用户名: 密码: 验证码:
内蒙古苏莫查干敖包超大型萤石矿化区形成环境、地质特征及成矿机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古四子王旗北部的苏莫查干敖包地区是我国北方重要的单一萤石矿集区,位于中亚晚古生代构造带上,在下二叠统大石寨组中酸性火山-沉积岩与燕山中期花岗岩的内外接触带上产出有苏莫查干敖包超大型萤石矿床和中型敖包吐萤石矿床以及伊和尔、贵勒斯泰和西里庙等诸多萤石矿化点。苏莫查干敖包萤石矿床以及区域上的温多尔努如和瑙尔其格萤石矿化点产出于大石寨组第三性段的底部;相比之下,敖包吐萤石矿床产出在大石寨组第三岩性段的顶部,贵勒斯泰萤石矿点产出于燕山中期花岗岩之内。依据矿物组合可以将萤石矿石划分为3种类型,即萤石-石英型、硫化物-萤石型和碳酸盐-萤石型;根据矿石的结构和构造特征划分为纹层状、条带状、细晶致密块状、伟晶状、皮壳状、混合伟晶状和泥沙状,其中早期成矿阶段类型主要为条带状、纹层状和细晶块状,而晚期为伟晶状和混合伟晶状。蚀变类型为硅化、绢云母化和高岭石化,其中蚀变矿物绢云母和伊利石的钾-氩年龄分别为141.5±1.2Ma和137.6±1.1Ma。鉴于萤石和绢云母和伊利石具有共生结构关系,因此,萤石的成矿作用发生在早白垩世。
     同位素测年结果表明,大石寨组火山岩锆石SHRIMP铀-铅年龄为276±10Ma,MSWD为1.9。属早二叠世。岩石地球化学研究表明,大石寨组火山岩为高硅(SiO_2含量在63.66%~78.02%之间,样品数为12)、富碱((Na_2O+K_2O)的含量为5.55%~9.86%,样品数为12)、过铝质(Al_2O_3的含量为11.78%~21.33%,铝饱和指数/CNK为1.0~2.0,样品数为12)的钙碱性到高钾钙碱性岩石系列。研究区与萤石成矿作用关系密切的侵入岩类为早白垩世卫境花岗岩,主要岩石类型为中细粒含黑云母似斑状花岗岩。花岗岩的锆石SHRIMP铀-铅年龄为138±3.8Ma,MSWD为2.3,属早白垩世。岩石地球化学研究表明,花岗岩主要表现为高硅(SiO_2含量为70.18%~75.62%,样品数为8)、富碱(全碱(Na_2O+K_2O)含量为8.25%~9.34%,样品数为8)、准铝-弱过铝质(Al_2O_3的含量为12.69%~14.68%,铝饱和指数A/CNK为0.92~1.05)的特点,属高钾钙碱性岩石系列。卫境岩体中含萤石细粒花岗岩脉的锆石SHRIMP铀-铅年龄为137±2Ma,MSWD为0.25,与卫境花岗岩基本同期,同时与苏莫查干敖包萤石矿脉中的蚀变矿物绢云母和伊利石的钾-氩年龄基本接近。所有上述证据表明研究区的萤石成矿作用与早白垩世的岩浆活动具有密切的成因联系。
     苏莫查干敖包萤石矿床地球化学研究结果表明,各成矿期次萤石单矿物的镍含量较高,其变化范围为(28.60~38.60)×10~(-6),远高于上地壳的镍的平均含量。成矿作用早期形成的纹层状、细晶块状、条带状萤石矿石的稀土元素配分型式为轻稀土元素略显富集、基本没有铕异常;相比之下,成矿作用晚期形成的伟晶状、混合伟晶状萤石,为轻稀土元素亏损和重稀土元素富集,铕既有正异常也有负异常。萤石的包裹体研究结果表明,成矿流体主要属H_2O-CO_2-NaCl体系,各类型萤石矿石中存在3种包裹体类型:气-液2相包裹体,富CO_2包裹体和气相-液相-固相共存的3相包裹体。高温和高盐度与低温和低盐度包裹体均可见及,前者的均一温度变化范围为396~436℃,盐度为29.47%~47.95%NaCleq.,集中分布在36%~40%NaCleq.之间;后者的均一温度在140~160℃,盐度在0.18%~10.98%NaCleq.集中分布在2.0%NaCleq.附近。萤石矿石中黄铁矿的δ~(34)S为-5.2‰~+7.0‰,与典型的岩浆热液矿床大体相似。成矿早期阶段萤石δD为-119.0‰~-102.0‰,δ~(18)O为-7‰~-11.6‰,反映了δ~(18)O交换的特征;成矿晚期阶段萤石δD为-128‰~-104‰,δ~(18)O为-21‰~-14.8‰,分布在大气降水线附近。在萤石的成矿作用的早期阶段,成矿流体主要是高温和高盐度的岩浆流体,流体与大石寨组流纹岩和流纹质凝灰岩以及大理岩透镜体的高比例的水-岩反应是萤石从含CaF_2的成矿流体中沉淀析出的主要机制,萤石矿脉普遍发育的高岭石化是这一反应的结果;成矿晚期阶段的成矿流体主要是大气降水为主要来源的混合流体,流体温度的降低是CaF_2从流体中沉淀的主要因素。
     苏莫查干敖包萤石矿床的锶-钕同位素研究结果表明,萤石单矿物的锶同位素初始比值(~(87)Sr/~(86)Sr)_i为0.70861~0.71045。萤石的钕同位素初始比值(~(143)Nd/~(144)Nd)_i为0.512203~0.512341,εNd(t)为-2.33~-4.77,二阶段模式年龄T_(2DM)为1121~1329 Ma。萤石的锶-钕同位素特征表明苏莫查干敖包萤石矿床的成矿物质来源主要与早白垩世卫境花岗岩有关,萤石高的εNd(t)反映了成矿物质来源中有相当比例的幔源物质组分(或幔源流体)的加入。萤石的二阶段模式年龄与南蒙古乌呼塔格的结晶基底年龄接近,暗示了部分成矿物质来源与南蒙古陆块有着紧密的关联。
Located in the northern of Siziwang Banner of Inner Mongolia and lying in the external contact zone between Early Permian Dashizhai Formation and Early Cretaceous Weijing granite bathlioth, the Sumoqagan Obo fluorite district is the most important fluorite producting areas in the North China and consist of the super-large Sumochagan Obo and the medium Obotu fluorite-only deposit,as well as studded fluortie occurrences, such as Yiher, Xilimiao,and Guilersty fluorite occurences.Exploratory drilling indicates that the Sumochagan Obo depopsit has a reserve in excess of 19 million tons of ores with a mean CaF_2 grade of 53.86% ,and the Obotu deposit with a reserve in excess of 1.15 million tons ores with a mean CaF_2 grade of 78%.The Somochagan Obo fluorite mineralization occurs mainly in the bottom of the third member of the Dashzhai Formation as stratiform, stratoid layers and lenes, and the Obotu deposit mainly in the top of the third Member of the Dashzhai Formation.All the mineralizations are spatially and temporally associated with the Yanshanian Weijing graniotid batholith.Metallogeny of the deposit can be divided into two stages.The early stage ores are mainly laminated,banded and fine-grained compact massive ores,whereas the late stage ores are mainly megacrystalline and mingled megacrystalline ores.According to the mineral compositions,the fluorite ores can be divided into 3 types,namely fluorite-quartz ores,sulfide-fluorite ores and calcite-fluorite ores.Ubiquitous alteration in flurite veins is the kaolinite alteration.Results from the K-Ar dating of alteration minerals of sericite and illite reveal that fluorite mineralization occurs in the early Cretaceous.
