用户名: 密码: 验证码:
陶瓷髋关节异响的数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1970年Boutin首先将氧化铝陶瓷应用于全髋关节置换术(THA)后,陶瓷髋关节假体的使用距今已有30多年。近几年出现的第三代氧化铝陶瓷假体以其优越的摩擦学性能、极高的硬度和良好的生物相容性,日益得到医学界的认可。这些优点使其在年轻患者中得到了大量的应用。但是,近几年陶瓷假体出现的“咯吱”声异响(Squeaking,以下简称“异响”)问题逐渐引起了患者和研究者的重视。在美国和英国,使用者对关节异响很敏感,常常因关节异响而向厂商进行法律索赔,这严重阻碍了陶瓷髋关节假体的广泛应用。对髋关节异响的研究成为了全球相关学者关注的焦点。但是迄今为止,研究者对异响的产生机理认识尚浅,还没有提出控制关节异响的具体方法。所以,本课题就是针对陶瓷髋关节异响问题,运用数值模拟和实验研究两种方法较为全面地探究异响的产生机理及其相关影响因素,并最终提出减少异响发生可能性的方法。
     Charnley早已指出,所有常见的关节材料在摩擦过程中都有可能产生声响,所以关节异响实质是一种摩擦引起的噪声。而研究摩擦噪声的实质是研究摩擦引起的振动。在数值模拟研究中,使用ABAQUS6.7建立了陶瓷髋关节假体系统的数值模型,首先计算了各个假体部件的固有频率。髋臼组件(装配在一起的臼杯和陶瓷髋臼)的固有频率远高于异响频率而股骨组件(装配在一起的陶瓷球头和股骨柄)的固有频率非常接近异响频率,初步判断髋臼组件的振动与异响有重要关系。随后运用复特征值提取法探究了陶瓷髋关节系统在摩擦耦合下的不稳定振动模态。研究发现,当球头和髋臼配合面的摩擦系数高于临界摩擦系数时,股骨组件有发生不稳定振动的趋势,股骨组件的不稳定振动很有可能是异响产生的根本原因。为了验证数值结果,在髋关节体外模拟实验仪中测试了相应陶瓷髋关节假体系统在干摩擦下的异响频率,即不稳定振动频率。实验测得的系统不稳定模态频率非常接近数值模拟预测的不稳定模态频率,这表明数值模拟研究方法和结果是准确的,说明了股骨组件的不稳定振动确实是异响产生的根本原因。
     既然股骨组件的不稳定振动是异响产生的根本原因,那么股骨柄和球头必然对系统的稳定性有重要影响。作者提出通过提高系统的临界摩擦系数来提高系统的振动稳定性,从而减少异响发生的可能性。在数值模拟研究中,首先分析了系统的模态耦合过程,揭示了原始系统发生不稳定振动的临界摩擦系数。随后,探究了股骨柄的刚度对系统发生不稳定振动的临界摩擦系数的影响。研究结果表明,降低股骨柄的弹性模量,系统发生不稳定振动的临界摩擦系数降低很多;增加股骨柄的弹性模量,系统发生不稳定振动的临界摩擦有少量增加。在股骨柄中加入CoCrMo合金和316L不锈钢合金可以提高系统发生不稳定振动的临界摩擦系数,以上结果说明股骨柄的刚度对系统的稳定性有重要影响作用,提高股骨柄的刚度在一定程度上有减少异响发生可能性的趋势。陶瓷髋关节数值模拟是一种预测性的研究,可以说明股骨柄对异响的影响趋势,但是并不能证明提高股骨柄的刚度就一定可以抑制关节异响的发生。所以还需要进行髋关节体外模拟实验,研究临床应用的不同刚度的股骨柄和球头对异响的影响作用。髋关节体外模拟实验中,首先设计了获得假体系统发生不稳定振动的临界摩擦系数的实验方法。丙酮是一种挥发性的液体,将其滴入球头和髋臼的摩擦配合面中,随着液体的挥发,界面的摩擦系数缓慢增加,直到系统发生连续的、稳定的异响。第一个异响发生时界面的摩擦系数为系统发生不稳定振动的临界摩擦系数。实验结果表明,假体系统的确存在临界摩擦系数,高于临界摩擦系数,系统不一定保证有异响产生,而低于临界摩擦系数时,系统不会产生异响。这表明异响的发生不仅取决于界面的临界摩擦系数还与界面特定的润滑模态有关。随后,分别比较了3种临床中常用的不同质量和几何结构的股骨柄以及5种直径不同的球头对系统临界摩擦系数的影响。实验结果和数值模拟结果一致,股骨柄的刚度对异响的产生有重要影响作用。在同样的摩擦条件下,较长的钛合金股骨柄最容易产生异响,较长和较重的钴铬钼股骨柄其次,而短的钛合金股骨柄最不容易产生异响。这说明较高结构刚度(高的弹性模量或者更短的)的股骨柄可以减少异响发生的可能性。最小的临界摩擦系数与最大的临界摩擦系数的变化值为34%(0.29-0.39)。相比股骨柄对异响的影响,球头对异响的影响较小,其最小临界摩擦系数与最大临界摩擦系数的变化值只有20%(0.34-0.40)。中等球头直径(36mm)对应的临界摩擦系数最小,最大球头直径(44mm)对应的临界摩擦系数最大。但是,球头直径对系统发生异响时界面的临界摩擦转矩影响很大。随着球头直径的增加,系统发生异响的临界摩擦转矩也随之增加。直径40mm和44mm的球头对应的临界摩擦转矩比其它直径较小的球头大非常多。虽然大球头可以增加关节的活动度,但是大球头对应的大的摩擦转矩可能会引起其它临床问题,因为大的摩擦转矩会传递给整个假体系统。以上研究结果表明,采用刚度较大的股骨柄以及合适大小的球头可以减少异响发生的可能性。
     除此之外,还扩展研究了异响的相关问题,如异响只发生在“硬对硬”,一些噪声会发生在“硬对软”的配合面中,异响与摩擦力-滑动速率斜率的关系问题等。
     本论文通过数值模拟和体外实验两种方法较为全面地揭示了异响的产生机理及其相关影响因素,提出了减少异响发生可能性的方法。对今后研究其它关节材料或设计新的关节结构有着重要的参考意义。
