用户名: 密码: 验证码:
内蒙古大青山地区晚古生代—早中生代花岗岩成因及其形成构造环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文作者选择了华北板块北缘中段为研究区域,以大青山地区晚古生代—早中生代花岗岩为研究对象,充分搜集前人相关地质资料的基础上,对其进行了详细地野外地质调查,系统地采集岩石地球化学和同位素测年样品。通过综合研究,将大青山地区晚古生代—早中生代花岗岩划分为早二叠世阿贵沟岩体、中二叠世老银哈达岩体、晚二叠世哈拉合少岩体、晚三叠世陶勒盖岩体、圪臭山岩体、沙德盖岩体,对不同岩体分别进行了锆石SHRIMP测年和稀释法(TIMS)测年,依据岩石地球化学资料对不同岩体的成因及其在华北、西伯利亚两大板块拼贴过程中的构造环境进行了分析,取得了一些新的认识。
     大青山地区晚古生代-早中生代花岗岩基本反映了华北板块北缘晚古生代造山—后造山—陆内造山的全部岩浆事件。早二叠世阿贵沟岩体(284.5±2.9Ma、283.7±3.7Ma、281.1±3.4Ma)属于“I”型花岗岩,为古中亚大洋板块俯冲早期陆缘岩浆弧花岗岩;中二叠世老银哈达岩体(272±4Ma)属于“I”型花岗岩,为俯冲晚期陆缘岩浆弧花岗岩;晚二叠世哈拉合少岩体(260±0.5Ma)属于“A”型花岗岩,为两大板块碰撞拼贴后,造山后期崩塌阶段的花岗岩;晚三叠世陶勒盖岩体(224±3Ma)、圪臭山岩体、沙德盖岩体(211.2±0.7Ma)为“S”型花岗岩,属于劳亚大陆形成后内部逆掩推覆所形成的花岗岩。
The Late Paleozoic - Early Mesozoic is an extremely important time for global geological evolution. A supercontinent, Pangea, is commonly recognized, that it was formed in this period along with the splicing of Laurasia in the north and Gondwana in the south. The occurrence of Mid-Carboniferous collision of Laurania and Gondwana in Hercynian is the mark for this period. The collision led to the formation of the supercontinent in Late Triassic. To Laurasia, the splicing procedure of Siberian Plate North China Plate attracts the extensive attention to geologists for a long time. The most reliable evidence for the splicing of the two plates has been especially provided by the discovery of Radiolaria from deep sea in Guapulu epoch of Permian near Xilamulun River tectonic belt. Nevertheless, the researches, which are conducted by the majority of scholars, on the splicing procedure of the two plates focus mainly on the aspects of stratigraphy, palaeoecology, petrotectonics, and tectonics of Xilamulun River and Erlian-Hegenshan tectonic belts as well as their surrounding regions. There are few studies on the geological events, which took place within the North China Plate or in the splicing belt of the two plates, and specially lack of systematically researching achievements.
     The author chose the mid-northern edge of the North China Plate as the study area and Late Paleozoic-Early Mesozoic granites in Daqingshan area as the research objects. Under the guidance of the tutor, the author conducted a field geological survey and systematically collected lithogeochemical and isotopic dating samples based on the corresponding previous geological data. By a comprehensive study, the Late Paleozoic-Early Mesozoic granites in Daqingshan district were classified into the following six patterns: Early Permian Aguigou magmatic body, Mid-Permian Laoyinhada magmatic body, Late Permian Halaheshao magmatic body, Late Triassic Taolegai magmatic body, Late Triassic Gechoushan magmatic body, and Late Triassic Shadagai magmatic body. The formation ages of the different types of the magmatic bodies were determined by applying azurite SHRIMP or TIMS dating methods. In accordance with the lithogeochemical data, the author analyzed the genesis of the different types of the magmatic bodies and the tectonic setting of the North China Plate and the Siberian plate during their splicing procedure. The characteristics for the different patterns of the magmatic bodies are as follows:
     Aguigou magmatic body consists of gabbro, diorite, quartz diorite, and granodiorite. Its feature is that the body is rich in mafic inclusions. All the rocks of the body contain amphiboles. The formation age, determined by azurite SHRIMP, is 284.5±2.9Ma or 283.7±3.7Ma for the quartz diorite, and 281.1±3.4Ma for granodiorite. Thus, it is Early Permian for the body age. The lithogeochemical feature analysis indicates that the body obviously has a trend of calc-alkalic evolution, which is time-continuous, characterized by that SiO2 is negatively related to FeOT, MgO, CaO, Al2O3, TiO2, and MnO, while positively related to Na2O, and K2O, and that the rock is rich in CaO. The body is characterized by moderate lanthanon concentration, LREE enrichment, HREE depletion, and with unobvious europium anomaly. Of microelements, LILE, such as Rb, Ba, and HSFE, including Nb, Ta, Zr, and Hf, are positively related to SiO2 and K2O in content, while transitional elements including Co, Ni, V, and Sc are negatively related to SiO2 and K2O. It is clearly deficient in Nb, and Ti, while rich in Ba. The genesis of the body belongs to I-type granite according to I-, S-, M-, and A-type granite classification system. Its basic features are similar to that of ACG proposed by Barbarin (1996, 1999). The tectonic setting is CAG, which is proposed by Maniar and Piccoli (1989).
