用户名: 密码: 验证码:
大兴安岭中南部二叠纪砂岩物源分析对晚古生代区域构造演化的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究区位于大兴安岭中南部,内蒙古东部草原区,为中亚造山带的东南缘,华北板块北缘同“佳-蒙”地块南缘碰撞拼贴的关键部位,记录着中亚造山带东段(兴蒙造山带)最终消亡的演化过程。前人研究在该区划分出贺根山、交其尔-锡林浩特、索伦山-林西和西拉木伦河等多条缝合带,并趋向于在晚二叠世最终闭合,但各缝合带之间的关系、板块拼贴的过程仍然存在很大争议。本文通过砂岩的骨架成分统计分析、地球化学特征、碎屑锆石LA-ICP-MS U-Pb年代学等物源分析手段,选取大兴安岭中、南段二叠系哲斯组及林西组沉积砂岩作为研究对象,结合现有最新研究成果,探讨该区域古生代的构造演化过程及二叠纪沉积盆地的盆地性质。研究结果表明,该区域内古生代具有6个构造演化阶段:晚寒武-早奥陶世,洋-陆俯冲的开始拉开古亚洲洋南支消亡的序幕;至早志留世末期,洋壳的双向俯冲并在大洋两侧形成安第斯型岩浆弧;晚石炭世末期,“佳-蒙”地块南缘“弧-弧后盆地”的构造环境的形成;早二叠世,贺根山洋的夭折导致弧-陆碰撞过程中贺根山蛇绿岩的就位,在岛弧一侧造成了大石寨组火山岩的喷发;中、晚二叠世,华北板块与“佳-蒙”地块的碰撞拼贴过程的缓慢完结,致使哲斯组至林西组由海相沉积逐渐转入陆相沉积,来自“佳-蒙”地块南缘的苏尼特左旗-锡林浩特-西乌旗南岩浆弧,大石寨组火山岩以及早古生代形成的苏尼特岩浆弧为两组沉积提供物源;直至晚二叠世末期华北板块北缘与“佳-蒙”地块南缘最终闭合,此刻来自华北板块古老基底的物源在林西组沉积中显著增加。
The northeastern China and its adjacent area tectonically belongs to the eastern segment of Central Asian Orogenic Belt (CAOB), located among the Siberia Craton, the North China Craton and the Pacific plate, and it is one of the important members composing the“Trench-Arc-Basin”system along the eastern margin of Asian Continent. NE China has experienced multi-stage tectonic evolution and reconstructions, e.g. this region was not only affected by the subducion and collision between the North China and the Siberia Cratons accompanied by the closing of Paleo-Asian Ocean during the Paleozoic, but also affected by the subsequent overprint and reconstruction related to the Pacific subduction along the eastern margin of Asian Continent. Both the Paleozoic and Mesozoic tectonics well recorded here, the NE China therefore becomes a key area as contribution to better understanding the formation and tectonic evolution of the eastern Asian Continent.
     The southern margin of“Jiamusi-Mongolia”block, which is developed between the North China and the Siberia Cratons, is traditionally considered to be preserved the evidence responded to the subduction and collision of that two Cratons. However, when and where the final suturing took place is still contentious so far. The current study is mainly focusing on the provenance characteristics of the Permian sandstones exposed in the central and southern Grate Xing’an Ranges, north China, further, the systemically sandstone detrital clasts component analysis, geochemistry, and LA-ICP-MS U-Pb detrital zircon ages have been carried out on the studied Permian sandstones, in order to better constraining the suturing processes between the North China and the Siberia Cratons. The result presented in this paper suggests a possible provenance of the Permian sandstone and its tectonic setting, and also contribute toward the consideration of the regional Paleozoic tectonics of NE China (“Jiamusi-Mongolia”block).
     The study areas (including Hexigten Banner (KQ), Lixin (LX) and Suolun (SL) areas distributing toward to the north) geographically exposed in central and southern Grate Xing’an Ranges, eastern Inner Mongolia. This region is bounded by the Ondon Sum-Xar moron River suture belt to the south and the Eren Hot-Hegenshan suture belt to the northwest, in where the Permian strata are widespread. The sediments of the Mid-Permian Zhesi Formation (P2z) and Late-Permian Linxi Formation (P3l) are mostly classified as feldsparthic litharenite, which consists mainly of quartz (44~52%), lithic clasts (27~32%), feldspar (15~24%) and micas (<5%), with a small amount of accessory minerals (<5%), e.g. magnetite, limonite, pyroxene, titanite and zircon. The lithic clasts are predominately characterized by the volcanic lithic grains, with Lv/L ratio ranging from 0.65 to 0.97. Additionally, the monocrystalline quartz grains are extremely high in the framework of total quartz grains, with Qm/Qt = 0.70~0.95. The detrital compositions indicate that the sandstones are immature, probably due to the effects of rapid erosion, transport, and diagenetic process and/or nearly supplying derived from the source. The abundance of volcanic lithic and monocrystalline quartz grains significantly reveal the magmatic provenance. In addition, the detrital modal analysis applying the Dickinson’s triangle diagrams also indicate the sediments of Zhesi Formation are mainly derived from recycled orogenic source, while the sediments of Linxi Formation are mostly derived from dissected arc source.
     The major elements and their radios (especially, Fe__2O_3/K_2O and Na_2O/K_2O) are closely associated with graywackic lithologies for the sandstone from both the Zhesi and Linxi Formation. Relatively higher Fe__2O_3/K_2O in the sediment of Linxi Formation may be inferred to the occurrence of more easily weathered iron-rich minerals (e.g. biotite, chlorite), and it further reveals that more rapid diagenetic process is responsible for the sandstones in Linxi Formation respect to those in the Zhesi Formation. Trace elements in the studied sandstones from the two formations mentioned above are upper crust-normalized patterns, and show the similar trends in the spider diagram, suggesting the similar provenances related to the rocks of upper crust. Furthermore, the obvious negative anomalies of Ta and Nb significantly indicate an affinity of subduction-related magmatic provenance. The rare earth elements and their chondrite-normalized patterns in the investigated sandstones mostly show similar characteristics, with steep LREE and flat HREE (ΣLREE/ΣHREE = 5.95~8.44) and week negative anomalies of Eu (δEu = 0.67~0.97), revealing that the similar provenances derived from the felsic upper continent crustal rocks are reasonable to supplying for the Permian sediments of both the Zhesi and Linxi formations.
     The indexes of paleo-weathering and chemical alteration (CIA and CIW values) together with the A-CN-K projections have been widely investigated in the sandstone from two formations, and show strong source weathering and potassium- metasomatism in the Mid-Permain Zhesi Formation aspect to the Late-Permian Lixin Formation. The geochemical discrimination diagrams (e.g. Fe__2O_3+MgO-TiO_2, Fe__2O_3+ MgO-Al__2O_3/SiO_2, K_2O/Na_2O-SiO_2, La-Th-Sc, and so on) and F1-F2 discriminant function diagram exhibit the similar tectonic setting corresponded for the provenance of the Permian Zhesi and Linxi formations, which are mainly characterized by the Active Continental Margin (ACM) and Continental Island Arc (CIArc). Worthy of note is that there are small amounts of provenances from Passive Margin (PM) supplied to the Zhesi sediments and subsequently transferred to the ACM; whereas the tectonic setting of provenance of Lixin sediments tends to transfer progressively from ACM to CIArc.