Alumina ceramic-on-ceramic total hip arthroplasty (THA) prosthesis have been used for more than30years since the first being introduced in1970by Boutin. In recent years, the third generation Alumina Ceramic has demonstrated excellent tribological properties, high wear resistance and good biocoMPatibility. Those advantages make ceramic hip prosthesis widely used in young patients. However, the occurrence of squeaking in ceramic-on-ceramic THA has been discussed recently as a potential worrisome problem. In America and Britain, sufferers are sensitive to squeaking. They always make claims on manufacturers for squeaking, which seriously blocks the widespread application of the ceramic hip prosthesis. The research of hip squeaking becomes a hot point for the related researchers all over the world. However, up to now, the main mechanism of squeaking generation has not been completely understood. Furthermore, there is not a realistic method for avoiding squeaking generation effectively. The aim of the present study is therefore to obtain a completed understanding of the generation mechanism and related factors for squeaking on the base of numerical and experimental studies. The other aim is to put forward a method for decreasing the susceptibility of squeaking generation.
     Charnley observed that the presence of frictional conditions could lead to squeaking in hip replacement patients as early as1979. Therefore, ceramic hip squeaking can be defined as a friction sound. Studying friction sound is equal to studying friction-induced vibration of the system. In the numerical study, a finite element model of a ceramic hip endoprosthesis system is established with ABAQUS6.7. The nature frequency for each prosthesis is caculated firstly. The nature frequency of acetabular component (ceramic liner assembled with shell) is much higher than squeaking frequencies, while the nature frequency of the femoral component (ceramic head assembled with stem) is close to the squeaking frequencies. Therefore, the resonance of the femoral component is considered to play an important role in the occurrence of squeaking. Afterwards, the unstable mode of the ceramic hips due to friction coupling is studied using the complex eigenvalue method. Numerical results reveal that the femoral component has a strong propensity of unstable vibration when the friction coefficient of ceramic bearings reaches to a critical value, which is considered to be the most likely mechanism for squeaking. In order to verify the numerical results, the squeaking frequencies or unstable mode frequencies of the corresponding ceramic hip prosthesis system have been tested in a hip simulator under dry friction. The unstable mode frequencies from the experiment are close to those from the numerical study. It indicates that the numerical method as well as the results is correct and the unstable vibration of the femoral component is a mian mechanism for squeaking generation.