     Laoyinhada magmatic body comprises fine biotite monzonitic granite and porphyritic biotite monzonitic granite. The azurite SHRIMP age is 272±4Ma for the fine biotite monzonitic granite. Thus its formation age is Early Permian. The lithogeochemical feature investigation indicates that the body is rich in silicon, potassium, and sodium while deficient in iron, magnesium, calcium, titanium, and manganese. It has a trend of calc-alkalic evolution, characterized by that SiO2 is negatively related to FeOT, MgO, CaO, Al2O3, TiO2, and MnO, and while positively related to Na2O and K2O. The body is rich in well fractionally distilled LREE while deficit in low differentiated HREE, and with relatively weak negative europium anomaly. Microelement analysis shows that the body is obviously deficit in Nb, Ti, and P while rich in Ba, La, and Zr. The genesis of the body is I-type granite according to I-, S-, M-, and A-type granite classification system. Its basic features are similar to that of KCG proposed by Barbarin (1996, 1999). The tectonic setting is CAG, which is proposed by Maniar and Piccoli (1989).
     Halaheshao magmatic body is a group of medium-coarse biotite-bearing monzonitic granites and large porphyritic-bearing monzonitic granite. The azurite TIMS age is 260±0.5Ma for the biotite-bearing monzonitic granite. The formation age is Late Permian. Its geochemical characteristics show that silicon and alkali are well concentrated, while aluminium, iron, magnesium, and calcium are less concentrated. The contents of SiO2, Al2O3, and K2O+Na2O vary over a range as wide as from 73.61% to 76.81%, 12.63% to 13.7%, and near or more than 8.5% (the lowest content is 8.44%), respectively. These features reflect that the granite belongs to the weak peraluminous calc-alkali series. The body is rich in well fractionally distilled LREE while deficit in not obviously differentiated HREE, and with negative europium anomaly. It is rich in Rb, U, Th, Nb, and Ta while deficit in Sr, Ba, Co, Cr, Ni, V, and Sc. The body belongs to A2 sub-class, proposed by Eby (1992), which is formed at the tectonic environment of post-collision, or is non-orogenic rapakiwi granite, or PA-type granite classified by Hong (1995). The tectonic environment belongs to post-orogenic granites.
     Taolegai magmatic body consists of medium-fine granite, medium-coarse granite, porphyritic-bearing granite, and fine granite. The combination of the host minerals is potash feldspar+plagioclase+quartz+biotite±muscovite±garnet. The zircon Shrimp age is 224±3Ma for medium-coarse granite. Thus the formation age is Late Triassic. Silica and aluminum are well concentrated in the rocks. Index A/CNK is between 1.01 and 2.11. Therefore, the rocks belong to peraluminous rocks, and the most of them are strong peraluminous rocks. However, the geochemical contents are not evenly distributed in the magmatic body. The rocks are commonly low concentrated in iron, magnesium, and calcium, but they can be still classified into the two classes according to the relative contents of FeOT and MgO. One class is well concentrated in iron and magnesium, and the other is low concentrated in iron and magnesium. The class one is marked by higher contents of iron, magnesium, REE, Ba, and Sr, while relatively lower contents of Rb; and the class two is marked by lower contents of Fe, Mg, REE, Ba, and Sr, while relatively higher content of Rb. Its genesis is light color granite co-occurred with muscovite peraluminous granites (MPGs). The tectonic environment belongs to post-orogenic granites (POG).