     Systematic petrological study and isotopic dating show that the intermediate to acid volcanic-sedimentary rocks of Dashizhai Formation is the result of arc volcanism.The mean age of zircon SHRIMP U-Pb of volcanic rocks is 276±10 Ma (with MSWD 1.9),showing volcanoes eruptived at the Early Permian. Petrologic study indicates volcanic rocks of the Dashizhai Formation have a characteristics of calc-alkaline to high potassium calc-alkaline rock series with high silicon content (SiO_2 ranging from 63.66% to 78.02% of 12 samples), alkaline-rich ((Na_2O + K_2O) ranging from 5.55% to 9.86% of 12 samples ) and peraluminous (Al_2O_3 ranging from 11.78% to 21.33%, A / CNK ranging from 1.0 to 2.0). Weijing granite batholith emplaced at the early cretaceous against the stretching tectonic background with zircon SHRIMP U-Pb age of (138±3.8) Ma (MSWD is 2.3), which associates with fluorite mineralization. Petrological research indicated the granite rocks are the high potassium calc-alkaline rock series, which have the characteristics of the high silica (SiO_2 ranging from 70.18% to 75.62%, n is 8), of the alkali-rich (contents of Na_2O + K_2O ranging from 8.25% to 9.34%) and of metalumininous to weakly peraluminous (Al_2O_3 ranging from 12.69% to 14.68%, A / CNK ranging from 0.92 to 1.05) .The fine-grained fluorite-bearing granite dyke in the Weijing granite batholith has a age of 137±2Ma (MSWD is 0.25),showing emplacement simultaneously with the Weijing granite batholith. The age consistency among the emplacement of the Weijing granite batholith and fine-grained granite veins, as well as the ages of alteration minerals in fluorite veins indicates that the early Cretaceous granite batholith has a close relation to fluorite mineralization.
     Comprehensive geochemistry studies have revealed all the representive fluorite separates of the Sumochagan Obo deposit have high nickle contents ranging from 28.60×10~(-6) to 38.60×10~(-6),which is far exceed the mean content of the upper crust.The early stage ores basiclly have poor-fraction REE patterns and exhibit low LERR-enrichment with no Eu anomaly,whereas the late stage ores exhibit HREE-enrichment REE patterns with positive or negative Eu anomaly.All ore types show obivious negative Ce anomaly indicating ore-forming fluid at oxided state.Fluorite inclusions studies show ore-forming fluids are maily NaCl-CO_2-H_2O system,where three type inclusions have been discerned, namely liquid-rich inclusions,CO_2-riched inclusions and halite-bearing multi-phase inclusions.Ore-forming liquids can be divided into two end-menbers,namely hyperaline brine with high temperatures associated with the early fluorite and low salinities with low temperatures associated with late stage fluorite.Hypersaline brine associated with eraly stage have a salinities of 29.47%~47.95% NaCleq. mainly ranging from 36% to 40% NaCleq. with homogeneous temperatures ranging from 396℃to 436℃,and formed at the lowest pressures of 270×10~6Pa,equiivalent to a depth of 1.1km, under lithostatic conditions;whereas the low salinity fluids associated with late stage fluorites have a salinity of 0.18%~10.98wt%NaCl eq.,which mainly distribute round 2.0wt% NaCleq.with homogeneous temperatures ranging from 140℃to 380℃,and formed at presures of (4.5~160)×10~6Pa, equivalent to a maxium depth of 1600m below the paleowater surface,under hyudrostatic condition. Sulfur isotopeδ~(34)S for pyrite in fluorite ores in the Sumochagan Obo deposit range from -5.2‰to +7.0‰,which is similar to those of the typical magmatic hydrothermal deposits.δD for fluorite associated with eraly metallogenic stage range from -119. 0‰to -102.0‰,whereasδ~(18)O from -7‰to -11.6‰,which indicate the feature of oxygen isotope exchanges.δD for fluorite associated with late metallogenic stage range from -128‰to -104.0‰,andδ~(18)O from -21‰to -14.8‰,which plot around meteroric line indicating mainly meteroric origins.The combided inclusions microthermal data and stable isotope data indicate the ore-forming fluids associated with early metallogenic stage are mainly magamatic hydrothermal fluids with high temperature and high salinties.The mechanisms of eraly fluorite metalloge are mainly fluids-rock interactions between eraly Permian volcanic rocks and marble lens.The CaF_2 precipitation from ore-forming fluids is the results of pH increases from the acid to the neutral.The ubiqitous kaolinized alterations in the Sumochagan Obo fluorite veins are the result of rock-fluids interactions.The ore-forming fluids associated with late metallogenic stage are mainly meteroic origins.The temperature decreases lead to the precipiatation of CaF_2 from the ore-forming fluids.