     Since the unstable vibration of the femoral componet is the mechanism for squeaking generation, the stem and the head must play an important role in the stability of the system. The authors have proposed a method for decreasing the susceptibility of the squeaking generation by increasing the critical friction coefficient and the stability of the system. In the numerical study, the critical friction coefficients for unstable vibrations of the original system have been investigated by analysing the mode coupling of the system. The effect of the stem's stiffness on the critical friction coefficient of the system has been revealed afterwards. The critical friction coefficient of the system decreases a lot with a decrease in the stem's young's modulus. Increasing the young's modulus of the stem only can result in a little increase in the critical friction coefficients. The critical friction coefficients of the system are increased after adding CoCrMo alloy and316L S S in the stem. The results above indicate that the stiffness of the stem has a great influence on the stability of the system. Increasing the stiffness of the stem has an effect on decreasing the susceptibility of the squeaking generation to some extent. The numerical study of the ceramic hips stability is a method for predicting the initiation of hip squeaking, which can reveal the tendency of hip squeaking generation and the effect of the stiffness of stems on hip squeaking. Since there are always some simplifications in the finite element modeling of hip squeaking, the above numerical results must be verified by an experimental test. Therefore, more experimental studies should be carried out in the hip simulator to investigate the influence of the clinical stems with different stiffness and the head on the squeaking generation. In the experimental study, a method for obtaining the critical friction coefficient of the ceramic hips has been firstly proposed as follows:Acetone as a volatile fluid is introduced to the joint space. The friction coefficient between ceramic bearings increases gradually with time due to evaporation of acetone. When the friction coefficient reaches a certain value, continuous squeaking will occur. The friction coefficient corresponding to the onset of the first continuous squeaking is defined as the critical friction coefficient of the system. The experimental results indicate that there is a critical friction coefficient for each system. However, squeaking does not always occur above this threshold, but there is no squeaking below this threshold. This suggests that not only the friction coefficient but also particular modes of lubrication all have an effect on the onset of squeaking. The infulence of three different stems with different mass and geometric structures and five different heads with different head diameters on the squeaking generation have been investigated in the hip simulator separately. Experimental results are consistent with the numerical results. It is verified in the experimental test that the stiffness of the stem has a great infulence on the squeaking generation. Under the same friction condition, the hip with a long titanium stem is found to most likely make squeak, the hip with a longer and heavier cobalt chrome is found to likely make squeak, and the hip with a short titanium stem is found to not likely make squeak. The results suggest that a stem with high structure stiffness (higher modulus, or shorter in size) can decrease the susceptibility of the squeaking. The critical friction coefficient varied34%(0.29to0.39). CoMPared with the infulence of the stem on the squeaking, the infulence of the head diameter on the squeaking is smaller. The critical friction coefficient varied only20%(0.34to0.40). The hip system with a medium diameter (36mm) has the smallest critical friction coefficient, while the system with the biggest head diameter (44mm) has the highest critical friction coefficient. However, the head diameter has an important effect on the critical friction moment. The critical friction moment increases with bearing diameter. The critical friction moments for the head diameters of44and40mm are significantly higher than those for smaller head diameters. Although a big-size head can extend hip activity, the friction moment from a big-diameter head might produce other clinical problems because this large friction moment must be transmitted through the implanted system. All the results above reveal that using stiffer stem and proper head size can decrease the susceptibility of squeaking generation.
     Furthermore, another squeaking problems such as why squeaking only occurs in "hard-on-hard" bearings, while some noises occurs in "hard-on-soft" bearings and the correlation between squeaking and the slope of friction-velocity have been studied as well.
     In the present study, it has revealed the generation mechanism for hip squeaking and related factors affecting hip squeaking using the numerical and experimental methods. Finally, a method is put forward to decrease the susceptibility of squeaking generation. The present work is significant for the development of new hip materials and the new structure design of hips in the future.
引文
[1]胡侦明,罗先正.髋关节的生物力学.中华骨科杂,2006,26(7):498-500.
    [2]Schumacher U, Schulte E, Schunke M. Prometheus. Thieme Stuttgart New York,2007,2.
    [3]Hothan A. Akustische Schwingungen des kiinstlichen Hiiftgelenks. Technische Universitat Hamburg-Harburg, Ph.D. dissertation,2011:24-25.
    [4]罗先正,邱贵兴,主编.人工髋关节学.第1版.北京:中国协和医科大学出版社,2003:41-56.
    [5]Noble PC, Alexander JW, Lindahl LJ, et al. The anatomic basis of femoral component design. Clin Orthop Relat Res,1988,235:148-165.
    [6]戴尅戎.髋关节的生物力学.见:毛宾尧,主编.人工髋关节外科学.第1版.北京:人民卫生出版社,2002:42-54.
    [7]Ungethum M. Technologische und biomechanische Aspekte der Huft- und Kniealloarthroplastik. Hans Huber Bern Stuttgart Wien,1978.
    [8]M. Ungethum and W. Winkler-Gniewek. Tribologie in der Medizin. Tribologie und Schmierungstechnik.1990,37:268-277.
    [9]Radin EL. Biomechanics of the human hip, Clin Orthop Relat 1980,152:28-34.
    [10]戴尅戎,王以进,周健男,等译.骨骼系统的生物力学基版.上海:学林出版社,1985:152-158.
    [11]Duda GN, Schneider E, Chao EY. Internal forces and moments the femur during walking. J Biomech,1997,30:933-941.
    [12]徐辉,人工髋关节假体的分类和应用.中华损伤与修复杂,2009,4(2).
    [13]张先龙,蒋垚,陈云苏.人工髋关节外科学——从初次置换到翻修手术,人民军医出版社,2009.
    [14]刘庆,周一新.人工髋关节摩擦学研究进展.国际骨科学杂,2009,3(30).
    [15]B. Braun. www.bbraun.de. Internetabruf,14.04.2010.
    [16]刘军,人工髋关节假体磨损性能的研究现状.中国组织工程研究与临床康复,2008,J2.
    [17]Biomet. www.biomet.de. Internetabruf,08.08.2011.
    [18]Wizleb WC, Ziegler J, Krummenauer F, et al. Exposure to chromium, cobalt and molybdenum from mental-on-metal total hip replacement and hip resurfacing arthroplasty. Acta Orthop,2006,77(5):697-705.