     The detrital zircons mostly occur in the form of long columnar euhedral grains with the magmatogenic oscillatory zonings in cathodoluminescence (CL) images, whereas a few subrounded zircon grains present thin metamorphic outmost rims, as well as relicts of core also preserved in some grains suggesting the nature of captured zircons. More significantly, the detrital zircon has the Th/U radio ranging from 0.04 to 1.99 (mainly Th/U > 0.4), indicating their magmatic origin. The LA-ICP-MS U-Pb dating of detrital zircons from Permian sandstones show several distinct dominant populations of c. 280Ma, c. 310Ma, c. 450Ma and c. 500Ma, respectively, suggesting the multi-stage magmatic events taking place in this region. The ages of c. 280Ma are widespread in central and southern Grate Xing’an Ranges area, and is previously considered as the formation time of Dashizhai Formation; The ages of c. 310Ma, are generally obtained from the Sunidzuoqi and sorthern Xi Ujimqin as a subduction-related magmatic belt (Baolidao magmatic arc); The ages of c. 450Ma~500Ma are mainly represented by the Paleozoic magmatism in the Sunid arc, as well as the post collision-related granites in the Ergun block. Some old ages, e.g. 1800Ma and 2500Ma, have obtained from the captured zircons, revealing the nature of basement of the North China Craton. Obviously increasing of captured zircons with old ages in the Linxi Formation suggests the episodes of collision between the North China Craton and“Jiamusi-Mongolia”block had possibly ended in the late-Permian, and therefore the provenance derived from the North China Craton became more predominated in the sediments.
     Tectonic setting of provenance of the Mid- and Late-Permian sediments and their detrital zircon U-Pb ages in conjunction with the previously reported geotectonic events in this area infer that there are 6-stage evolution contributing to the Paleozoic regional tectonics following as:
     (1) In Late-Cambrian to Early-Ordovician time, the closing of south branch of Paleo-Asian Ocean between the North China Craton and“Jiamusi-Mongolia”block began, probably causing the north-dipping subduction of oceanic lithosphere beneath the southern margin of“Jiamusi-Mongolia”block, whereas the northern margin of the North China Craton was possibly a passive margin at that time; (2) In Early-Silurian time, the northern margin of the North China Craton evolved into an active margin with the formation of the Bainaimiao arc (c. 430Ma), further the Sunid magmatic arc (c. 450Ma~490Ma) was produced on the southern margin of the“Jiamusi-Mongolia”block; (3) In Late-Carboniferous time, on the northern margin of the North China Craton is still characterized by the Andean-style subduction accompanied by the subduction-related intrusions of 274Ma~324Ma in age, whereas an“arc-back-arc basin”system (possibly resembling the present-day western Pacific margin) was initially active on the southern margin of“Jiamusi-Mongolia”block, and produced Baolidao magmatic arc (co-called Sunidzuoqi-Xilinhot-southern Xi Ujimqin magmatic arc, at c. 310Ma) superimposed on the Sunid arc and subsequently opening of the“Hegengshan”Ocean; (4) In Early-Permian time, the“Hegengshan”Ocean may began collapsing and together with formation of Hegenshan ophiolites in this period, probably due to the continuous northward subduction of Paleo-Asian Oceanic plate. In addition, the widely distributed Early Permian arc-related volcanic rocks (Dashizhai Formation: c. 280Ma) have erupted on the island-arc side. Significantly, the paleo-oceanic crust subducted beneath to the“Jiamusi-Mongolia”block has broken off, causing the uplift of its distal part by the buoyancy derived from the unbalanced gravity. The subduction northward beneath to the“Jiamusi-Mongolia”block thus suddenly becomes slow. In contrast, the subduction beneath to the North China Craton is still an Andean-type; (5) In Mid-Permian time, the Zhesi Formation has been deposited under the conditions associated with the fore-arc basin along the southern margin of“Jiamusi-Mongolia”block, and it is characterized by the relatively constant continental sedimentary environments likely the background of Passive Margin. The provenance supplying mainly from the Baolidao arc, Dashizhai arc-related volcanic rocks and Early-Paleozoic Sunid arc, with minor amounts of provenance from the North China Craton; (6) In the Late-Permian time, the depositing of Linxi Formation has progressively transferred the sedimentary environments from the marine to the continental during the subduction and subsequent collision between the North China Craton and“Jiamusi-Mongolia”block. In this period, the provenance derived from the Baolidao arc, Dashizhai volcanic rocks and Early-Paleozoic Sunid arc were still responsible for the Linxi sediments, additionally, the obvious increase of provenance from the North China Craton respect to the Zhesi Formation. Subsequent to the end of Late-Permian, the final collision in between the North China Craton and“Jiamusi-Mongolia”block had probably ended along the suturing of Ondon Sum-Xar Moron River belt.
引文
1. Absar N, Raza M, Roy M, Naqvi S M, Roy A K. Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, Central India: Records from geochemistry of clastic sediments of 1.9Ga Gwalior Group[J]. Precambrian Research, 2009, 168: 313-329.
    2. Allegre C T. Quantitative models of trace planet[J]. Earth Plant, 1978, 38(1):1-25.
    3. Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1-2): 59-79.
    4. Andersen T. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation[J]. Chem Geol, 2005, 216: 249-270.
    5. Badarch G, Dickson C W, Windley B F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21: 87-110.
    6. Bailey J C. Geochemical criteria for a refined tectonic discrimination of orogenic andesites[J]. Chem Geol, 1981, 32: 139-154.
    7. Ballard J R, Palin J M, Welliams I S, et al. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP[J]. Geology, 2001, 29: 383-386.
    8. Barshad I. The effect of a variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks[J]. In: Int. Clay Conf., Jerusalem, Proc. 1966, 1: 167–173.
    9. Berkey C P, Morris F K. Geology of Mongolia[M]. New York: American Museum of Natural History, 1927: 475.
    10. Bhatia M R, Crook K. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92 (2): 181-193.
    11. Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. J Geol, 1983, 91: 611-628.
    12. Blanckenburg F V, Villa I M, Baur H, et al. Time calibration of a PT-path from the WesternTauern Window, Eastern Alps: the problem of closure temperatures[J]. Contributions to Mineralogy and Petrology, 1989, 101: 1–11.
    13. Blank L P, Kamo S L, Williams I S, et al. The application of SHEIMP to Phanerozoic geochronology: A critical appraisal of four zircon standards[J]. Chem Geol, 2003, 200: 171-188.
    14. Brandon M T, Roden-Tice M K, Garver J I. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State[J]. Geol Soc Am Bull, 1998, 110: 985-1009.