     Combined Sr-Nd-Pb isotope data of Sumocahgan Obo fluorites show that the ~(87)Sr/~(86)Sr initial ratios of fluorites calculated at 138Ma range from 0.70861 to 0.71045, ~(143)Nd/~(144)Nd initial ratios from 0.512203 to 0.512341,andεNd(t) from -2.33 to -4.77,two-stage modal ages T_(2DM) from 1121Ma to 1329Ma.All the results indicate the metallogenic matterials of the Sumochagan Obo super-large fluorite-only deposit have closely related to the emplacement of the eraly cretaceous Weijing granite batholith.The highεNd(t) of fluorite reflect the mantle materials possesse a definite proportion in metallogenic materials. The Sumochagan Obo super-large deposit is, therefore, believed to be a product of Mesozoic Yanshanian granitoid magma emplacement caused by coeval re-working of these deep-rooted faults occurring along the southern margin of the Siberian plate.The consistentency of the two-stage modal ages of fluorite with the that of the Southern Mongolia micro-continent crystalline basement imply a closely connections.
     This research project fill in the gap in the theoretic studies of super-large fluorite-only deposits in north China and will provide prospecting criteria of large and super-large fluorite deposits in the Sumuchagan Obo district and its neighboring area. Meanwhile, the project may also supply a technique support for China's fluorite mining industry to maintain its advanced position in the international mining circle.
引文
1 内蒙古自治区102地质队.1987.内蒙古自治区四子王旗苏莫查干敖包矿区萤石矿初步勘探地质报告.
    2 内蒙古自治区102地质队.1987.内蒙古自治区北敖包吐矿区萤石矿详细普查及外围萤石矿普查地质报告.
    1 内蒙古自治区102地质队.中华人民共和国区域地质调查报告,江岸二队-艾力格庙地区1:50000.
    包志伟,陈森煌,张帧堂.1994.内蒙古贺根山地区蛇绿岩稀土元素和钐-钕同位素研究[J].地球化学,23(4):339-349.
    蔡华君,张宝贵,李院生.1996.辉锑矿.萤石共生矿床中萤石的稀土元素地球化学[J].地质地球化学,103-106.
    陈斌,徐备.1996.内蒙古苏左旗地区古生代两类花岗岩类的基本特征和构造意义[J].岩石学报,12(4):546-561.
    陈斌,赵国春,Widle S.2001.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评,47(4):361-367.
    陈先沛,高计元,曹俊臣.中国重晶石和萤石矿床(A).中国矿床[M],北京:地质出版社,314-340.
    邓晋福,罗照华,苏尚国,莫宣学,于炳松,赖兴运.2004.岩石成因、构造环境与成矿作用[M].北京:地质出版社.
    洪大卫,黄怀增,肖宜君.1994.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,6(3):219-230.
    洪大卫,王式洗,谢锡林,张季生.2000.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J].地学前缘,7:441-456.
    李锦轶,高立明,孙桂华,李亚萍,王彦斌.2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报,023(03):565-582.
    李士勤.1985.火山作用形成的超大型沉积萤石矿床[J].地质与勘探,2l(1):30-31.
    李毅,吴泰然,罗红玲,赵磊.2007.华北克拉通北缘早白垩世岩石圈减薄:钾玄岩的Pb同位素证据[J].北京大学学报(自然科学版),43(2):176-182.
    刘斌,沈昆.1999.流体包裹体热力学[M].地质出版社.
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体[M].北京:科学出版社.
    内蒙古自治区地质矿产局.1996.全国地层多重划分对比研究-内蒙古自治区岩石地层[M].中国地质大学出版社,143-144.
    内蒙古自治区地质矿产局.1991.内蒙古自治区区域地质志[M].北京:地质出版社,725.
    聂凤军,江思宏,张义,白大明,胡朋,赵元艺,张万益,刘研.2007.中蒙边境中东段金属矿床成矿规律和找矿方向[M].地质出版社.
    聂凤军,江思宏,刘妍.2002.阿拉善东七一大型萤石矿床钐-钕同位素年龄及其地质意义[J].矿床地质, 21(1):10-15.
    聂凤军,许东青,江思宏,胡朋.2008.内蒙古苏莫查干敖包超大型萤石矿床地质特征及成因(J).矿床地质,27(1):1-13.
    聂凤军,许东青,江思宏,胡朋.2009a.苏-查萤石矿区钾长花岗岩锆石SHRIMP年龄及其地质意义[J].地球学报,30(4).