     Gechoushan magmatic body is medium-fine monzonitic granite, a kind of typical muscovite granites. Its formation era is Late Triassic. Main rock-forming oxides are characterized by well concentrated silica, aluminum, and alkali while low concentrated Fe, Mg, Ca, and Ti. REE features show that both LREE and HREE are badly differentiated. LREE do not fractional distillate at all while HREE fractional distillate to some extent. There is a very clear negative Eu anomaly.δEu is extremely low. The value is from 0.006 to 0.03. The trace elements are characterized by high content of Nb and Rb but low content of Ba and Sr. Its genesis belongs to S-type granite according to the I-, S-, M-, and A-type granite classification system. According to Barbarin’s classification strategy (1996, 1999), it is a muscovite-bearing peraluminous granite (MPG). The tectonic environment belongs to post-orogenic granite, that is, belongs to Sylvester’s (1998) post-collision strong peraluminous granite.
     Shadegai magmatic body is mainly composed of biotite granites. The zircon TIMS age is 211.2±0.7Ma for medium-coarse biotite granite. Therefore, its formation age is Late Triassic. Being rich in silicon, aluminium, and alkali while deficit in iron and magnesium is the highlighted lithogeochemical feature of the body. The contents of SiO2, Al2O3, and K2O+Na2O range from 68.8% to 73.45%, 13.52% to 14.96%, and 7.95% to 9.88% with K2O>Na2O, respectively. It belongs to potassium-bearing calc-alkali rock series. It is rich in well fractionally distilled LREE, deficit in indistinctively differentiated HREE, and with negative europium anomaly. Trace elements Nb, Sr, P, and Ti are badly concentrated but Rb, Th, Hf, etc. are well concentrated in the rocks. The tectonic setting belongs to post-orogenic granites.
     From the above, a conclusion can be drawn that the Late Palaeozoic-Early Mesozoic granites in the study area basically reveal all the magmatic events occurred during the whole procedure from Late Palaeozoic orogeny, to post-orogeny, and to intracontinental orogeny in the north edge of the north China plate. Early Permian Aguigou magmatic body consists of magmatic arc granite, formed in the continental edge in the early period of the middle Asia ocean plate subduction. Mid-Permian Laoyinhada magmatic body belongs to magmatic arc granite, formed in the continental edge in the late period of the plate subduction. Late Permian Halaheshao magmatic body is composed of granite formed in the colluvial period of a post-orogeny after two tectonic plates have collided and spliced. Late Triassic Taolegai, Gechoushan, and Shadegai magmatic bodies belong to granites formed by intracontinental nappes after Lausasia land is generated.