    [19]陈继营.髋关节假体摩擦界面的改进,山东医药,2008,48(9):1-2.
    [20]Boutin P. Total arthroplasty of the hip by fritted aluminum prosthesis. Experimental study and 1st clinical applications. Rev Chir Orthop Reparatrice Appar Mot,1972, 58(3):229-246.
    [21]BIOLOX-用于髋关节成形术的陶瓷,Ceram News, Ceram Tec,2007.
    [22]Si WJ, Li CG, Miao HZ. Advances in friction and wear studies of high performance ceramics for hip joint prostheses. Journal of Materials Science and Engineering,2004, 22:424-427.
    [23]Greenwaid AS, Garino JP. Alternative bearing surfaces:the good, the bad, the ugly. J Bone Surg,2001,83-A:68-72.
    [24]Zichner LP, Willert HG. CoMParison of Alumina Polyethylene and Metal Polyethylene in Clinical Trials. Clin Orthop Rel Res 1992,282:86-94.
    [25]Chang J D, Kamdar R, Yoo J H, et al. Third-Generation Ceramic-on-Ceramic Bearing Surfaces in Revision Total Hip Arthroplasty. Journal of Arthroplasty,2009,24(8): 1231-236.
    [26]Capello W N,A James, D'Antonio, Feinberg J R, et al. Ceramic-on-Ceramic Total Hip Arthroplasty:Update. Journal of Arthroplasty,2008,23(7):39-43.
    [27]Murphy S B, Ecker T M, Tannast M. Two- to 9-year clinical results of alumina ceramic-on-ceramic THA. Clinical Orthopaedics and Related Research,2006,453: 97-102.
    [28]Hamadouche M, Boutin P, Daussange J, et al. Alumina-on-Alumina Total Hip Arthroplasty:A Minimum 18.5-Year Follow-up Study. Journal of Bone and Joint Surgery,2002,84:69-77.
    [29]Walter W K. Australian Experience with Ceramic Systems. Bioceramics and Alternative Bearings in Joint Arthroplasty. Steinkopff,2005, Session 3:113-115.
    [30]薛茂权,黄之德.超高分子量聚乙烯人工关节的摩擦学研究.中国临床康复,2005,9(10):170-171.
    [31]Li S, Burstein AH. Ultra-high molecular weight polythylene-The matial and its use in total joint implants. J Bone Joint Surg Am,1994,76(7):1080-1090.
    [32]Ebramzadeh E, Sangiorgio SN, Lattuada F, et al. Accuracy of measurement of polethylene wear with use of radiographic of total hip replacement. J Bone Joint Surg Am,2003,85-A(12):2378-2384.
    [33]McKellop HA, Campbell P, Park SH, et al. The origin of submiction polyethylene wear debris in total hip arthroplasty. Clin Orthop,1995,311:3-20.
    [34]Pienkowski D, Jacob R, Hoglin D, et al. Low-voltage scanning electron mircoscopic imaging of Ultra-high molecular weight polythylene. J Biomed Mater Res,1995, 29(10):1167-1174.
    [35]葛世荣,王庆良.人工关节改性材料的生物摩擦学研究.医用生物力学,2009,24(5).
    [36]Keurentjes J C, Kuipers R M, Wever D J, et al. High Incidence of Squeaking in THA with Alumina Ceramic-on-ceramic Bearings. Clinical Orthopaedics and Related Research,2008,446(6):1438-1443.
    [37]Yang C C, Kim R H, Dennis D A. The Squeaking Hip:A Cause for Concern-Disagrees. Orthopedics,2007,30(9):739-742.
    [38]范娜,陈光雄,钱林茂.陶瓷髋关节异响的研究进展和展望.摩擦学学报,2011,31(3):311-316.
    [39]Charnley J. Low friction arthroplasty of the hip. Journal of Bone and Joint Surgery, 1972,54-B(1):61.
    [40]Jarrett C, Ranawat A, Bruzzone M, et al. The squeaking hip:an underreported phenomenon of ceramic-on-ceramic total hip arthroplasty. Journal of Arthroplasty,2007, 22(2):302.
    [41]Jarrett C A, Ranawat A S, Bruzzone M, et al. The Squeaking Hip:A Phenomenon of Ceramic-on-Ceramic Total Hip Arthroplasty. Journal of Bone and Joint Surgery,2009,91: 1344-1349.
    [42]Walter W L,O' Toole G C, Walter W K, et al. Squeaking in ceramic-on-ceramic hips: the importance of acetabular component orientation. Journal of Arthroplasty,2007,22: 496-503.
    [43]Ecker T, Robbins C, Flandem G V, Murphy S B, et al. Squeaking in total hip replacement:no cause for concern. Orthopedics,2008,31(9):875-878.
    [44]Restrepo C, Parvizi J, Kurtz S M, et al. The Noisy Ceramic Hip:Is Component Malpositioning the Cause. Journal of Arthroplasty,2008,23(5):643-649.