    聂凤军,许东青,江思宏,胡朋.2009b.内蒙古苏-查萤石矿区流纹岩锆石SHRIMP定年及地质意义[J].地质学报,83(4):3-11.
    彭建堂,胡瑞忠,蒋国豪.2003.萤石钐-钕体系对晴隆体矿床成矿时代和物源的制约[J].岩石学报,19(4):785-791.
    邵济安,张履桥,牟保磊,韩庆军.2007.大兴安岭的隆起与地球动力学背景[M].北京:地质出版社.24页.
    邵济安.1986.内蒙古中部早古生代蛇绿岩及其在恢复地壳演化历史中的意义[A].见中国北方板块构造论文集[A],第一集.北京地震出版社,87-101.
    邵济安.1991.华北板块北缘中段地壳演化[M].北京:北京大学出版社,136页.
    施光海,刘敦一,张福勤,简平,苗来成,石玉若,陶华.2003.中国内蒙古锡林郭勒杂岩SHRIMP锆石铀-铅年代学及意义[J].科学通报48(20):2187-3192.
    石玉若,刘敦一,张旗,等.2007.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP铀-铅年龄及其区域构造意义[J].地质通报,26(2):183-189.
    宋彪,张玉海,万渝生,等.2002.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论,地质论评,48(增刊):26-30.
    唐克东,张允平.1991.内蒙古缝合带的构造演化[A].见:肖序常,汤耀庆主编古中亚复合巨型缝合带南缘构造演化[M].北京北京科学出版社.
    陶继雄,白立兵,宝音乌力吉,郑武军,苏茂荣.2003.内蒙古满都拉地区二叠纪俯冲造山过程中的岩石记录[J].地质与调查,26(4):241-249.
    王立全,潘桂棠,朱弟成,周长勇,袁四化,张万平.2008.西藏冈底斯带石炭纪-二叠纪岛弧造山作用:火山岩和地球化学证据[J].地质通报,27(9):1509-1534.
    王荃,刘雪亚,李锦轶.1991.中国华夏与安加拉古陆间的板块构造[M].北京大学出版社,74-101,122-134.
    王涛,郑亚东,Gehrels G E,穆治国.2001.南蒙微大陆存在的年代学证据:亚干-翁奇海尔罕核杂岩花岗质片麻岩的锆石铀-铅年龄[J].科学通报,46:1220-1223.
    王万昌,杨宝善,张绍平.1986.苏莫查干敖包-西力庙萤石矿床地质特征及成矿地质作用探讨[J].内蒙古地质,(1):20-30.
    王玉净,樊志勇.1997.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质惫义[J].古生物学报,36(1):58-69.
    吴福元,孙德有.1999.中国东部中生代岩浆作用与岩石圈减薄[J].长春科技大学学报,29(4):313-318.
    夏毓亮,韩军.2008.中国最古老铀矿床成矿年龄及铅同位素示踪铀成矿省[J].地球学报,29(6):752-760.
    徐备,陈斌,邵济安.1996.内蒙古锡林郭勒杂岩钐-钕,铷-锶同位素年代学研究[J].科学通报,41:153-155.
    徐少康,殷友东.2001.我国单一萤石矿床地质概要[J].化工矿产地质,23(3):134-140.
    许成,黄智龙,漆亮,李文博.2001.萤石Sr-Nd同位素地球化学研究评述[J].地质地球化学,29(4):27-34.
    许东青,聂凤军,江思宏,张万益,钱明平.2008a.内蒙古苏莫查干地区燕山期过铝质花花岗岩研究[J].岩石矿物学杂志,27(2):89-100.
    许东青 聂凤军 江思宏 张万益.2008b.内蒙古敖包土萤石矿床地质和地球化学特征[J].地球学报,29(4):440-450.
    许东青,聂凤军,刘妍,张万益,云飞,张天俊,林日亮,吕旭光.2008c.内蒙古敖包吐萤石矿床的Sr、Nd、Pb同位素地球化学[J].矿床地质,27(5):1-16.
    许东青,聂凤军,钱明平,刘妍,云飞,张万益.2009.苏莫查干敖包超大型萤石矿床的稀土元素地球化学特征及其成因意义[J].矿床地质,28(1):30-41.
    许绚,吴泰然,张双涛,Byamba J,Amajargal A,王时麒,李忠权.2004.内蒙古四子王旗早白垩世深源捕虏体的发现及意义[J].北京大学学报(自然科学),41(4):563-569.
    杨丹,徐文艺,崔艳合,陈伟十,连玉.2007.二维气相色谱法测定流体包裹体中气相成分[J].岩矿测试,26(6):451-454.
    翟明国,樊祺诚.2002.华北克拉通中生代下地壳置换:非造山过程的壳幔交换[J].岩石学报,18(1):1-28.
    张旗,王焰,金维俊,王元龙,李承东,熊小林.2008.早中生代的华北北部山脉:来自花岗岩的证据[J].地质通报,27(9):1391-1403.
    张旗,王焰,李承东,等.2006.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报,22:2249-2269.
    张旗,王元龙,金维俊,等.2008.早山前、造山和造山后花岗岩的识别[J].地质通报,27(1):1-18.
    张宗清,袁忠信,唐索寒.2003.白云鄂博矿床年龄和地球化学[M].北京:地质出版社,1-14.
    张双涛,吴泰然,许绚.2005.内蒙古中部早白垩世钾玄岩的发现及其意义[J].北京大学学报(自然科学版),41(2):212-218.
    郑亚东,Davis G A,王琮,等.1998.内蒙古大青山大型逆冲推覆构造[J].中国科学D辑,28(4):289-295.