引文
[1] Barbarin B.A review of the relationships between granitoid types,their origrins and their geodynamic envionmerts[J].Lithos,1999,46:605-626
    [2] Barbarin B.Genesis of the two main types of peraluminous granitoid[J].Geology,1996, 24:295-298
    [3] Bechelor R A,Bowden P.Petrogenetic interpretation of granitoid roch seres usingmultication parameters [J].Chem.Geol.,1985,48:43-55
    [4] Blichert–Toft J, Albarede F.The Lu–Hf geochemistry of chondrites and the evolution of the mantle–crust system. [J]. Earth Planetary Science Letters, 1997, 148:243-258
    [5] Boynton W V. Geochemistry of the rare earth elements: meteorite studies[M]. Amsterdam: Elservier, 1984:63-114
    [6] Briqueu L, Bougault H, Joron J L. Quantification of Nb,Ta,Ti and V anomalies in magmas associated with subduction zones: petrogenetic implications[J]. Earth Planet. Sci. Lett., 1984, 68: 297-308
    [7] Brown GC and Fyfe W S. The production of granitic melts during ultrametamorphism[J]. Contribution to M ineralogy and Petrology, 1970, 28:310-318
    [8] Castro A. H-type ( Hybrid) granitoids: a proposed revision of the granite type classification and nomenclature[J]. Eart h Science Reviews, 1991, 31:237-253
    [9] Chappell,B.J.and White,A.J.R.,"Two Contrasting Granite Types"[J].Pac.Geol.,1974,8:173-174
    [10] Chen F, Hegner E, Todt W. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany–evidence for a Cambrian magmatic arc[J].International Journal Earth Science, 2000, 88:791–802
    [11] Clemens J D. S-type granitic magmas-petrogenetic issues, models and evidence[J]. Earth-Science Reviews. 2003, 61 (1/2):1-18
    [12] Cumming G L, Richarda J R. Ore lead isotope ratios in a continuously changing earth[J]. Earth Planetary Science Letters, 1975, 28:155-171
    [13] DePaolo DJ, Perry FV and Baldridge W S. Crustal versus mantle sources of granitic magmas: a two-parameter model based on Nd isotopic studies[M].Transaction of the Royal Society of Edinburgh:Earth Sciences, 1992, 83:439- 446
    [14] Eby G N.,Chemical subdivision of the A-type granitoids:petrogenetic and tectonic implications[J]. Geology,1992,20:641-644
    [15] Harris N.B.W., Pearce J.A.and Tindle A.G.Geochemical characteristics of collision-zone magmatism.In:Coward M. P. and Reis A. C. (eds.), collision tectonics[J].Spec.Publ.Grol. Soc. Lond., 1986,19:67-81
    [16] Heal YB , Collins WJ , Richards S W. A hybrid origin for Lachlan S-type granites:the Murrumbidgee Batholith example[J]. Lithos, 2004 , 78 (1/2):197-216
    [17] Hess PC. Origin of Igneous Rocks[M]. Harvard University Press, Cambridge, Mass. 1989:1-336
    [18] Liu et al.,2006: Liu S W, Tian W, Liu C H, et al. Geochemistry, Nd isotopic characteristics of metamorphic complexes in North Hebei:Implications for crustal accretion[J].Acta Geologica Sinica, 2006, 80(6):807-818
    [19] Liegeois J P. Some words on the post-collisional magmatism[J].Lithos. 1998, 45:15-17
    [20] Liegeois J P. et al . Contrasting origins of post-collision high-K calc-alkaline-Shoshonitic and alkaline-peralkaline-granitoids. The use of sliding normalization[J]. Lithos. 1998, 45:1-28
    [21] Loiselle M C,Wones D R .Characteristics and origin of anorogenic granites[J].Abstr and Geol Soc Amermeet, 1979, 11:468
    [22] Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J]. Geol. Soc. Am. Bull. 1989,101:635-643
    [23] Mcdonough W F, Sun S S, Ringwood A E, et al. Potassium, rubidium , and cesium in the earth and moon and the evolution of the mantle of the earth[J].Geochimica et Cosmochimica Acta , 1992 , 56 (3):1001-1012
