用户名: 密码: 验证码:
载荷煤体渗透率演化特性及在卸压瓦斯抽采中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层卸压开采是通过应力释放使煤体产生大量的新生裂隙,改变煤体结构特征,促使煤层渗透性发生了根本性的改变,实现煤层增透以促瓦斯抽采。本文以煤层卸压开采为主线,以载荷煤体渗透率演化特性和煤体裂隙扩展机制为重点,以理论分析、实验研究、数值模拟和工程实践为主要手段,研究加卸荷过程中煤体裂隙演化和渗透率变化过程,获得渗透率演化规律和建立相应模型,并将结果应用于卸压开采下被保护层渗透率的分布特性和卸压瓦斯抽采的研究。本论文的主要研究结论如下:
     (1)制取标准原煤样,采用与卸压开采煤层受力特征相同的力学路径,进行了不同加卸荷下的渗透率实验,得到了不同层理方向上渗透率比达7.5:1,分析卸荷过程渗透率演化差异原因,提出在相同卸荷点应力下试样初始损伤程度越大,卸荷极限承载强度就越低,致使在卸荷过程中试样损伤变形的加剧和大量新裂隙的产生,最终渗透率剧增且大于加荷过程的渗透率。根据渗透实验结果获得了卸荷增透的实验现象和新认识。
     (2)将损伤力学、卸荷力学和渗流力学相结合,运用RFPA2D–Flow软件模拟了加卸荷作用下不同预置层理试件裂隙起裂、扩展、贯通机制和渗透特性,获得载荷条件下试件裂隙演化过程和渗透变化规律,渗透率的变化与裂隙演化具有一致性。并与渗透实验对比分析,指出卸荷点处试件内部出现的破坏点和损伤微裂隙越多,在卸荷后微裂隙扩展速度就越快,破坏点数量则更多,最终易产发生破断变形,渗透率剧增。
     (3)根据在载荷条件下试样渗透实验和裂隙演化模拟,得出加荷过程试样渗透率随着有效应力的增大而减小;而卸荷过程试样渗透率随着有效应力的减小而增大,但卸荷过程渗透率并非是加荷过程的简单逆过程,并建立了载荷煤体渗透率与有效应力的关系。对比了试样渗透率演化的整体过程及规律,获得了卸荷过程渗透率演化的三种典型路径的概念模型,提出了与载荷煤体变形特征相对应的弹性渗透率模型、塑性渗透率模型和卸荷增透模型。
     (4)根据铁法矿区大隆煤矿煤层赋存特点,利用FLAC3D软件对试验矿区被保护层采动变形和应力变化进行模拟研究,得出被保护层采动变形和应力变化规律。结合渗透率演化实验及模型,并利用Matlab中的Surf函数获得了下被保护层渗透率空间分布规律,把卸压采动影响区域的渗透率划分为原始渗透区、弹性渗透区、塑性渗透区和卸荷增透Ⅰ区、卸荷增透Ⅱ区。根据研究结果,选取底抽巷穿层钻孔对被保护层的卸压瓦斯进行抽采,并抽采钻孔的布置方式进行优化。
Coal seam mining with the pressure-relief method is to release the stress loaded on thecoal body, resulting in the increase of new fractures, change of the structure and permeabilityof the coal body, and then realization of the gas drainage through permeability increasing. Inthis paper, the fracture evolution and permeability variation of coal during the loading andunloading process were studied by the method of theoretical analysis, laboratory experiments,numerical simulation and engineering research comprehensively, and the fracture evolutionlaw and the corresponding model were obtained and applied to study the permeabilitydistribution and gas drainage in underlying protected coal seam during the pressure-reliefmining. The main conclusions of this paper are as follows:
     (1) Permeability experiments of the standard cylinders nature coal samples were carriedout under the different unloading stress path similarly as the loaded characteristic ofpressure-relief coal mining. The permeability ratio which reached7.5:1in different beddingdirections were obtained and the cause of the difference of permeability evolution during theunloading process was analysed. The initial damage become bigger and the ultimate bearingstrength reduced at the same unloading point of stress, when the sample has weakcompressive strength induce the damage aggravate increase and the massive generation ofnew fractures in the process of unloading, which induce the permeability increase to greaterthan that in loading process. The experimental phenomena and new knowledge of unloadingincrease permeability mechanism were obtained.
     (2) Based on the theory of damage mechanics, unloading mechanics and seepagemechanics, the model was built by RFPA2D-Flow to study the characteristics of fractureinitiation, expansion, cut-through and permeability in different pre-fracture direction coalsamples under the action of loaded-unloaded. The fracture evolution law and permeabilityvariation of coal during different unloading are obtained, the fracture evolution andpermeability change were coincident each other. We compared and analyzed the experimentalresults, and discovered that if the sample had many damage micro structure in unloading point,the extension speed of along the bedding plane faster, the number of break-point larger, alarge number of fractures easier produced and breakage deformation, accompanied by thepermeability increasing sharply.
     (3) According to the permeability experiment and fracture evolution simulation of coalsamples under loading condition, we could conclude that the permeability decrease with theincrease of effective stress during the process of loading; and the permeability increase withthe decrease of effective stress during the process of unloading, but the unloading process is not a simple inverse process of loading. Furthermore, the relationship of the permeability andeffective stress under unloading condition was established. Compared the whole permeabilityevolution process, conceptual models under three different paths of permeability evolution ofcoal under different conditions of stress were proposed, and the elastic permeability model,plastic permeability model and unloading increase permeability model were built, whichcorrespond to the deformation of loaded coal.