    周新华,张国辉,杨进辉,陈文寄,孙敏.2001.华北克拉通北缘晚中生代火山岩锶-钕-铅同位素地质填图及其构造意义[J].地球化学,30(1):10-23.
    Allegre C L and Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes [J]. Earth and Planetary Science Letters, 39:1-28.
    Alther R,Hengner E,Langer C,et al.2000.High potassium calc-alkaline Ⅰ-type plutonism in the European Variscide: northern Vosges(France) and northern Schwarzwald(Germany)[J].Lithos, 50:51-73.
    Alvin M.P, Dunphy J.M and Groves D.L.2004.Nature and genesis of a carbonatite-associated fluorite deposit at Speewah,East Kimberley region,Western Australia[J].Mineralogy and Petrology,80:127-153.
    Anderson, G.M.1975. Precipitation of Mississippi Valley-type ores [J]. Econ.Geol.,70:937-942.
    Andrew A, Gowdwin C I and Sinclair A J.1984.Mixng line isochrons: a new interpretation of galena lead isotope data from Southeast British Columbia [J]. Econ.Geol.,79:919-932.
    Bachelor R A and Bowden P.1985.Prtrogenetic interpretation of grantoid rock series using multicationic parameters [J].Chem.Geol.,48:43-55.
    Badarch G,Cunningham W D a nd Windley B F.2002.A new terrane subdivision for Mongolia:implications for Phanerozoic crusal growth of Central Asia[J].Journal f Asian Earth Science,21:87-110.
    Barbieri M , Bellanca A, Neri R and Tolomeo L. 1987. Use of strontium isotopes to determine the sources of hydrothermal fluorite and barite from Northwestern Sicily (Italy) [J]. Chem. Geol., 66 : 273-278.
    Bau M.1991. Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium [J].Chemical Geology,93:219-230.
    Bau M and Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Altantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater [J].Chemical Geology, 155:77-90.
    Bau M and Moller P.1992.Rare earth element fractionation in metamorphogenic hed fluorite vein, Parzan, Spanish Central Pyreness [J]. Mineralium Deposita,33:620-632..
    Bau M.1996.Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf and lanthanide tetrad effect [J].Contrib.Mineral Petrol., 123:323-333.
    Becker S P, Fall A and Bodnar R J.2008.Synthetic fluid inclusions: Ⅹ Ⅴ Ⅱ .PVTX properties of high salinity H_2O-NaCl solutions( > 30wt%NaCl);Application to fluid inclusions that homogenized by halite disappearance from porphyry copper and other hydrothermal ore deposits[J].Econ.Geol.,103:539-554.
    Bell K, Anglin C D and Franklin J M. 1989. Sm-Nd and Rb-Sr isotope systematics of scheelites: possible implications for the age and genesis of vein-hosted gold deposits [J].Geology, 17:500-504.
    Bischoff, J.L.I 991. Densities of liquids and vapors in boiling NaCl-H2O solutions:A PVTX summary from 300℃ to 500℃[J].Amer.J.Sci.,289:217-248.
    Bodnar R J.1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties of inclusion fluids [J].Economic Geology, 78: 535-542.
    Bodnar R J, Burnham C W, and Sterner S M. 1985. Synthetic fluid inclusions in natural quartz.Ⅲ.Determination of phase equilibrium properties in the system H_2O-NaCl to 1000 ℃ and 1500bars[J].Geochimica et Cosochimica Acta, 49:1861-1873.
    Bodnar R J and Beane R E.1980. Temporal and spatial variations in hydrothermal fluid characteristics during vein fillings in preore cover overlying deeply buried porphyry copper-type mineralization at Red Mountain, Arizona[J].Econ.Geol. ,75:876~893.
    Bodnar,R.J..1994.Synthetic fluid inclusions:ⅩⅡThe system H_2O-NaCl.experimental determination of the halite liquids and inclusions and isochors for a 40 wt% NaCl solution[J].Geochimica et Cosmochimica Acta,58(3):1053-1063.
    Burnham C W,Holloway J R,Davis N F.1969.Thermodynamic properties of water to 1000℃ and 10000 bars.Geol[J].Soc. Amer., 132:1 -96.
    Burnham C W.1979.Magmas and hydrothermal fluids.In:Barnes H L(ed).Geochemistry of hydrothermal ore deposit(2nd.edition)[M].New York:Jhon Wiley &Sons.,71 -136.
    Cannals A and Cardellach E.1993.Strotium and sulphur isotope geochemistry of low -temperature barite-fluorite veins of the Catalonian Coastal Ranges (NE Spain): a fluid mixing model and age constrains [J]. Chemical Geology, 104:269-280.
    Chen B , Borming J , Widle S and Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrol genesis and tectonic implications [J]. Tectonophysics,328:157-182.
    Chen Bin,Jahn B M,Tian W.2008.Evolution of the Solonker suture zone:Constrains from zircon U-Pb ages,Hf isotopic ratios and whole-rock Nd-Sr isotope compsitions of subduction-and collision-related magmas and foreark sediments[J]. Journal f Asian Earth Science ,34:245-257.
    Chesley JT, Halliday A N and Srivener R C.I991 Samarium-neodymium direct dating of fluorite minerallizations [J]. Science, 25:949-951.
    Chesley J T, Halliday A N, Kyser T K, Spry PG.1994.Direct dating of Mississippi Valley-type mineralization.:Use Sm-Nd in fluorite[J].Econ.Geol.,89:1192-1199.
    Claesson S, Vetrin V, Bayanova T, et al. 2000. U-Pb zircon ages from a Devonian carbonatite dyke, Kola Peninsula, Russia: a record of geological evolution from the Archean to the Paleozoic[J]. Lithos, 51:95-108
    Davis A G,Xu B,Zheng Y D,Zhang W J.2004.Indosinian extension in the Solonker suture zone: The Sonid Zuoqi metamorphic core complex, Inner Mongolia,China[J].地学前缘,11(3):135-144.