    [24] Nowell G M, Kempton P D, Noble S R,et al. High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry: insights into the depleted mantle[J].Chemical Geology, 1998, 149:211-233
    [25] Pitcher W S. Granite type and tectonic ervironment. In Hsu K(ed) Mountain Building Processes[M].Academic press, London,1983
    [26] Pitcher W S.The Nature and Origin of Granite[M].Chapman & Hall, London.1997:1- 386
    [27] Read H H. Granites and granites[J].Gel. Soc. Am. Mem., 1948, 28:1-19
    [28] Scherer E, Munker C, Mezger K. Calibration of the lutetium–hafnium clock[J]. Science, 2001, 293:683–687
    [29] Sylvester P J. psot-collision strongly peraluminous granites[J]. Lithos. 1998, 45:29-44
    [30] Villaros A , Stevens G, Buick I S. Origins of the S-type Cape Granites (South Africa) [J]. Geochimica et Cosmochimica Acta , 2006 , 70 (18):673
    [31] Williams I S. U–Th–Pb geochronology by ion microprobe. In: McKibben M A, Shanks W C, Ridley W I, eds. Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds. McKibben M A, Shanks W C, Ridley W I) [J].Review Econonic Geology, 1998, 7: 1–35
    [32] Witney JA. The origin of granite: the role and source of water in the evolution of granitic magmas[J].Bulletin of Geological Society of America, 1988, 100:1886-1897
    [33] Woodhead J, Hergt J, Shelley M, et al. Zircon Hf–isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation[J].Chemical Geology, 2004, 209:121–135
    [34] Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology[J].Chemical Geology, 2006a, 234:105-126
    [35] Zhang, HF; Sun, M; Zhou, XH; Ying, JF., Geochernical constraints on the origin of Mesozoicalkaline intrusive complexes from the North China Craton and tectonic implications[J].Lithos, 2005, 81(1-4):297-317
    [36] Zhao G C, Wilde S A, Cawood P A, et al. Thermal evolution of Archean basement rocks from the eastern part of the North China craton and its bearing on tectonic setting[J].International Geology Review, 1998, 40:706-721
    [37] Zhao G C, Wilde S A, Cawood P A, et al. Thermal evolution of two types of mafic granulites from the North China craton: implications for both mantle plume and collisional tectonics[J].Geol. Mag., 1999, 136:223-240
    [38] Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the central zone of the North China craton: implications for Paleoproterozoic tectonic evolution[J].Precambrian Res., 2000, 103:55-88
    [39] Zhao G C. Paleoproterozoic assembly of the North China Craton[J].Geo. Mag., 2001, 138:87-91
    [40] Zheng Y F, Wu Y B, Zhao Z F, et al. Metamorphic effect on zircon Lu–Hf and U–Pb isotope systems in ultrahigh–pressure eclogite–facies metagranite and metabasite[J].Earth Planetary Science Letters, 2005, 240:378-400
    [41] Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh–pressure eclogite and gneiss in the Dabie orogen[J].Chemical Geology, 2006, 231:135-158
    [42]蔡剑辉,阎国翰,牟保磊,等.辽宁盖县梁屯-矿洞沟碱性正长岩杂岩体的U-Pb和Sm-Nd年龄及其地质意义[J].岩石学报,2002, 3: 349-354
    [43]蔡剑辉,阎国翰,肖成东,等.太行山-大兴安岭构造岩浆带中生代侵入岩Nd、Sr、Pb同位素特征及物质来源探讨[J].岩石学报.2004,20(5):1225-1242
    [44]陈安国,马配学,李洪阳,等.河北省赤城县小张家口超基性岩体主要特征和时代[J].岩石学报,1996,12:156-162
    [45]崔盛芹等,燕山地区中新生代陆内造山作用[M].地质出版社,2002:1-306
    [46]段吉业,张梅生.东北北部生物古地理格局[A].:见:中国满洲里—绥芬河地学断面内岩石圈结构及其演化的地质研究[M].北京:地震出版社.1994:84-97
    [47]郭胜哲,苏养正,池永一,等.吉林、黑龙江东部地槽区古生代生物地层及岩相地理[A].见:南润善郭胜哲等内蒙古-东北地槽区古生代生物地层古地理[M].北京:地质出版社,1992: 71-143
    [48]韩宝福,加加美宽雄,李惠民.河北平泉光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义[J].岩石学报,2004,6:1375-1388.