    [45]Taylor S, Manley M T, Sutton K. The Role of Stripe Wear in Causing Acoustic Emissions From Alumina Ceramic-On-Ceramic Bearings. Journal of Arthroplasty,2007, 22(7):47-51.
    [46]Nevelos J E, Prudhommeaux F, Hamadouche M, et al:CoMParative analysis of two different types of aluminaalumina hip prosthesis retrieved for aseptic loosening. Journal of Bone and Joint Surgery,2001,83-B:598-603.
    [47]Walter W L, Insley G M, Walter W K, et al. Edge loading in third generation alumina ceramic-on-ceramic bearings:strip wear. Journal of Arthroplasty,2004,19(4):402-413.
    [48]Nevelos J E, Ingham E, Doyle C, et al. Micro-separation of the centers of alumina-alumina artificial hip joints during simulator testing produces clinically relevant wear rates and patterns. Journal of Arthroplasty,2000,15(6):793-795.
    [49]Tipper J, Hatton A, Nevelos J, et al. Alumina-alumina artifidal hip joint Pan Ⅱ: characterisation of the wear debris from in vitro hip joint simulation. Biomaterials,2002, 23(16):3441-3448.
    [50]Dennisa D A, Komistek R D, Northcut E J. et al. "In vivo" determination of hip joint separation and the forces generated due to iMPact loading conditions. Journal of Biomechanics,2001,34:623-629.
    [51]Stewart T, Tipper J, Streicher R, et al. Long term wear of HIPed alumina on alumina bearings for THR under microseparation conditions. Journal of Materials Science: Materials in Medicine,2001,12(10):1053-1056.
    [52]Stewart T, Williams S, Tipper J, et al. Advances in simulator testing of orthopaedic joint prostheses[C]. Tribology Research and Design for Engineering Systems, Elsevier,2002, 291-296.
    [53]Stewart T D, Tipper J L, Insley G, et al. Severe Wear and Fracture of Zirconia Heads Against Alumina Inserts in Hip Simulator Studies With Microseparation. Journal of Arthroplasty,2003,18(6):726-734.
    [54]Sariali E, Stewart T, Jin Z M, et al. Three-dimensional modeling of in vitro hip kinematics under micro-separation regime for ceramic on ceramic total hip prosthesis:An analysis of vibration and noise. Journal of Biomechanics,2010,43: 326-333.
    [55]Kennedy J G, Rogers W B, Soffe K E, et al. Effect of acetabular component orientation on recurrent dislocation, pelvic osteolysis, polyethylene wear, and component migration. Journal of Arthroplasty,1998,13(5):530-534.
    [56]Patil S, Bergula A, Chen P C, et al. Polyethylene wear and acetabular component orientation. Journal of Bone and Joint Surgery,2003,85:56-63.
    [57]Eickmann T, Manaka M, Clarke I, et al. Squeaking and Neck-Socket Impingement in a Ceramic Total Hip Arthroplasty. Key Enigeering Materials,2003,240:849-852.
    [58]Todd V S, Raghavendran S, Peterson D J, et al. Influence of Prosthetic Design on Squeaking After ceramic-on-Ceramic Total Hip Arthroplasty. AAOS 2009 Annual Meeting Poster Presentations, Sands EXPO Hall D,Venice,2009:97-99.
    [59]Van de Velde F. De Baets P. A new approach of tick-slip based on quasi harmoic tangential oscillations. Wear,1998,216:15-26.
    [60]Van de Velde F, De Baets P. The relation between friction force and relative speed during the slip-phase of stick-slip cycle. Wear,1998,219:220-226.
    [61]Yuan Y. An eigenvalue analysis approach to brake squeal problem. Proceedings of the 29th IS ATA Conference Automotive Braking Systems,1996, Florence, Italy.
    [62]Ouyang H J, Nack W, Yuan Y B, etal. Numerical analysis of automotive disc brake squeal:a review. Vehicle Noise and Vibration,2005,1:207-231.
    [63]P. Liu a, H. Zheng a, C. Cai a, et al. Analysis of disc brake squeal using the complex eigenvalue method. Applied Acoustics,2007,(68):603-615.
    [64]Hothan A, Weiss C, Morlock M M, et al. Squeaking ceramic-on-ceramic total hip replacements-a numerical vibration approach. Implant and Joint Biomechanics,2009,41: 435.
    [65]Weissa C, Gdanieca P, Morlock M M, et al. Squeak in hip endoprosthesis systems:An experimental study and a numerical technique to analyze design variants. Medical Engineering & Physics,2010,1638-1644.
    [66]Walter W L, Gillies M, Donohoo S, et al. Resonance of the metallic components generates the sound in squeaking ceramic-onceramic hip replacements—an acoustic and finite element analysis. The 21st Annual Congress of the International Society for Technology in Arthroplasty ISTA, Seoul, Korea,2008.
    [67]Glaser D, Komistek R D, Cates H E, et al. A non-invasive acoustic and vibration analysis technique for evaluation of hip joint conditions. Journal of Biomechanics,2010, 43:426-432.