    Deans T and Powell J L.1968.Trace elements and strontium isotopes in carbonatites, fluorites and limestones from India and Pakistan [J].Nature, 218: 750-752.
    Depolo D J.1981.Nd in the Colorado front Range and implications for crust formation and mentle evolution in the Proterozoic[J].Nature,291:193-196.
    Eills J A. 1979. Explored geochemistry systems. In: Barnes H L, ed.Geochemistry of hydrothermal ore deposits [M]. New York: Wiley Interscience. 632-678.
    Ekambaram V, Brookins D G, Rosenberg P E, Emanuel K M.1986. Rare earth element geochemistry of fluorite-carbonate deposits in western Montana, USA [J].Chem.Geol.
    Evans N,Wilson N,Cline J,Mcmnes B and Byrne J.2002.Developments in fluorite (U-Th)/He thermochronology [J]. Geochim Cosmochim Acta, 66(15A suppl 1):A219.
    Fanlo I, Touray J.C, Subias, et al.1998.Geochemical patterns of sheared fluorite veins ,Parzan,Spanish Central Pyrenees[J].Mineralium Deposita,33:620-632.
    Faure G. 1986. Principles of isotope geology [M].2nd Ed. New York: John Wiley & Sons.
    Ferrari L, Petrone C M and Francalanci L.2001.Generation of oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback,asthenosphere infiltraton,and variable flux melting[J].Geology,29:507-510.
    Ferrari L.2004.Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico [J].Geolgy,32:77-78..
    Frezzotti M L.1992.Magmatic immiscibility and fluid phase evolution in the Mount Genis granite (Southeastern Sardinia, Italy) [J].Geochimica et Cosmochimica Acta, 56:21-33.
    Field CW, Gustafso LB.1976.Sulfur isotopes in the porphyry copper deposit at El Salvador, Chile [J].Econ.Geol., 71:1533-1548.
    Fournier R O.1999.Hydroyhermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology, 94:1193-1211.
    Galindo C, Pankhurst R J, Casquet C, Conigold J, Baldo E, Rapela C W and Saavedea J. 1997. Age , Sr-Nd isotope systematics, and origin of two fluorite lodes , Sierras Pampeanas, Argentina[J]. Int .Geol. Rev., 39: 948-954.
    Galindo C, Tomos T, Darbyshire D E F and Csquet C. 1994. The age and origin of the barite-fluorite (Pb-Zn) veins of the Sierra del Guadarrama (Spanish Central System, Spain): A radiogenic (Nd, Sr) and stable isotope study [J]. Chem. Geol., 112:351-364.
    Genc Y.2006.Genesis of the Neogene interstratal karst-type Po¨hrenk fluorite-barite (lead) deposit (Kirsehir, Central Anatolia, Turkey) [J]. Ore Geology Reviews ,29 :105-117.
    Goff B H.,Weinberg.R.,Groves.D I.,Vielreicher N.M. et al.2004.The giant Vergenoeg fluorite deposit in a magnetite-fluorite-fayalite REE pipe:a hydrothermally-altered carbonatite-related pegmatoid? [J] Mineralogy and Petrology,80:173- 199..
    Hawkesworth C J, Turner S, McDermott F, et al.1997.U-Pb isotopes in arc magmas: implications for element transfer from the subducted crust[J].Science,276:551-555.
    Hedenquist W and Lowenstern J B.1994.The role of magmas in the formation of hydrothermal ore deposit [J]. Nature ,370:519-527.
    Hill G T, Campbell A R and Kye.2000.Geochemistry of southwestern New Mexico fluorite occurrences implications for precious metals exploration in fluorite-bearing systems [J].Jouranl of Geochemical Exploration ,68:1-20.
    Hoefs J. 2004.Stable isotopes geochemistry[M].5th Revised and Updated editions. 113.
    Hoskin P W O and Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon [J]. Journal of Metamorphic Geology, 18:423-439.
    Huang Z L , Xu C , Liu C Q , Xu D R , Li WB and Guan T. 2003. Sr and Nd isotope geochemistry of fluorites from the Maoniuping REE deposit, Sichuan Province , China: Implications for the source of ore-forming fluids[J]. Journal of Geochemical Exploration, 78-79:643-648.
    Jian Ping,Liu Dunyi,Kroner A,Windley B F,Shi Yuruo,Zahng Fuqin,Shiguanghai,Miao Laicheng,Zhang Wei,Zhang Qi,Zhang Liqqo,Ren Jishun.2008.Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt,Inner Mongolia of China:implications for continental growth[J].Lithos,101:233-259.
    Judith A, Kinnarird F.J, Kruger R.G. and Cawthorn.2004.Rb-Sr and Nd-Sm isotopes in fluorite related to the granites of the Bushveld Complex[J].South Affirican Journal of Geology, 107:413-430.
    Li J Y.2006.Permian geodynamic setting of Northeast China and adjacent regionsxlosure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J].Journal of Asian Earth Sciences,226(3-4):207-224.
    Ludwig K R. 2003. User's manual for isoplot 3.0, a geochronological tool kit for Microsoft Excel. Berkely:Berkely Geochronological Center Special Publication, 4:25-32.
    Macdonald R, Hawkesworth C J, Heath E. 2000.The Lesser Antilles volacanic chain:a study in arc magamatism[J]. Earth Science Reviews, 49:1-76.