    15. Brijraj K D, Birgit G H, Parkash K. Geochemistry of Renuka Lake and wetland sediments, Lesser Himalaya (India): implications for source-area weathering, provenance, and tectonic setting. Environ[J]. Geol., 2008, 54: 147-163
    16. Brijraj K D, Birgit G H. Geochemistry of Rewalsar Lake sediment, Lesser Himalaya, India: implications for source-area weathering, provenance and tectonic setting[J]. Geoscience Journal, 2003, 7(4): 299-312
    17. Carter A. and Moss S. J. Combined detrital-zircon fission-track and U-Pb dating: A new approach to understanding hinter-land evolution[J]. Geology, 1999, 27 (3): 235-238. 36.
    18. Cawood P A and Nemchin A A. Paleogeographic development of the east Laurentian margin: Constraints from U-Pb dating of detrital zircons in the Newfoundland Appalachians[J]. Geo. Sco. Am. Bull. 2001, 113: 1234-1246.
    19. Chen B, Jahn B M, Tian W. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments[J]. Journal of Asian Earth Sciences, 2009, 34(3): 245-257.
    20. Chen B, Jahn B M, Wilde S, et al. Two contrasting paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications[J]. Tectonophysics, 2000, 328(1-2): 157-182.
    21. Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology, 2000, 172:5-24
    22. Condie K C, Boryta M D, Liu J, et al. The origin of khondalites: Geochmical evidence from the Archean to Early Proterozoic granulite belt in the North China carton[J]. Precambrian Research,1992, 59: 207-223.
    23. Condie K C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104:1-37.
    24. Cox R, Low D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J] . Geochim. Cosmochim Acta, 1995, 59: 2919-2940.
    25. Demoux A, Kr?ner A, Liu D Y, Badarch G. Precambrian crystalline basement in southern Mongolia as revealed by SHRIMP zircon dating[J]. International Journal of Earth Sciences, 2009, 98: 1365-1380.
    26. Dickinson W R, Beard L S, Brakenridge G R,et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting[J]. Geological Society of America Bulletin, 1983, 94: 222-235.
    27. Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions[J]. American Association of Petroleum Geology Bulletin, 1979, 63: 2164-2182.
    28. Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[C]. In Zuffa G. G. (ed.) Provenance of Arenites, D. Reidel Publications, Dordrecht. 1985: 333-362.
    29. Diwu C R, Sun Y, Yuan H L, et al. U-Pb ages and Hf isotopes for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southwestern margin of the North China Craton[J]. Chinese Science Bulletin, 2008, 53(18): 2828-2839.
    30. Dodson M H, Compston W, Williams I S, et al. A search for ancient detrital zircons in Zimbabwean sediments[J]. Geol Soc Lond, 1988, 145: 977-983.
    31. Dodson M H. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 1973, 40, 259-74.
    32. Dodson M H. Theory of cooling ages[ C ]. Jaeger E, Hunziker J C, eds. Lectures in Isotope Geology. Berlin: Springer-Verlag, 1979: 207-214.
    33. Donelick R A, O’Sullivan P B, Ketcham R A. Apatite fission-track analysis[J]. Rev Mineral Geochem, 2005, 58: 49-94.
    34. Fan W M, Guo F, Wang Y J, et al. Late Mesozoic calc-alkaline volcanism of post-orogenicextension in the northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology and Geothermal Research, 2003, 121: 115-35.
    35. Fedo C M, Eriksson K A, Krogstad E J. Geochemistry of shales from the Archean (~3Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for provenance and source area weathering[J]. Geochemica et Cosmochemica Acta, 1996, 60: 1751-1763.
    36. Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for weathering conditions and provenance[J]. Geology, 1995, 23: 921-924.
    37. Fedo C M, Young G M, Nesbitt H W. Paleoclimatic controle on the composition on the Paleoproterozoic Serpent formation, Huronian supergroup, Canada: A greenhouse to icehouse transition[J]. Precambrian Research, 1997, 86: 211-23.
    38. Floyd P A, Shailr, Leveridge B E, et al. Geochemistryand provenance of rheonobercynian synorogenic sandstones: Implications for tectonic environment discrimination [A]. A C Morton, S P Todd and P D W Haughton. Developments in Sedimentary Provenance Studies [C]. London: Geological Society, London, Special Publications, 1991, 57: 173-188.
    39. Ge W C, Wu F Y, Zhou C Y, et al. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Range[J]. Chinese Science Bulletin, 2005, 50(18): 2097-2105.
    40. Gehrels G E, Dickinson W R, Ross G M, et al. Detrital zircon reference for Cambrian to Trissic miogeoclinal strata of western North America[J]. Geology, 1995, 23: 831-834.
    41. Grabau A W. The Permian of Mongolia. Natural History of Central Asia[M]. American Museum of Natural History. 1931: 1-665.
    42. GU X X, LIU J M, ZHENG M H, TANG J X and QI L. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: Geochemical evidence[J]. Journal of Sedimentary Research, 2002, 72: 393-407.
    43. Guerra M F C, Sarthre O, Gondonneau A. and Barrandon, J.N. Precious Metals and Provenance Enquiries using LA-ICP-MS. 1999, 26(8): 1101-1110.
    44. Han B F, Zheng Y D, Gan J W, et al. The Luozidian normal fault near Chifeng, Inner-Mongolia:master fault of a quasi-metamorphic core complex[J]. International Geology Review, 2001, 43(3): 254-264.
    45. Harnois L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology, 1999, 55: 319-322.
    46. Harrison T M, Zeitler P K. Fundamentals of noble gas thermochronometry[J]. Rev Mineral Geochem, 2005, 58: 123-149.
    47. Harrison T.M. Diffusion of 40Ar in hornblende[J]. Contrib. Mieral. Pertrol., 1981, 78: 324-331.
    48. Herron M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. J. Sed. Petrol, 1988, 58: 820-883.
    49. Hoskin B. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4): 423-439.
    50. Ingersoll R V, Bullard T F, Ford R L, Grimm J P, Pickle J D, Sares S W. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology, 1984, 54: 103-116
    51. Jian P, Liu D Y, Kroner A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 2008, 101(3-4): 233-259.
    52. Johnson M J. The system controlling the composition of clastic sediments[J]. In: Johnson, M.J., Basu, A. (Eds.), Processes Controlling the Composition of Clastic Sediments. Geol. Soc. Am. Spec. Paper, 1993: 1-19.
    53. Johnsson M J, Stallard R F, Meade R H. First-Cycle Quartz Arenites in the Orinoco River Basin, Venezuela and Colombia[J]. The Journal of Geology, 1988, 96(3): 263-277
    54. Johnsson M J. Tectonic assembly of east central Alaska: evidence from Cretaceous Tertiary detrital rocks of the Kandik River terrane[J]. Geol Soc Amer Bull, 2000, 112: 1023-1042.
    55. Khain E V, Bibikova E V, et al. Kravchenko-Berezhnoy, I.R., The most ancient ophiolite of the Central Asian fold belt, U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan,Siberia, and geodynamic implications[J]. Earth and Planetary Science Letters, 2002, 199(3-4): 311-325.
    56. Khanchuk A L. Pre-Neogene tectonics of the Sea-of-Japan region: A view from the Russian side[J]. Earth science, 2001, 55(5): 275-291.