    [49]韩宝福,王式洗,江博明.新疆乌伦古河碱性花岗岩Nd同位素特征及其对显生宙地壳生长的意义[J].科学通报, 1997,42 (17):1829-1832
    [50]何国琦,邵济安.内蒙古南部(昭盟)西拉木伦河一带早古生代蛇绿岩建造的确认及其大地构造意义[A],中国北方板块构造论文集[C].1983,1:243-250
    [51]洪大卫.花岗岩研究的最新趋势及发展趋势[J].地学前缘,1994,1 (1-2):79- 86
    [52]洪大卫,王式洸,韩宝福.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学(B辑),1995,25(4):418-426
    [53]洪大卫,王式洸,谢锡林,等.兴蒙造山带正ε(Nd,t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(4),441-456
    [54]洪大卫,王涛,童英,等.华北地台和秦岭—大别—苏鲁造山带的中生代花岗岩于深部地球动力学过程[J].地学前缘,2003,10(3):232-256
    [55]胡健民,赵越,刘晓文,等.辽西凌源地区水泉沟组辉石安山岩锆石SHRIMPU-Pb定年及其意义[J].地质通报,2005,2:104-109
    [56]胡健民,刘晓文,赵越,等.燕山板内造山带早期构造变形演化——以辽西凌源太阳沟地区为例[J].地学前缘,2004,3:254-271
    [57]江思宏,聂风军,冀西北水泉沟杂岩体及与其有关金矿床的40Ar-39Ar同位素年代学研究[J].地质评论, 2000,46(6):621-627
    [58]姜耀辉,蒋少涌,赵葵东,等.辽东半岛煌斑岩SHRIMP锆石U-Pb年龄及其对中国东部岩石圈减薄开始时间的制约[J].科学通报,2005,19:2161-2168
    [59]金巍,李树勋.内蒙古大青山地区早元古宙造山带的岩石组成及特征,钱祥林、王仁民主编:华北北部麻粒岩带地质演化[M].地震出版社,1994
    [60]金巍,李树勋,刘喜山.内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学[J].岩石学报,1992,3: 281-289
    [61]李春昱,王荃.我国北部边陲及邻区的古板块构造与欧亚大陆的形成[A].见:中国北方板块构造文集[C].第一集,1983:3-16
    [62]李树勋,孙德育,于海峰,等著.内蒙古中西部早前寒武纪变质岩系中韧性剪切带分布规律及成矿预测[M].吉林科学技术出版社,1995:1-102
    [63]李树勋,吴昌华,高吉凤,等.中国变质作用及其与地壳演化的关系(董申保等著)[M].地质出版社,1986:195-196
    [64]李星学,姚奇东.亚石炭—二叠纪植物古地理分区[A],见:中国古生物地理区系[M].北京:科学出版社.1983:74-82
    [65]刘红涛,翟明国,刘建明,等.华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J].岩石学报,2002,4:433-448
    [66]刘俊来,关会梅,纪沫,等.华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束[J].自然科学进展,2006(1):21-26
    [67]刘正宏,徐仲元,杨振升.论内蒙古大青山地区逆冲推覆构造[J].中国区域地质,1999,18(4):366-372
    [68]柳小明,高山,第五春容,等.单颗粒锆石的20μm小斑束原位微区LA–ICP–MS U–Pb年龄和微量元素的同时测定[J].科学通报,2007,52(2):228–235
    [69]罗照华,魏阳,辛后田,等.太行山中生代板内造山作用与华北大陆岩石圈巨大减薄[J].地学前缘,2006,(6):52-63
    [70]内蒙古地调院,白云鄂博幅1:25万区调报告(终审稿)[R],2003
    [71]内蒙古地矿局第一区调队,包头等六幅1:5万区域地质调查报告[R],1993
    [72]内蒙古区域地质测量队,固阳幅1:20万区域地质调查报告[R],1972
    [73]内蒙古自治区地质矿产局.内蒙古自治区区域地质[M].北京:地质出版社,1991:427-439
    [74]倪志耀等,翟明国,王仁民,等.华北古陆块北缘中段发现晚古生分退变榴辉岩[J].科学通报,2004a, 49(6):585-591
    [75]倪志耀等,翟明国,王仁民,等.冀北退变榴辉岩的Pb同位素特征[J].成都理工大学学报(自然科学版),2004b,31(2):125-128