    Marquez A, Oyarzun R, Doblas M and Verma S P.1999.Alkalic (ocean island basalt type) and calc-alkalic volcanism in the Mexican volcanic belt:A case for plume-related magmatism and propagating rifting at an active margin[J]? Geology,27:51-54.
    Martin H.1987.Petrognesis of Archean trondhjemites, tonalites and granodiorites from eastern Finland: major and trace element geochemistry [J].J.Petrol. 28:921 -953.
    Medford G A, Maxwell R J and Armstrong R L. 1983.~(87)Sr/~(86)Sr ratio measurements on sulfides, carbonates, and fluid inclusion from Pine Point, Northwest Territories, Canada: An ~(87)Sr/~(86)Sr ratio increase accompanying the mineralizing process [J]. Econ. Geol., 78: 1375-1378.
    Menuge J F, Feely M and O'Reilly C. 1997. Origin and granite alteration effects of hydrothermal fluid: Isotopic evidence from fluorite veins, Co Galway, Ireland [J]. Mineralium Deposita, 32 : 34-43.
    Meyer C and Hemley.1976.Wall rock alteration. In: H L Barnes (ed.), Geochemistry of hydrothermal ore deposits [M].John Wiley& Sons, 166-235..
    Miao Laicheng,Fan Weiming,Liu Dunyi,Zhang Fuqin,Shi Yuruo,Guo Feng.2008.Geochoronology and geochemistry of the Hegenshan ophiolitic complex:implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic belt,China[J].Journal of Asian Earth Sciences,32:348-370.
    Moller P Parekh P P and Schneider H.J.1976.The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis [J]. Minerl.Deposita (Berl.), 11:111-116.
    Moller P. 1991.REE fractionation in hydrothermal fluorite and calcite [A]. In M.Pagel and J L Leroy (Editors) Source, Transport and Deposition of Metals, 25th Soc.Geol.Am, Anniv.Meet., 91-94.
    Munker C, Womer G, Yogodzinksi G, et al.2004.Behaviour of high field strength elements in subduction zones: constrains from Kamchatka-Aleutian arc lavas [J]. Earth and Planetary Science Letters,224:275-293.
    Munoz M. Sm-Nd dating of fluorite from the world-class Montroc fluorite deposit, southern Massif Central, France [J].Minealium Deposita,39:970-975.
    Nabelek P I. 1987. General equation for modeling fluid/ rock interaction using trace elements and isotopes [J].Geochim. Cosmochim. Acta ,51: 1765-1769.
    Ohomoto H and Rye R O.1979.Isotopes of sulfur and carbon[M]. In: Geocheminstry of hydrothermal ore deposits,2nd edn. Holt Rinehart and Winston, New York.
    Othman B D, White W M and Patchett J.1989.The geochemistry of marine sediments, island arc magamas genesis, and crust-mantle recycling [J].Earth and Planetary Science Letters,94:1-21.
    Paterson B A,Stephens W E,Rogers G,et al.1992.The nature of zircon inheritance in two granite plutons. Transactions of the Royal Society of Edinburgh [J].Earth Science,83:459-471.
    Pearce J A.1982.Trace element characteristics of lava from destructive plate boundaries[M].In: Tropes, R S (Ed.), Andsites.Wiley,London, 525-548.
    Pidgeon R T, Nemchin A A, Hitchen G J. 1998.Internal structures of zircon from Archean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages[J]. Contrib. Mineral. Petrol., 132:288-299.
    Plank T and Langmuir C H. 1989.The chemical compositions of subducting sediment and its consequences for the crust and mantle[J].Chem. Geol., 145:325-394.
    Reed M H.1997.Hydrothermal alteration and its relationship to ore fluid composition.In:H L Barnes(ed.),Geochemistry of hydrothermal ore deposits[M].Jhon Wiley,303-66.
    Reed M H.1982.Calculation of multicomponent equilibria and reaction processes involving minerals,gases and aqueous phase[J].Geochimica et Cosmochimica Acta,46:513-28.
    Richardson C K and Holland H D.1979a.The solubility of fluorite in hydrothermal solutions,an experimental study [J].Geochem. Cosmochim .Acta, 43:1313-1325.
    Richardson C K and Holland H D.1979b. Fluorite deposition in hydrothermal systems[J].Geochem. Cosmochim .Acta, 43:1327-1335.
    Robb L.Introduction to ore-forming processes[M].Blackwell Publishing, 166-174.
    Ronchi, L H and Touray J C. 1993.Thc Ribeira fluorite district, South Brazil [J]. Mineral.Deposita, 28:240-252.
    Rose A W and Burt D.1979.Hydrothermal alteration [M].In:H L Barnes (ed.),Geochemistry of hydrothermal ore deposits.John Wiley& Sons,173-275.
    Ruiz J and Richardson C K. 1988.Strontium isotope geochemistry of fluorite, calcite and barite of the cave-in-rock fluorite district, Illinois [J].Econ. Geol.,88:203-210.
    Rusk B G, Reed M H.2008.Fluid inclusion evidence for magmatic-thermal fluid evolution in the porphyry copper-molybdenum deposita at Butte, Montana[J].Economic Geology,103:307-334.
    Sallet R and Fontignite R M.2005. The use of vein fluorite as probe or paleofluid REE and Sm-Nd isotope geochemistry: The Santa Caarin Fluorite District, Southern Brazil[J].Chemical Geology,223:227-248.
    Sasmaz A, Yavuz F, Sagiroglu A, Akgul B.2005.Geochemical patterns of the Akdagmadeni(Yozgat,Cental Turkey) fluorite deposits and implications[J].Journal of Asian Earth Sciences 24:469-479.
    Sato K.1980.Distribution of fluorite deposits in Japanese Islands[J].Mineralium Deposita(Berl),15:327-334.
