio in seawater on growth and energy budget of juvenile Litopenaeus vannamei. Aquaculture, 2004, 234: 485-496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700