    57. Kirschner D L, Cosca M A, Masson H, et al. Staircase 40Ar ? 39Ar spectra of fine grained white mica: timing and duration of deformation and empirical constraints on argon diffusion[J]. Geology, 1996, 24: 152-168.
    58. Krogh T E and Keppie J D. Age of detrital zircon and titanite in the Meguma Group, southern Nova Scotis, Canada: Clues to the origin of the Meguma Terrane[J]. Tectonophysics, 2003, 177(1-3): 307-323.
    59. Kutterolf S, Diener R, Schacht U, Krawinkel H. Provenance of the carboniferous Hochwipfel Formation (Karawnken Mountains, Austria/Slovenia)–geochemistry versus petrography[J]. Sedimentary Geology, 2008, 203: 246-266.
    60. Lee J, Williams I, Ellis D. Pb, U and Th diffusion in nature zircon[J]. Nature, 1997, 390(13): 159-162.
    61. Li C Y (C Y Lee), Wang Q, Liu X Y,et al. Tectonic Map of Asia (scale 1:8,000,000)[M]. Beijing: Cartographic Publishing House, 1982, 49.
    62. Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26: 207-224.
    63. Liu D Y, Nutman A P W, Compston W, et al. Remnants of≥3800 Ma crust in the Chinese part of the Sino-Korean Craton[J]. Geology, 1992, 20: 339-342.
    64. Lovera O M, Grove M, Harrison T M, et al. Systematic analysis of K-Feldspar 40Ar/39Ar stepheating experiments: I. Significance of activation energy determinations[J]. Geochim Cosmochim Acta, 1997, 61: 3171-3192.
    65. Ludwig K R. User’s manual for IsoPlot 3.0. A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication No. 4, Berkeley, 2003, 1-71.
    66. Maruyama S. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed[J]. The Island Arc, 1997, 6: 91-120.
    67. Maynard J B. Chemistry of modern soils as a guide to interpreting Precambrian paleosols[J].Journal of Geology, 1992, 100: 279-289.
    68. McDougall I, Harrison T M. Geochronology and Thermochronology by the 40Ar/39Ar Method[M]. New York: Oxford Univ Press, 1988: 212.
    69. Mclennan S M, Bock B, Compston W, et al. Detrital zircon geochronology of Taconian and Acadian foreland sedimentary rocks in New England[J]. Journal of Sedimentary Rearch, 2001, 71(2): 305-317.
    70. Mclennan S M, Hemming S, McDanial D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. eological Society of American Special Paper, 1993, 284: 21-40.
    71. Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5-6): 348-370.
    72. Miao L C, Fan W M, Zhang F Q,et al. SHRIMP zircon geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing’an Range, and its geological implications[J]. Chinese Science Bulletin, 2004, 49: 201-209.
    73. Miao L C, Liu D Y, Zhang F Q. Zircon SHRIMP U-Pb ages of the“Xinghuadukou Group”in Hanjiayuanzi and Xinlin areas and the“Zhalantun Group”in Inner Mongolia, Da Hinggan Mountains[J]. Chinese Science Bulletin, 2007a, 52(8): 1112-1134.
    74. Miao L C, Zhang F Q, Fan W M, et al. Phanerozoic evolution of the Inner Mongolia-Daxinganling orogenic belt in North China: constraints from geochronology of ophiolites and associated formations. In: Zhai MG, Windley BF, Kusky TM, Meng QR(eds) Mesozoic sub-continental lithospheric thinning under Eastern Asia. Special Publications, vol, Geological Society, London, 2007b, 206: 223-237.
    75. Murali A V, Parthasarathy R, Mahadevan T M, et al. Trace element characteristics, REE patterns partition coefficients of zircons from different geological environments-A case study on Indian zircons[J]. Geochim Cosmochim Acta, 1983, 47: 2047-2052.
    76. Murphy J B, Fernández-Suárez J, Jeffries T, Strachan R A. U-Pb (LA-ICP-MS) dating of detrital zircons from Cambrian clastic rocks in Avalonia: erosion of a Neoproterozoic arc alongthe northern Gondwanan margin[J]. Journal of the Geological Society, 2005, 161(2): 243-254.
    77. Nagibina. Tectonics and Magmatism of the Mongolia -Okhotsk Fold Belt (in Russian)[M]. Moscow: USSR Academy Press, 1963.
    78. Natal’in B. History and modes of Mesozoic accretion insoutheastern Russia[J]. The Island Arc, 1993, 2: 15-34.
    79. Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from mayor element chemistry of lutites[J]. Nature, 1982, 299: 715-717.
    80. Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. Journal of Geology, 1989, 97: 129-147.
    81. Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48: 1523-1534.
    82. Pei F P, Xu W L, Yang D B, et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao basin[J]. Chinese Science Bulletin, 2007, 52(7): 942-948.
    83. Pettijohn F J, Potter P E, Siever R. Sand and sandstone[M]. Springer-Verlag, New York, 1972: 1-618.
    84. Potter P E. Petrology and chemistry of big river sands[J]. Journal of Geology, 1978, 86: 423-449.
    85. Purdy J W, J?ger E. K-Ar ages on rock forming minerals from the Central Alps[J]. Mem. Ist. Geol. Mineral. Univ. Padova 1976, 30: 1-31.
    86. Qin G J, Kawachi Y, Zhao L Q, et al. The Upper Permian Sedimentary Facies and Its Role in the Dajing Cu-Sn Deposit, Linxi County, Inner Mongolia, China[J]. Resource Geology, 2001, 51(4): 293-305.
    87. Rainbird R H, Nesbitt H W, et al. Formation and diagenesis of a sub-Huronian saporlith: Comparison with a modern weathering profile[J]. Journal of Geology, 1990, 98: 801-822.
    88. Retallack G J. The fossil record of soils, in wright,V.P.,ed.,Paleosols, their recognition and interpretation[M]. Oxford, United Kingdom, Blackwell, 1986: 1-57.
    89. Rieser A B, Liu Y J, Genser J. et al. 40Ar/39Ar ages of detrital white mica constrain the Cenozoic development of the intracontinental Qaidam Basin, China[J]. GSA Bulletin, 2006, 118.
    90. Rollinson H R. Using geochemical data: evaluation, presentation, interpretation[M]. London: Longman Scientific, Technical Press, 1993. 1-352.
    91. Rooney C B and Basu A. Provenance analysis of muddy sandstones. J. Sed. Res. 1994, A64: 2-7
    92. Roser B P, Korsch R J. Determination of tectonic setting of sandstonemudstone suites using SiO2 content and K2O/Na2O ratio[J]. J. Geol., 1986, 94: 635-650.
    93. Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chem. Geol., 1988, 67: 119-139.
    94. Seng?r A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307.
    95. Seng?r A M C, Natal’in B A. Paleotectonics of Asia: fragments of a synthesis. In: Yin, A., Harrison, M. (Eds.), The Tectonic Evolution of Asia[M]. Cambridge: Cambridge University Press, 1996: 486-641.