    Saunders A D,England R W,Reichow M K,White R V.2005.A mantle plume origin for the Siberia traps: uplift and extension in the West Siberian Basin,Russia[J].Lithos,79:407-424.
    Schinenberger J, Khler J, Markl G,2008.REE systematic of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland[J].Chemical Geology ,247:16-35.
    Schineider H J,Moller P and Parekh.1975.Rare earth element distribution in fluorites and carbonate sediments of the east Alpine mid-Triassic sequences in the Nordliche Kalkalpen [J].Miner.Deposita, 10:330-344.
    Schneider J, Bon M, Lappon F and Bechestadt.2002.Carbonate-hosted zinc-lead deposits in the Lower Cambrian of Hunan, south China: a radiogenic (Pb-Sr) isotope study [J].Econ.Geol.,97: 1815-1827.
    Schneider J, Haack U, Stedingk K.2003.A Sr isotope study on fluorite and siderite from post-orogenic mineral veins in the eastern Harz Mountains ,Germany[J].Mineralium Deposita,38:984-991.
    Schwartz M O.1989.Determing phase volumes of mixed CO_2-H_2O inclusions using microthermometric measurements [J]. Mineralium Deposita,24:43-47.
    Schwinn G and Mark Gl.2005.REE systematics in hydrothermal fluorite [J].Chemical Geol.,216:225-248.
    Sengor A M C , Natalin B A and Burtman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crust growth in Eurasia [J].Nature,364: 299-307.
    Shelton KL,Rye DM.1982.Sulfur isotopic compositions of ores from Mines Caspe,Quebec:an example of sulfate-sulfide isotopic disequilibria in ore-forming fluids with applications to other porphyry type deposits[J].Econ.Geol.,77:1688-1709.
    Sibson R H, Moore J M and Rankin A H.1975.Seismic pumpingra hydrothermal fluid transport mechanism[J]. J. Geol. Soc. (Lond.),131:653-659.
    Sibson R H, Robert F and Poulsen,K H.1988.High angle reverse faults, fluid-pressure cycling,and mesothermal gold-quarz deposits[J].Geology,16:551-555.
    Sibson R H, Moore J M and Rankin A H.1975. Seismic pumping: a hydrothermal fluid transport mechanism[J]. J. Geol. Soc. (Lond.), 131,653-659.
    Simonetti A and Bell K. 1995. Nd and Sr isotope systematics of fluorite at the Amba Dongar carbonatite complex, India: Evidence for hydrothermal and crustal fluid mixing [J]. Econ. Geol., 90:2018-2027.
    Skinner,B J.1997.Hydrothermal mineral deposits:what we do and don't know.In: Barnes H L ,ed.,Geochemistry of hydrothermal ore deposits[M].New York, Wiley and Sons,1-29.
    Stacey J S and Kramers J D.1975.Approximation of terrestrial lead isotope evolution by a two-stage model[J].Earth and Plenetary Science Letters,26:207-221.
    Stanton R L and Russell R D.1959.Anomalous lead and the emplacement of lead sulfide ores [J].Econ.Geol., 54:588-607.
    Steiger R H and Jager E. 1997. Subcommission on geochronology: Convetion or the use of decay constants in geo-and cosmochronology[J]. Ear. Plan. Sci. Lett., 36:359-362.
    Strong D F, Fryer B J and Kerrich R.1984. Genesis of the St. Lawrence fluorite deposits as indicated by fluid inclusions, rare earth element and isotopic data [J]. Economic Geology, 79:1142-1155.
    Subias I and Fernandez-Nieto C.1995.Hydrothermal events in the Valle de Tena (Spanish Western Pyrenees) as evidenced by fluid inclusions and trace-element distribution from fluorite deposits [J].Chemical Geology, 124:267-282.
    Sverjensky,D A. 1981.The origion of a Mississippi Valley-type deposit in the Viburnum trend,Southeast Missouri[J].Econ.Geol.,76:1848-1872.
    Sylvester P J.1998.Post-collsion strongly peraluminous granite [J].Lithos, 45:29-44.
    Wedepohl K H.1995.The composition of the continental crust[J].Geochim.et Cosmochimca. Acta,59:1217-1232.
    Williams I S and Claesson S.1987.Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes,Scandinavian Caledonides, Ⅱ Ⅰ on microprobe zircon U-Th-Pb[J].Contrib. Mineral. Petrol.,97:205-217.
    Williams-Jhones A E, Samoson I M and Olivo G R.2000.The geniesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Moxico [J].Econ. Geol., 95:327-341.
    Winchester J A and Floyd P A.1977.Geochemistry discrimination of different magma series and their differentiation products using immobile elments [J].Chem.Geol.,20:325-343.
    Windley B F,Alexeive D,Xiao W J,Kroner A and Badarch G.2007.Tectonic models for accretion of the Central Asian Orogenic Belt[J].Jouranal of Geological Society(London), 164:31-47.
    Xiao W J, Brian F, Hao J and Zhai M G. 2003. Accretion leading to collision and the Permian Solonker sutere, Inner Mongolia, China:Termination of the central Asian orogenic belt [J].Tectonics, 22(6):2-20.
    Yang X Y and Yang P S.2000.Ba-REE fluorcarbonate minerals from a carbonatite dyke at Bayan Obo,Inner Mongolia,North China[J].Mineralogy and Petrology,70:221-234.
    Yarmolyuk V V, Kovalenco V I and Salnikova E B.2005.U-Pb age of syn- and post- metamorphic granitoids of south Mongolia: evidence for the presence of Grenvillides in the Central Asia foldbelt [J]. Doklady Earth Sciences 404:986-990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700