    [68]KPOPP, NHINRICHS, OESTREICH M. Dynamical behaviour of a friction oscillator with simultaneous self and external excitation. Sadhanda, Printed in India,1995: 627-654.
    [69]Ibrahim R.A. Friction-indueed vibration, chatter, squeal, and chaos, Part2:Dynamics and modeling. Applied Mechanics Review,1994,47:227-253.
    [70]陈光雄.金属往复滑动摩擦噪声的研究.西南交通大学,博士研究生学位论文,2002:18-26.
    [71]文武.铁路车辆盘形制动噪声的有限元复特征值分析.西南交通大学,硕士研究生学位论文,2007:4-12.
    [72]G. D. Liles. Analysis of disc brake squeal using finite element methods. SAE Paper No. 891150,1989.
    [73]赵文清.湿式多盘制动器制动噪声建模及其噪声抑制的研究.兵工学报,2004,25(6).
    [74]R.T. Spurr. A theory of brake squeal. Proceedings of the Institution of Mechanical Engineers.1961-1962:33-40.
    [75]Kinkaid N M, O'Reilly O.M and Papadopoulos P. Automotive disc brake squeal. Journal of Sound and Vibration,2003,267:105-166.
    [76]Papinniemi A, Lai J C S, Zhao J, Loader L. Brake squeal:a literature review. Applied Acoustics 63 (4) (2002):391-400.
    [77]Crolla D A, Lang A M. Brakes noise and vibrations-the state of the art. The Proceedings of the Leeds-Lyon Symposium on Tribology,1990,165-174.
    [78]陈光雄,周仲荣,谢友柏.摩擦噪声研究的现状和进展.摩擦学学报,2000,20(6).
    [79]陈光雄,石心余.摩擦力—相对滑动速度关系的实验研究.润滑与密封,2002(3)44-45.
    [80]N. Millner. A theory of drum brake squeal. Institute of Mechanical Engineering,1976, 39/76:177-185.
    [81]Wayne V N. Brake squeal analysis by finite elements. International Journal of Vehicle Design,2000,23(3/4):263-275.
    [82]Mottershead J E. Vibration-and friction-induced instability in disks. Shock and Vibration Digest,1998,30(1):14-31.
    [83]Chen Guangxiong, Zhou Zhongrong, Philippe Kapsa, Leo Vincent. Experimental investigation into squeal under reciprocating sliding. Tribology International,2003,36: 961-971.
    [84]Chen G.X, Zhou Z.R. Correlation of a negative friction-velocity slope with squeal generation under reciprocating sliding conditions. Wear,2003,255:376-384.
    [85]North M. R. A mechanism of disc brake squeal. Proceedings of 14th International Automobile Technical Congress of FISTIA,1972:9-15.
    [86]Guan Dihua, Su Xindong, Zhang Fang. Sensitivity analysis of brake squeal tendency to substructures modal parameters. Journal of Sound and Vibration 2006,291:72-80.
    [87]Aronov, V., D'Souza, A. F., Kalpakjian, S., and Shareef, I., Interactions among friction,wear, and system stiffness-part2, vibration induced by dry friction. ASME Journal of Tribology,1984,106:59-64.
    [88]师汉民,谌刚,吴雅.机械振动系统(下册).武汉:华中理工大学出版社,1992:374-378.
    [89]North M.R. Discbrake squeal, in:Braking of Road Vehicles, Automobile Division of the Institution of Mechanical Engineers, Mechanical Engineering Publications Limited, London, England,1976:169-176.
    [90]黄学文,董光能,周仲荣,谢友柏.TiNi形状记忆合金的滑动摩擦噪声特性研究.噪声与振动控制,2005年第6期.
    [91]陈光雄,石心余.在有或无摩擦噪声状态下磨痕形貌的观察.中国表面工程,2002,55(2).
    [92]陈光雄,周仲荣,黎红,刘启跃.金属往复滑动摩擦噪声与摩擦表面形貌特征关系 的研究.机械工程学报,2002,38(8).
    [93]Chen Guangxiong, Zhou Zhongrong, Philippe Kapsa, Leo Vincent. Effect of surface topography on formation of squeal under reciprocating sliding. Wear,2002,253: 411-423.
    [94]郑华,陈光雄,周仲荣.在往复滑动条件下摩擦噪声发生时磨痕形貌的观察,润滑与密封.2005,168(12).
    [95]陈光雄,周仲荣.摩擦系数影响摩擦噪声发生的机理研究.中国机械工程,2003,14(9):766-769.
    [96]陈光雄,石心余.摩擦噪声发生过程中摩擦力变化的研究.润滑与密封,2003(4):43-45.
    [97]陈光雄,周仲荣.基于小波变换的摩擦噪声激励源的研究.机械工程学报,2003,39(2).
    [98]陈光雄,周仲荣.基于小波变换的摩擦噪声模态耦合机理研究.摩擦学学报,2003,23(6).