    96. Sensarma S, Rajamani V, Tripathi J K. Petrography and geochemical characteristics of the sediments of the small River Hemavati, Southern India: Implications for provenance and weathering processes[J]. Seimentary Geology, 2008, 205: 111-125.
    97. Shang Q H. Occurrences of Permian radiolarians in central and eastern Nei Mongol(Inner Mongolia) and their geological significance to the Northern China Orogen[J]. Chinese Science Bulletin, 2004, 49(24): 2613-2619.
    98. Shi G H, Liu D Y, Zhang F Q, et al. Zircon SHRIMP U–Pb geochronology and significance of the Xilinhot metamorphic complex, Inner Mongolia, China[J]. Chinese Science Bulletin, 2003, 48(24): 2742-2748.
    99. Shi G H, Miao L C, Zhang F Q, et al. Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China[J]. Chinese Science Bulletin, 2004, 49(7): 723-729.
    100. Shi G R, Shen S Z, Tazawa J. 2002. Middle Permian (Guadalupian) brachiopods from the Xiujimqinqi area, Inner Mongolia, northeast China, and their palaeobiogeographical and palaeogeographical significance[J]. Paleontological Research, 2002, 6(3): 285-297
    101. Shi G R. Aspect s of Permian marine biogeography: a review on nomenclature and evolutionary patterns, with particular reference to the Asian-western Pacific region[J]. Palaeoworld, 1998, 9:97-112
    102. Shi Y R, Liu D Y, Zhang Q, et al. The petrogenesis and SHRIMP dating of the Baiyinbaolidao adakitic rocks in southern Sonidzuqi, Inner Mongolia[J]. Acta Petrologica Sinica, 2005, 21: 143-150.
    103. Sircombe K N and Freeman M J. Provenance of detrital zircons on the Western Australia coastline: Implications for the geologic history of the Perth Basin and denudation of the Yilgarn Craton[J]. 1999, Geology, 27(10): 879-882.
    104. Sreenivas B, Srinivasan R. Identification of paleosols in the Precambrian metapelitic assemblages of peninsular India–A major element geochemical approach[J]. Current Science, 1994, 67: 89-94.
    105. Tagami T, O’Sullivan P B. Zircon fission-track thermochronology and applications to fault studies[J]. Rev Mineral Geochem, 2005, 58: 95-122.
    106. Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford London: Blackwell scientific Publication, 1985: 1-301.
    107. Tazawa J. Middle Permian brachiopod funas in East Asia and their zoogeographic significance. Journal of the Geological society of Japan[J]. 1992, 98(6): 483-496
    108. Valloni R and Maynard J B. Detrital modes of recent deep-sea sands and their relation to tectonic setting: a first approximation. Sedimentology, 1981, 28: 75-83.
    109. Valloni R. Reading provenance from modern marine sands. In: Provenance of Arenites (edl by G. G. Zuffa), 1985, 309-322.
    110. Van de Kamp P C, Leake B E. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Trans. R. Soc[J]. Edinburgh Earth Sci, 1985, 76: 411-449.
    111. Van der Voo R, Spakman W, Bijwaard H. Mesozoic subducted slabs under Siberia. Nature (London), 1999, 397(6716): 246-249.
    112. Vermeesch P. How many grains are needed for a provenance study[J]. Earth Planet Sci Lett, 2004, 224: 441-451.
    113. Wan Y S, Zhang Q D, Song T R. SHRIMP ages of detrital zircons from the Changcheng Systemin the Ming Tombs area, Beijing: Constraints on the protolith nature and maximum depositional age of the Mesoproterozoic cover of the North China Craton[J]. Chinese Science Bulletin, 2003, 48(22): 2500-2506.
    114. Wang T, Zheng Y D, Gehrels G E, Mu Z. Geochronological evidence for existence of South Mongolian microcontinent-A zircon U-Pb age of grantoid gneisses from the Yagan-Onch Hayrhan metamorphic core complex[J]. Chinese Science Bulletin, 2001, 46, 2005-2008.
    115. Wang Y, Zhang F Q, Zhang D W, et al. Zircon SHRIMP U-Pb dating of meta-diorite from the basement of the Songliao Basin and its geological significance[J]. Chinese Science Bulletin, 2006, 51(15): 1877-1883.
    116. Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago[J]. Nature, 2001, 409: 175-178.
    117. Wintsch R P and Kvale C M. Differential element mobility in burial diagenesis of siliciclastic rocks[J]. J. Sediment. Res. 1994, A64: 349-361.
    118. Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187: 143-173.
    119. Wu F Y, Sun D Y, Li H M. The Nature of Basement Beneath the Songliao Basin in NE China: Geochemical and Isotopic Constraints[J]. Phys. Chem. Earth, 2001, 26(9-10): 793-803.
    120. Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of the Jurassic granites in the Liaodong Peninsula, NE China[J]. Chemical Geology, 2005, 221: 127-156.
    121. Wu Y B, Zhen Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569.
    122. Wu. F Y, Jahn. B M, Wilde Simon. Phanerozoic crustal growth:U/Pb and Sr/Nd isotopic evidence from the granites in northeatern China[J].Tectonophysics, 2000, 328: 89-113.
    123. Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. TECTONICS, 2003, 22(6): 1069-1089.
    124. Xiao W J, Windley B F, Huang B C, et al. End-Permian to mid-Triassic termination of theaccretionary processes of the southern Altaids: implications for the geodynamicevolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. Int J Earth Sci (Geol Rundsch), 2009, 98: 1189-1217.
    125. Yarmolyuk V V, Kovalenco V I, Salnikova, E B. U–Pb age of syn- and post-metamorphic granitoids of south Mongolia: evidence for the presence of Grenvillides in the Central Asian foldbelt[J]. Doklady Earth Sciences, 2005, 404, 986-990.
    126. Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1-2): 100-118.
    127. Zhang S H, Zhao Y, Kr?ner A, et al. Early Permian plutons from the northern North China Block: constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98: 1441-1467.
    128. Zhang Y P and Tang K D. Pre-Jurassic tectonic evolution of intercontinental region and the suture zone betweem the North China and Siberian platforms[J]. Journal of Southeast Asian Earth Sciences, 1989, 3(1-4): 47-55.
    129. Zhao X X, Coe R S, Zhou Y X. New plaeomagnetic results from northern China: Collision and suturingwith Siberia and Kazakstan[J]. Tectonophysics, 1990, 181: 43-81.
    130. Zonenshain. Geology of the USSR: plate tectonic synthesis[J]. Am. Geophys. Union Geodyn. Ser, 1990, 21: 2412.
    131. Zorin. Terranes of East Mogolia and Central Trans-Baikal region and evolution of the Mongolia- Okhotsk fold belt [J]. Russian Geol. Geophys, 1998, 39(1): 11-25.
    132. Zorin. The East Siberia Transect [J]. Int. Geolo Rev., 1995, 37: 154-175.
    133.白文吉,等.内蒙古锡盟贺根山地区蛇绿岩的岩石矿物学和铬铁矿的研究报告[R]. 1986.
    134.包志伟,陈森煌,张桢堂.内蒙古贺根山地区蛇绿岩稀土元素和Sm-Nd同位素研究[J].地球化学,1994, 23(4): 339-349.