    [76]牟保磊,邵济安,储著银,等.河北矾山钾质碱性超镁铁岩-正长岩杂岩体Sm-Nd年龄和Sr、Nd同位素特征[J].岩石学报,2001,(3):358-365
    [77]牟保磊,邵济安,边振辉.矾山碱性杂岩体中发现碳酸岩[J].北京大学学报(自然科学版),1999,(2):243-247
    [78]彭向东,张梅生,米家榕.中国东北地区二叠纪生物混生机制讨论[J].辽宁地质,1998(,1):40-43
    [79]乔秀夫,张安棣.华北块体、胶辽朝块体与郯庐断裂[J].中国地质, 2002,29(4):337-345
    [80]任康绪,阎国翰,蔡剑辉,等.华北克拉通北部地区古—中元古代富碱侵入岩年代学及意义[J].岩石学报,2006,2:377-386
    [81]任康绪,阎国翰,牟保磊,等.阿拉善断块富碱侵入岩Rb-Sr年龄及其地质意义[J].北京大学学报(自然科学版),2005,41(2):204-211
    [82]任康绪,阎国翰,牟保磊,等.辽西凌源河坎子碱性杂岩体地球化学特征及地质意义[J].岩石矿物学杂志,2004,3:193-202
    [83]邵济安,路凤香,张履桥,等.辽西义县组玄武岩捕虏晶的发现及其意义[J].岩石学报,2005,(6):1547-1558
    [84]邵济安,何国琦,张履桥.燕山陆内造山作用的深部制约因素[J].地学前缘,2005,(3):137-148
    [85]邵济安,李之彤,张履桥.辽西及邻区中-新生代火山岩的时空对称分布及其启示[J].地质科学,2004,(1):98-106
    [86]邵济安,张履桥,牟保磊.构造体制转折是岩石圈尺度的行为[J].地质通报,2004,(2):973-979
    [87]邵济安,张履桥,贾文,等.内蒙古喀喇沁变质核杂岩及其隆升机制探讨[J].岩石学报,2001,(2):283-290
    [88]邵济安,牟保磊,何国琦,等.华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J].中国科学(D辑,1997,27(5):390-394
    [89]邵济安等.中朝板块北缘中段地壳演化[M].北京:北京大学出版社,1991:1-130.
    [90]邵济安.内蒙古中部早古生代蛇绿岩及其在恢复地壳演化中的意义[A].见:中国北方板块构造论文集[C].北京:地质出版社,1986: 158-172
    [91]苏养正,唐克东,池永一,等.内蒙古白云鄂博东北上志留统西别河组新资料[A].见:中国北方板块构造文集(1)[M].1983:221-229
    [92]唐克东等.中朝板块北侧褶皱带构造演化及成矿规律[M].北京:北京大学出版社,1992:1-269
    [93]唐克东,颜竹筠,张允平.内蒙古缝合带的地质特征与构造演化[J].沈阳地质矿产研究所集刊,1997,5-6:19-166
    [94]唐克东,张允平.内蒙古缝合带的构造演化[A],古中亚复合巨型缝合带南缘构造演化[M].北京:科学技术出版社,1991:30-54
    [95]陶继雄,胡凤翔,陈志勇.华北陆块北缘印支期S型花岗岩带特征及其构造环境[J].岩石矿物学杂志,2003,22(2):112-118
    [96]天津地质矿产研究所,下湿壕幅、石兰哈达幅1:5万区域地质调查报告[R],2001
    [97]田伟,陈斌,刘超群,等.冀北小张家口超基性岩体的锆石U_Pb年龄和Hf同位素组成[J].岩石学报,2007,23(3):583-590
    [98]王鸿祯,刘本培,李思田.中国及邻区古生代生物古地理及全球古大陆再造[A].见:王鸿祯,杨森楠,刘本培等,中国及邻区构造古地理与生物古地理[M].北京:中国地质大学出版社,1990:35-88
    [99]王荃,刘雪亚,李锦秩.中国华夏与安加拉古陆间的板块构造[M].北京:北京大学出版社,1991
    [100]王荃,刘雪亚,李锦秩.中国内蒙古中部古板块构造[J].中国地质科学院院报,1991,第22号: 1-15
    [101]王友勤,苏养正,刘尔义.东北地区区域地层[M].北京:中国地质大学出版社,1997:366
    [102]王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报, 1997(1):58-69
    [103]吴福元,江博明(Bor-ming Jahn),林强.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J].科学通报,1997,42(20):2188-2192
    [104]吴珍汉.华北地块北缘及邻区显生宙构造应力场[J].长春地质学院学报, 1996, 26(4):398-405