    [99]陈光雄,石心余.往复滑动频率和法向力对摩擦噪声强度影响的实验研究,润滑与密封,2002,5.
    [100]谭佳丰,傅攀.机械设备摩擦噪声的信号测试与处理.中国测试技术,2006,32(6).
    [101]管迪华,宿新东.制动振动噪声研究的回顾、发展与评述.工程力学,2004,21(4):150-155.
    [102]贾宏禹,材料的粘弹性对摩擦片振动与制动噪声的影响研究.硕士学位论文,武汉:武汉理工大学,2003.
    [103]黄学文,张金换,董光能,谢友柏.摩擦制动噪声防治研究进展.润滑与密封,2006,183(11).
    [104]Guan D, Jiang D. A study on disc brake squeal using finite element methods, SAE Paper No.980597,1998.
    [105]蒋东鹰,管迪华.用闭环耦合模型对盘式制动器制动尖叫的研究.清华大学学报,1998,38(8).
    [106]Chen, F., Chern, Y. and Swayze, J. Modal Coupling and Its Effect on Brake Squeal. SAE Paper 2002-01-0922.
    [107]陈光雄,周仲荣.摩擦噪声有限元预测的研究.机械工程学报.
    [108]Ibrahim R A, Madhavan S, Qiao S L and Chang W K. Experimental investigation of friction-induced noise in disc brake systems. International Journal of Vehicle Design, 2000,23:218-240.
    [109]Qiao, S.L. and Ibrahim, R.A. Stochastic dynamics of systems with friction-induced vibration. J. Sound Vib,1999,223(1):115-140.
    [110]高品贤,伍川辉,高湘玲.摩擦噪声动态谱图分析及应用.西南交通大学学报,2004,39(6).
    [111]管迪华,黄锦春.盘式制动器尖叫的馈入能量分析.清华大学学报,2001,41(8).
    [112]Dihua Guan, Jinchun Huang. The method of feed-in energy on disc brake squeal, Journal of Sound and Vibration,2003,261:297-307.
    [113]G.X. Chen, Z. R. Zhou, Time-frequency analysis of friction-induced vibration under reciprocating sliding, Wear,2007,263:1-11.
    [114]G.X. Chen, Z. R. Zhou, A self-excited vibration model based on special elastic vibration modes of friction systems and time delays between the normal and friction forces:A new mechanism for squealing noise. Wear,2007,262:1123-1139.
    [115]von Wagner U, Jearsiripongkul T, Vomstein T, Chakraborty G, Hagedorn, P. Brake squeal:modeling and experiments. VDI-Report,1749:173-186.
    [116]Haessig DA, Friedland B. On the modeling and simulation of friction. Journal of Dynamic Systems, Measurement, and Control,1991,113:354-362.
    [117]Memillan AJ. A non-linear fiiction model for self-excited vibrations. Journal of Sound and Vibration,1997,205:323-335.
    [118]Tworzydlo, W.W, Becker E.B, Oden JT. Numerical modeling of friction- induced vibrations and dynamic instabilities. ASME APPlied Mechanics Reviews,1994, 47(7):255-274.
    [119]Wang Y.T, Kumar V, Abel J. Dynamics of rigid bodies undergoing multiple friction contacts. Proe.of the IEEE International Conference on Roboties andAutomation, Nice, France, May 1992:2764-2769.
    [120]Zhang R, Elishakoff I, Shinozuka M. Analysis of nonlinear sliding structures by modified stochastic linearization methods. Nonlinear Dynamics,1994,5:299-312.
    [121]Rossing TD. Acoustics of the glass armonica. J. Acoust. Soc. Am.1994,95(2): 1106-11.
    [122]French AP. In Vino Veritas:A study of wineglass acoustics. Am. J. Phys.1983,51(8): 688-94.
    [123]Ouyang H, Mottershead JE, Brookfield DJ, et al. A methodology for the Determination of dynamic instabilities in a car disc brake. International Journal of Vehicle design, 2000,23(3/4):241-261.
    [124]蒋东鹰,管迪华.盘式制动器制动尖叫计算模型的建立.汽车技术,1997.
    [125]AbuBakar Abd Rahim, Ouyang Huajiang. Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal. Int. J. Vehicle Noise and Vibration, 2006,2(2).
    [126]Bennett D, Goswami T. Finite element analysis of hip stem designs. Materials & Design,2008,29:45-60.
    [127]Watanabe Y, Shiba N, MatsuoS, Higuchi F, et al. Biomechanical study of the resurfacing hip arthroplasty:Finite element analysis of the femoral component. The Journal of Arthroplasty,2000,15:505-511.
    [128]Abdul-Kadir M.R., Hansen U, Klabunde R, Lucas D, Amis A. Finite element modelling of primary hip stem stability:The effect of interference fit. Journal of Biomechanics,2008,41:587-594.
    [129]赵玫,周海亭,陈光冶,朱蓓丽编著.机械振动与噪声学.北京:科学出版社,2004.