    135.鲍庆中,张长捷,吴之理,等.内蒙古东南部晚古生代裂谷区花岗质岩石锆石SHRIMP U-Pb定年及其地质意义[J].中国地质,2007b,34(5):790-798.
    136.鲍庆中,张长捷,吴之理,等.内蒙古东南西乌珠穆沁旗地区石炭纪-二叠纪岩石地层和层序地层[J].地质通报,2006,25(5): 572-579.
    137.鲍庆中,张长捷,吴之理,等.内蒙古西乌珠穆沁旗地区石炭二叠纪岩石地层[J].地层学杂志,2005,29:512-519.
    138.鲍庆中,张长捷,吴之理,等.内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J].吉林大学学报(地球科学版),2007a,37(1):15-23.
    139.北京大学填图队.额尔德尼布垃格幅、白音宝力道幅1/5万地质图说明书[M].1993.
    140.毕守业,王德荣,贾大成,等.吉林省地体构造的基本特征[J].吉林地质,1995,14(1): 1-14.
    141.表尚虎,李仰春,何晓华,等.黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征[J].中国区域地质,1999,18(1): 28-33.
    142.蔡观强,郭锋,刘显太,等.碎屑沉积物地球化学:物源属性、构造环境和影响因素[J].地球与环境. 2006, 34(4): 75-83.
    143.曹从周,杨芳林,田昌烈,等.内蒙古贺根山地区蛇绿岩及中朝板块与西伯利亚板块之间的缝合带位置,中国北方板块构造文集,第1集[M].沈阳:沈阳地质矿产研究所出版,1986,(1):37-45.
    144.曹熹,党增欣,张兴洲,等.佳木斯复合地体[M].长春:吉林科学技术出版社,1992: 45-126.
    145.常丽华,曹林,高福红.火成岩鉴定手册[M].北京:地质出版社,2009: 52-54.
    146.陈斌,徐备.内蒙古苏左旗地区古生代两类花岗岩类的基本特征和构造意义[J].岩石学报,1996,12(4): 546-561.
    147.陈斌,赵国春,WILDE S.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评,2001,47(4): 361-367.
    148.陈跃军,彭玉鲸,路孝平,等.华北板块北缘活动带元古宙构造岩片[J].吉林大学学报(地球科学版),2002,32(2): 134-139.
    149.程裕淇.中国区域地质概论[M].北京:地质出版社,1994: 85-89.
    150.崔盛芹,李锦蓉,孙家树,等.华北陆块北缘构造运动序列及区域构造格局[M].北京:地质出版社,2000: 100-151.
    151.杜远生,颜佳新,韩欣.造山带沉积地质学研究的新进展[J].地质科技情报,1995,14(1):29-34.
    152.凤永刚,刘树文,吕勇军,等.华北克拉通北缘隆化地区型花岗岩的独居石年龄图谱[J].岩石学报, 2008, 24(1): 104-114
    153.冯增昭.沉积岩石学[M].石油工业出版社,1993: 145-150.
    154.葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005,21(3): 749-762.
    155.韩国卿,刘永江,金巍,等.西拉木伦河断裂在松辽盆地下部的延伸[J].中国地质, 2009a, 36(5) : 1010-1020.
    156.韩国卿,刘永江,温泉波,等.嫩江-八里罕断裂带岭下韧性剪切带变形特征[J].吉林大学学报(地球科学版), 2009b, 39(3): 397-405.
    157.韩国卿.嫩江-八里罕断裂带构造变形特征研究[D].长春:吉林大学地球科学学院,2008: 30-89.
    158.何国琦.地球是怎样演变的[M].北京:中国青年出版社,1983: 253.
    159.和政军,李锦轶,牛宝贵.燕山-阴山地区晚侏罗世强烈推覆-隆升事件及沉积响应[J].地质论评,1998,44(2): 407-417.
    160.和政军,刘淑文,任纪舜,等.内蒙古林西地区晚二叠世-早三叠世沉积演化及构造背景[J].中国区域地质,1997,16(4): 403-410.
    161.和政军.砂岩碎屑组分与板块构造位置关系的研究现状[J] .地质科技情报, 1990, 9 (4) :7-12.
    162.黑龙江省地质矿产局.黑龙江省地质志[M].地质出版社,1993.
    163.洪大卫,黄淮曾,肖宜君,等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,1994,68(3):219-230.
    164.胡波,翟明国,郭敬辉,等.华北克拉通北缘化德群中碎屑锆石的LA ICPMS U-Pb年龄及其构造意义[J].岩石学报, 2009, 25(1): 193-211.
    165.胡晓,许传诗,牛树银.华北地台北缘早古生代大陆边缘演化[M].北京:北京大学出版社,1990: 6-34.
    166.黄汲清,姜春发.从多旋回构造运动观点初步探讨地壳发展规律[J].地质学报,1962,42(2): 105-152.
    167.黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓[J].地质学报,1977,51(2): 117-135.
    168.黄汲清,任纪舜,姜春发,等.中国大地构造及其演化(1/400万中国大地构造图简要说明)[J].北京:科学出版社,1980: 1-124.
    169.黄汲清.中国主要地质构造单位[M].北京:地质出版社, 1954.
    170.黄宗理,张良弼.地球科学大辞典(基础学科卷)[M].北京:地质出版社,2006: 789.
    171.李春昱,王荃,刘雪亚,等.亚洲大地构造图(1/ 800万)说明书[M].北京:中国地图出版社,1982: 1-49.
    172.李春昱,王荃.我国北部边陲及邻区的古板块构造与欧亚大陆的形成[G].//中国地质科学院沈阳地质矿产研究所.中国北方板块构造文集. 1983,(1): 3-16
    173.李江海,牛向龙,程素华,等.大陆克拉通早期构造演化历史探讨:以华北为例[J].地球科学-中国地质大学学报,2006,31(3): 285-293.
    174.李锦轶,高立明,孙桂华,等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报, 2007, 23(3): 565-582.
    175.李锦轶,牛宝贵,宋彪,等.黑龙江省东部中太古代碎屑岩浆锆石的发现及其地质意义[J].地球学报,1995,3: 331-333.
    176.李锦轶.内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究[J].科学通报,1986,31(14):1093-1096.
    177.李莉,谷峰.内蒙-吉林亚区早二叠世早期的沉积特征及古地理轮廓[J].中国地质科学院院报,1984,8: 107-121.
    178.李朋武,高锐,管烨,等.华北与西伯利亚地块碰撞时代的古地磁分析-兼论苏鲁—大别超高压变质作用的构造起因[J].地球学报,2007,28(3): 234-252.
    179.李秋根,刘树文,王宗起,等.中条山绛县群碎屑锆石LA-ICP-MS U-Pb测年及其地质意义[J].岩石学报,2008,24(6): 1359-1368.
    180.李述靖,高德臻.内蒙古苏尼特左旗地区若干地质构造新发现及其构造属性的初步探讨[J].现代地质,1995,9(2): 130-141.
    181.李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998,18(3): 45-54.