    [105]席先武,席先武,杨立强,等.构造体制转换的温度场效应及其耦合成矿动力学数值模拟[J].地学前缘,2003,10(1):47-55
    [106]谢烈文,张艳斌,张辉煌,等.锆石/斜锆石U–Pb和Lu–Hf同位素以及微量元素成分的同时原位测定[J].科学通报,2008,53(2):220–228
    [107]许保良,王式,韩宝福,等.何中甫.富集性和亏损性A型花岗岩──以华北燕山和新疆乌伦古河地区岩石为例[J].北京大学学报(自然科学版),1998,34(2-3):352-362
    [108]许保良,阎国翰,徐振邦,等.冀北燕山期三个系列花岗质岩石的地球化学特征及其成因学意义[J].岩石学报,1999,(2):208-223
    [109]许立权,贾和义,张玉清,等.白云鄂博地区碱性正长岩特征及其意义[J].地质调查与研究.2004,27(1):41-47
    [110]徐夕生,周新民,王德滋.壳幔作用与花岗岩成因——以中国东南沿海为例[J].高校地质学报,1999,5 (3):241- 250
    [111]徐仲元,刘正宏,杨振升.内蒙古大青山地区孔兹岩系的地层结构[J].吉林大学学报(地球科学版),2002,32(4):313-318
    [112]阎国翰,牟保磊,许保良,等.中国北方显生宙富碱侵入岩年代学和Nd、Sr、Pb同位素特征及其意义[J].地质论评,2002,48(增刊):69-76
    [113]阎国翰,许保良,牟保磊,等.中国北方中生代富碱侵入岩钕、锶、铅同位素特征及其意义[J].矿物岩石地球化学通报,2001,(4):234-237
    [114]阎国翰,谭林坤,许保良,等.阴山地区印支期碱性侵入岩岩石地球化学特征[J].岩石矿物学杂志,2001,(3):281-292
    [115]阎国翰,牟保磊,许保良,等.燕辽-阴山三叠纪碱性侵入岩年代学和Sr,Nd,Pb同位素特征及意义[J].中国科学D辑,2000,(4):383-387
    [116]杨富全,吴海,刘晓文,等.冀北甲山正长岩的矿物学、地球化学及Sr-Nd同位素特征[J].现代地质,2005,(4):522-530
    [117]杨富全,吴海,刘晓文,等.冀北承德甲山正长岩——燕山陆内造山带岩石圈减薄的早期记录[J].地质论评,2003,(5):474-485
    [118]杨昆光,杨巍然.碰撞后的造山过程及造山带巨量花岗岩的成因[J].地质科技情报, 1997,16 (4): 16- 22
    [119]翟明国,樊祺诚,张宏福,等.华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用[J].岩石学报,2005,(6):1509-1526
    [120]翟明国,孟庆任,刘建明,等.华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨[J].地学前缘,2004,(3):285-297
    [121]翟明国,朱日祥,刘建明,等.华北东部中生代构造体制转折的关键时限[J].中国科学D辑,2003,(10):913-920
    [122]翟明国,樊祺诚.华北克拉通中生代下地壳置换:非造山过程的壳幔交换[J].岩石学报,2002,(1):1-8
    [123]张拴宏,赵越,宋彪,等.冀北隆化早前寒武纪高级变质区内的晚古生代片麻状花岗闪长岩——锆石SHRIMP U-Pb年龄及其构造意义[J].岩石学报, 2004,20(3):621-626
    [124]张允平,唐克东,苏养正.由陆壳增生旋回的观点试论内蒙古中部的加里东运动[A],中国北方板块构造论文集[C].地质出版社,1986,(1):102-114
    [125]赵国春,孙敏.华北克拉通基底构造单元特征及早元古代拼合[J].中国科学(D辑),2002,32(7):538-549.
    [126]赵磊,吴泰然,罗红玲,等.内蒙古乌拉特中旗温更辉长岩类的岩石学、地球化学特征及其构造意义[J].北京大学学报(自然科学版),2008,44(2):201-211
    [127]赵越,徐刚,张拴宏,等.燕山运动与东亚构造体制的转变[J].地学前缘,2004,(3):319-328
    [128]赵越,张拴宏,徐刚,等.燕山板内变形带侏罗纪主要构造事件[J].地质通报,2004,2: 854-863
    [129]赵越,杨振宇,马醒华.东亚大地构造发展的重要转折[J].地质科学,1994,2:105-119
    [130]郑亚东,G.A.Davis,王琮,等.燕山带中生代主要构造事件与板块构造背景问题[J].地质学报,2000,74(4):289-302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700