    [130]Chen G X, Zhou Z R, H. Ouyang, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system. Journal of Sound and Vibration,2010,329:4643-4655.
    [131]Akay A. Acoustics of friction. Acoustical Society of America,2002,111:1525-1549.
    [132]Nouby M, Mathivanan D, Srinivasan K. A combined approach of complex eigenvalue analysis and design of experiments (DOE) to study disc brake squeal, International Journal of Engineering. Science and Technology,2009,1:254-271.
    [133]Pyburn E, Goswami T. Finite element analysis of femoral components paper Ⅲ-hip joints. Materials & Design,2004,25:705-713.
    [134]CeraNews. Ceramics in Orthopaedics. Das Magazin der CeramTec AG, Medizintechnik,1/2008.
    [135]Bergmann G., Deuretzbacher G., Heller M, et al. Hip contact forces and gait patterns from routine activities. Journal of Biomechanics,2001,34:859-871.
    [136]Currier J H. A proposed mechanism for squeaking of ceramicon-ceramic hips. Wear, 2010, doi:10.1016/j.wear.2010.08.006.
    [137]A. Hothan, G. Huber, C. Weiss, N. tHoffmann, M. Morlock. The influence of component design, bearing clearance and axial load on the squeaking characteristics of ceramic hip articulations, Journal of Biomechanics,2011,44:837-841.
    [138]卢文祥,杜润生.机械工程测试·信息·信号分析.武汉:华中理工大学出版社,1999:458-468.
    [139]Fan N, Chen G.X., Qian L.M. Analysis of squeaking on ceramic hip endoprosthesis using the complex eigenvalue method, Wear,2011,271(9):2305-2312.
    [140]范娜,陈光雄,陶瓷髋关节异响产生机理的数值模拟研究.振动与冲击.2012,31.
    [141]Fan N, Chen G X. Numerical study of squeaking suppresses for ceramic-on- ceramic hip endoprosthesis. Tribology International,2012,48:172-181.
    [142]Pang J, Chen G, He H. Automotive Noise and Vibration-Principle and Application, Beijing Institute of Technology Press,2006:436.
    [143]Restrepo C, Post ZD, Kai B, Hozack WJ. The effect of stem design on the prevalence of squeaking following ceramic-on-ceramic bearing total hip arthroplasty. J Bone Joint Surg Am,2010,2(3):550-557.
    [144]Walter WL, Yeung E, Esposito C. A review of squeaking hips. J Am Acad Orthop Sur, 2010,18:319-326.
    [145]Bishop NE, Waldow F, Morlock MM. Friction moments of large metal-on-metal hip joint bearings and other modern designs. Med Eng Phys,2008,30(8):1057-1064.
    [146]Brockett CL, Williams S, Jin Z, Isaac G, Fisher J. Friction of total hip replacements with different bearings and loading conditions. J Biomed Mater Res B Appl Biomater, 2007,81(2):508-515.
    [147]Scholes SC, Unsworth A, Goldsmith AA. A frictional study of total hip joint replacements. Phys Med Biol,2000,45(12):3721-3735.
    [148]Bishop NE, Hothan A, Morlock MM. High friction moments in large hard-on-hard hip replacement bearings in conditions of poor lubrication J Orthop Res.2012. Accepted.
    [149]Manley M T, Sutton K. Bearings of the future for total hip arthroplasty. J Arthroplasty, 2008,23:47-50.
    [150]Sun YQ, Wang K. Ceramic prosthesis in total hip arthroplasty. CRTER 2008,12: 5953-5956.
    [151]Back DL, Dalziel R, Young D, et al. Early results of primary Birmingham hip resurfacings:an independent prospective study of the first 230 hips. J Bone Joint Surg Br,2005,87(3):324-329.
    [152]Hing CB, Back DL, Bailey M, et al. The results of primary Birmingham hip resurfacings at a mean of five years:An independent prospective review of the first 230 hips. J Bone Joint Surg Br,2007,89(11):1431-1438.
    [153]Glaser D, Komistek RD, Cates HE, et al. Clicking and squeaking:in vivo correlation of sound and separation for different bearing surfaces. J Bone Joint Surg Am,2008,90: 112-120.
    [154]Kayabasi O, Erzincanli F. Finite element modelling and analysis of a new cemented hip prosthesis. Adv Eng Softw,2006,37:477-483.
    [155]Kurtz S M, Pruit L, Jewett C W, et al. The yielding, plastic bow, and fracture behavior of ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials,1998,19:1989-2003.
    [156]Hall RM, Unsworth A. Friction in hip prostheses. Biomaterials,1997,18:1017-1026.
    [155]Singer I.L. Friction and energy dissipation at the atomic scale-a review, Dissipative Processes in Tribology/D. Dowson et al.(Editors),1994.
    [156]Liskiewicz T, Fouvry S. Development of a friction energy capacity approach to predict the surface coating endurance under complex oscillating sliding conditions, Tribology International,2005,38(1):69-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700