    182.李文国,李庆富,姜万德.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社,1996: 1-344.
    183.李文国.内蒙古哲斯腕足动物群的再研究[J].中国区域地质,1983,8: 1-11.
    184.李益龙,周汉文,葛梦春,等.内蒙古林西县双井片岩北缘混合岩LA-ICPMS锆石U-Pb年龄[J].矿物岩石,2008,28(2): 10-16.
    185.刘东娜.碎屑物源分析泛论[J].科技情报开发与经济,2007,17(8): 171-173.
    186.刘敦一,简平,张旗,等.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据[J].地质学报,2003,77(3): 317-330.
    187.刘建峰,迟效国,张兴洲,等.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J].地质学报,2009a,83(3): 365-376.
    188.刘建峰.内蒙古林西-东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约[D].长春:吉林大学地球科学学院,2009b: 100-142.
    189.刘少峰,张国伟,张宗清,等.合肥盆地花岗岩砾石的同位素年代学示踪[J].科学通报,2001,46 (9): 478-753.
    190.刘树文,吕勇军,凤永刚,等.冀北单塔子杂岩的地质学和锆石U-Pb年代学[J].高校地质学报, 2007a, 13(3): 484-497
    191.刘树文,吕勇军,凤永刚,等.冀北红旗营子杂岩的锆石、独居石年代学及地质意义[J].地质通报, 2007b, 26(9): 1086-1100
    192.刘伟,杨进辉,李潮峰.内蒙赤峰地区若干主干断裂带的构造热年代学[J].岩石学报,2003,19(4):717-728.
    193.卢造勋,夏怀宽,赵国敏,等.内蒙古东乌珠穆沁旗至辽宁东沟地学断面综合地球物理特征[J].东北地震研究,1993,9(2): 1-12.
    194.毛德宝,钟长汀,陈志宏,等.承德北部高压基性麻粒岩的同位素年龄及其地质意义[J].岩石学报, 1999, 15(4): 524-531
    195.孟祥化,葛铭.内源盆地沉积研究[M].北京:石油工业出版社,1993: 275.
    196.莫申国,韩美莲,李锦轶.蒙古-鄂霍茨克造山带的组成及造山过程[J].山东科技大学学报,2005,24(3):50-52.
    197.内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991:189-219.
    198.彭向东,张梅生,李晓敏.吉黑造山带古生代构造古地理演化[J].世界地质,1999,18(3):24-28.
    199.彭玉鲸,纪春华,辛玉莲.中俄朝毗邻地区古吉黑造山带岩石及年代纪录[J].地质与资源,2002,11(2):65-75.
    200.邱瑞照,李廷栋,邓晋福,等.中国大陆岩石圈岩石学结构、类型与不均一性[J].中国地质,2006,33(4):842-851.
    201.任纪舜,王作勋,陈炳蔚,等.从全球看中国大地构造-中国及邻区大地构造图简要说明[M].北京:地质出版社,1999, 1-50
    202.任纪舜,陈廷愚,牛宝贵,等.中国东部及邻区大陆岩石圈的构造演化与成矿[M].北京:科学出版社,1990:10-101.
    203.尚庆华,金玉玕.二叠纪腕足动物地理区系演化特征[J].古生物学报,1997,36(1):93-121.
    204.邵济安,张履桥,牟保磊,等.大兴安岭的隆起与地球动力学背景[M].北京:地质出版社, 2007:21.
    205.邵济安,唐克东.吉林省延边开山屯地区蛇绿混杂岩[J].岩石学报,1995,11:212-220.
    206.邵济安,臧绍先,牟保磊,等.造山带的伸展构造与软流圈隆起--以兴蒙造山带为例[J].科学通报,1994, 39(6): 533-537.
    207.邵济安,张履桥,牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘,1999,6(4):339-346.
    208.邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社,1991: 11-62.
    209.沈保丰,李俊建,翟安民,等.地壳演化和成矿耦合-以华北陆块北缘中段为例[J].前寒武纪研究进展,2001,24(1):9-16.
    210.盛金章.中国的二叠系[M].北京:科学出版社,1962.
    211.施光海,刘敦一,张福勤,等.中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义[J].科学通报,2003,48(20):2187-2192.
    212.施光海,苗来成,张福勤,等.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报,2004,49(4):384-389.
    213.石玉若,刘敦一,简平,等.内蒙古中部苏尼特左旗富钾花岗岩锆石SHRIMP U-Pb年龄[J].地质通报,2005a,24(5):424-428.
    214.石玉若,刘敦一,张旗,等.内蒙古苏左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP年代学研究[J].岩石学报,2005b,21(1):143-150.
    215.石玉若,刘敦一,张旗,等.内蒙古苏左旗地区闪长-花岗岩类SHRIMP年代学[J].地质学报,2004,78(6):361-367.
    216.石玉若,刘敦一,张旗,等.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMPU-Pb年龄及其区域构造意义[J].地质通报,2007,02:183-189.
    217.史书林,徐常芳,王继军,等.辽宁义县-内蒙古东乌珠穆沁旗剖面深部电性研究[J].地震地质,1991,13(2):115-125.
    218.苏养正.论图瓦贝Tuvaella的时空分布和生态环境[J].古生物学报,1981,20(6):567-577.
    219.孙德有,吴福元,李惠民,等.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报,2000,45(20):2217-2222.
    220.孙德有,吴福元,张艳斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间-来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版), 2004,34(2):174-181.
    221.孙广瑞,李仰春,张昱.额尔古纲纳地块基底地质构造[J].地质与资源,2002,11(3):129-139.
    222.唐克东,王莹,何国琦,邵济安.中国东北及邻区大陆边缘构造[J].地质学报,1995,69(1):16-30.
    223.唐克东,颜竹筠,张允平.内蒙古缝合带的地质特征与构造演化[J].中国地质科学院沈阳地质矿产所集刊,1997,(5-6):119-166.
    224.唐克东.中朝板块北侧褶皱带构造演化及成矿规律[M].北京:北京大学出版社,1992:60-160.
    225.唐克东.中朝陆台北侧褶皱带构造发展的几个问题[J].现代地质,1989,3(2):195-204.
    226.王成善,李祥辉.沉积盆地分析原理与方法[M].北京:高等教育出版社,2005:378.
    227.王成文,金巍,张兴洲,等.东北及邻区晚古生代大地构造属性新认识[J].地层学杂志,2008,32(2):119-136.
    228.王成文,孙跃武,李宁,等.中国东北及邻区晚古生代地层分布规律的大地构造意义[J].中国科学(D辑:地球科学), 2009, 39(10): 1429-1437.
    229.王成文,张松梅.哲斯腕足动物群[M].北京:地质出版社,2003, 1-210.
    230.王鸿祯,杨森楠,刘本培.中国及邻区构造古地理和生物古地理[M].武汉:中国地质大学出版社,1990:1-344.
    231.王鸿祯.中国地壳构造发展的主要阶段[J].地球科学-武汉地质学院学报,1982,3:155-177.
    232.王惠,陈志勇,杨万容.内蒙古满都拉二叠纪海绵生物丘的发现及意义[J].地层学杂志,2002,26(1):33-40.
    233.王惠初,陆松年,赵风清,等.华北克拉通古元古代地质记录及其构造意义[J].地质调查与研究,2005,28(3):129-143.
    234.王立武,王颖,杨静,等.用碎屑锆石SHRIMP年代学方法恢复松辽盆地南部前中生代基底的源区特征[J].地学前缘,2007,14(4):151-158.
    235.王荃,刘雪亚,李锦轶.中国华夏与安哥拉古陆间的板块构造[M].北京:北京大学出版社,1991:122-134.
    236.王新社,郑亚东,刘玉琳,等.内蒙赤峰南部楼子店拆离断层系绿泥石化带的形成时代[J].自然科学进展,2006,16(7):902-906.
    237.王新社,郑亚东.楼子店变质核杂岩韧性变形作用的40Ar/39Ar年代学约束[J].地质论评,2005,51(5): 574-582.
    238.王兴光,王颖.松辽盆地南部北带基底岩浆岩SHRIMP锆石U-Pb年龄及其地质意义[J].地质科技情报,2007,26(1):23-27.
    239.王友,樊志勇,方曙,等.西拉木伦河北岸新发现地质资料及其构造意义[J].内蒙古地质,1999,90:6-26.
    240.王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,36(1):58-69.
    241.王玉往,王京彬,王莉娟.大兴安岭南段上二叠统林西组中的火山岩[J].矿产与地质,2005,19(1):1-6.
    242.吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    243.郗爱华,葛玉辉,李绪俊,等.中亚蒙古造山带东段造山事件的40Ar-39Ar同位素年代学证据[J].中国地质,2006,33(5):1059-1065.
    244.肖文交,舒良树,高俊,等.中亚造山带大陆动力学过程与成矿作用[J].新疆地质,2008,26(1):4-8.
    245.谢鸣谦.拼贴板块构造及其驱动机理-中国东北及邻区的大地构造演化[M].北京:科学出版社,2000:1-260.
    246.徐备,陈斌,张臣,等.中朝板块北缘乌花敖包地块Sm-Nd同位素等时线年龄及其意义[J].地质科学,1994,29(2):168-172.
    247.徐备,张福勤.内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究[J].地质科学,2001,36(4):424-434.
    248.徐桂荣,杨伟平.中国古生物地理学[M].武汉:中国地质大学出版社,1988:176-197.
    249.徐田武,宋海强,况昊,等.物源分析方法的综合运用-以苏北盆地高邮凹陷泰一段地层为例[J].地球学报, 2009, 30(1): 111-118.
    250.徐亚军,杜远生,杨江海.沉积物物源分析研究进展[J].地质科技情报, 2007, 26(3): 26-32.
    251.薛怀民,汪应庚,马芳,等.高度演化的黄山A型花岗岩:对扬子克拉通东南部中生代岩石圈减薄的约束[J].地质学报, 2009, 83(2): 247-259.
    252.余和中,李玉文,韩守华,等.松辽盆地古生代构造演化[J].大地构造与成矿学, 2001, 25(4):389-396.
    253.袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报, 2003, 48(14): 1511-1520.
    254.詹立培,李莉,等.中国二叠系若干问题的探讨[J].中国地质科学院报, 1984, 9.
    255.章凤奇,陈汉林,董传万,等.松辽盆地北部存在前寒武纪基底的证据[J].中国地质, 2008, 35(3):421-428.
    256.张金亮,张鑫.塔中地区志留系砂岩元素地球化学特征与物源判别意义[J].岩石学报, 2007, 23(11): 2900-3002.
    257.张炯飞,庞庆邦,朱群,等.内蒙古白音宝力道花岗斑岩锆石U-Pb定年-白音宝力道金矿成矿主岩的形成时代[J].地质通报, 2004, 23(2):189-192.
    258.张梅生,彭向东,孙晓猛.中国东北区古生代构造古地理格局[J].辽宁地质, 1998, (2):91-96.
    259.张庆龙,王良书,解国爱,等.郯庐断裂带北延及中新生代构造体制转换问题的探讨[J].高校地质学报, 2005, 11(4): 577-584.
    260.张晓东,余青,陈发景,等.松辽盆地变质核杂岩和伸展断陷的构造特征及成因[J].地学前缘, 2000, 7(4): 411-419.
    261.张晓晖,李铁胜,薄志平,等.内蒙古赤峰娄子店-大城子韧性剪切带的40Ar-39Ar年龄及其构造意义[J].科学通报, 2002, 47(12): 951-956.
    262.张鑫,张金亮,覃利娟.塔里木盆地志留系柯坪塔格组砂岩岩石学特征与物源分析[J].矿物岩石,2007, 27(3): 106-115.
    263.张兴洲,杨宝俊,吴福元,等.中国兴蒙-吉黑地区岩石圈结构基本特征[J].中国地质, 2006, 33(4): 816-823.
    264.张兴洲,周建波,迟效国,等.东北地区晚古生代构造-沉积特征与油气资源[J].吉林大学学报(地球科学版), 2008, 38(5): 719-725.
    265.张兴洲.黑龙江岩系一古佳木斯地块加里东缝合带的证据[M].长春地质学院学报, 1992, 22(增刊):94-101.
    266.张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面1:1000000说明书[M].北京:地质出版社, 1998: 1-53.
    267.张长捷,鲍庆中,吴之理,等. 1/ 20万《西乌珠穆沁旗幅》区域地质调查报告[R]. 2005:16-41.
    268.赵春荆,何国琦.俄远东、中国东北的构造特点及岩石圈深部的不均一性[J].辽宁地质, 1995, 4: 241-255.
    269.赵春荆,彭玉荆,党增欣,等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社, 1996: 104-123.
    270.赵红格,刘池洋.物源分析方法与研究进展[J].沉积学报, 2003, 21(3): 409-415.
    271.赵亚曾.中国长身贝科化石[M]. //中国古生物志乙种, 1927, 5 (2) :1-244.
    272.赵英利,刘永江,韩国卿.敦-密断裂左行走滑三维有限元模拟[J].世界地质, 2009, 28(3): 310-317.
    273.赵越,杨振宇,马醒华.东亚大地构造发展的重要转折[J].地质科学,1994,29(2):105-114.
    274.赵芝.内蒙古大石寨地区早二叠世大石寨组火山岩的地球化学特征及其构造环境[D].长春:吉林大学地球科学学院, 2009:1-45.
    275.周建波,刘建辉,郑常青,等.大别-苏鲁造山带的东延及板块缝合线:郯庐-鸭绿江-延吉断裂的厘定[J].高校地质学报, 2005, 11(1): 92-104.
    276.周建波,张兴洲,马志红,等.中国东北地区的构造格局与分地演化[J].石油与天然气地质, 2009, 30(5): 530-538.
    277.朱光,侯明金,等.郯庐断裂带早白垩世的走滑运动与中国东部构造格局的转换[J].安徽地质,2003, 13(2):89-96.
    278.朱光,牛漫兰,刘国生.郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件[J].地质学报,2002, 76(3):325-334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700