     (4) According to the characteristics of coal seam in Dalong coal mine, the rule of miningdeformation and the variation of stresses on protected coal seam were obtained by the modelconstructed by FLAC3Dsoftware based on testing mining area. Combined with permeabilityevolution experiment and model, and used the Surf function from Matlab, the permeabilityspatial distribution of underlying protected coal seam was obtained. The permeability ofpressure-relief mining influence area could be divided into original permeability area, elasticpermeability area, plastic permeability area, unloading increase permeability Ⅰ area andunloading increase permeability Ⅱ area. On the basis of the research results, we take thebottom lane through coal seam drilling for pressure-relief gas drainage, and optimize thelayout parameters of gas drainage drilling boreholes.
引文
[1]申宝宏,雷毅,郭玉辉.中国煤炭科学技术新进展[J].煤炭学报,2011,36(11):1779-1883.
    [2]杨泽伟.中国能源安全问题:挑战与应对[J].世界经济与政治,2008,(8):55-57.
    [3]崔民选,王军生,陈义和.中国能源发展报告[M].北京:社会科学文献出版社,2013.
    [4]王泽红,毕德光,孙龙.关于近十年我国煤矿百万吨死亡率的灰色预测研究[J].建材发展导向,2013,11(11):251-253.
    [5]张东,聂百胜,王龙康.我国煤矿安全生产事故的致灾因素分析[J].中国安全生产科学技术,2013,9(5):136-140.
    [6]李润求,施式亮,念其锋,等.近10年我国煤矿瓦斯灾害事故规律研究[J].中国安全科学学报,2011,21(9):143-151.
    [7]李运强,黄海辉.世界主要产煤国家煤矿安全生产现状及发展趋势[J].中国安全科学学报,2010,20(6):158-165.
    [8] Wu J, Jiang X-H. Retrieval of atmospheric CO2from ground-based high resolution FTS spectra[J].Spectroscopy and Spectral Analysis,2013,33(5):1281-1284.
    [9]彭成.我国煤矿瓦斯抽采与利用的现状及问题[J].中国煤炭,2007,33(2):60-63.
    [10]袁亮,秦勇,程远平,等.我国煤层气矿井中—长期抽采规模情景预测[J].煤炭学报,2013,38(4):529-534.
    [11] Flores R M. Coalbed methane: from hazard to resource[J]. International Journal of Coal Geology,1998,35(1):3-26.
    [12]袁亮.我国煤层气开发利用的科学思考与对策[J].科技导报,2011,29(22):3-3.
    [13]宁宇.我国煤矿安全科技需求与对策[M].北京:煤炭科学研究总院,2009.
    [14]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报,2009,26(2):127-139.
    [15] Karacan C, Ruiz F A, Cotè M, et al. Coal mine methane: a review of capture and utilization practiceswith benefits to mining safety and to greenhouse gas reduction[J]. International Journal of CoalGeology,2011,86(2):121-156.
    [16]谢和平,王金华,申宝宏,等.煤炭开采新理念—科学开采与科学产能[J].煤炭学报,2012,37(7):1069-1079.
    [17]申宝宏,雷毅.我国煤矿区非常规能源开发战略思考[J].煤炭科学技术,2013,41(1):16-20.
    [18]程远平,周德昶,俞启香,等.保护层卸压瓦斯抽采及涌出规律研究[J].采矿与安全工程学报,2006,23(1):12-18.
    [19]王海锋,程远平,吴冬梅,等.近距离上保护层开采工作面瓦斯涌出及瓦斯抽采参数优化[J].煤炭学报,2010,35(4):590-594.
    [20] Laubach S, Marrett R, Olson J, et al. Characteristics and origins of coal cleat: a review[J]. InternationalJournal of Coal Geology,1998,35(1):175-207.
    [21]程远平,俞启香.中国煤矿区域性瓦斯治理技术的发展[J].采矿与安全工程学报,2007,24(4):383-389.
    [22]程远平,俞启香,周红星,等.煤矿瓦斯治理“先抽后采”的实践与作用[J].采矿与安全工程学报,2006,23(4):389-392.
    [23]申宝宏,刘见中,张泓.我国煤矿瓦斯治理的技术对策[J].煤炭学报,2007,32(7):673-679.
    [24]许家林,钱鸣高,金宏伟.基于岩层移动的“煤与煤层气共采”技术研究[J].煤炭学报,2004,29(2):129-132.
    [25]袁亮.卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J].煤炭学报,2009,34(1):1-8.
    [26]袁亮.低透气性煤层群无煤柱煤气共采理论与实践[J].中国工程科学,2009,11(5):72-80.
    [27]涂敏,袁亮,缪协兴,等.保护层卸压开采煤层变形与增透效应研究[J].煤炭科学技术,2013,41(1):40-43.
    [28]李树刚,李生彩,林海飞,等.卸压瓦斯抽取及煤与瓦斯共采技术研究[J].西安科技学院学报,2002,22(3):247-249.
    [29] Karacan C, Esterhuizen G, Schatzel S, et al. Reservoir simulation-based modeling for characterizinglongwall methane emissions and gob gas venthole production[J]. International Journal of CoalGeology,2007,71(2):225-245.
    [30] Whittles D, Lowndes I S, Kingman S, et al. Influence of geotechnical factors on gas flow experiencedin a UK longwall coal mine panel[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(3):369-387.
    [31]袁亮,薛俊华,张农,等.煤层气抽采和煤与瓦斯共采关键技术现状与展望[J].煤炭科学技术,2013,41(9):6-11.
    [32]倪小明,王延斌,接铭训,等.煤层气开采模式探讨[J].煤矿安全,2007,38(3):45-47.
    [33]黄旭超,孟贤正,傅昆岚,等.开采上保护层被保护煤层穿层钻孔抽采瓦斯技术[J].煤炭科学技术,2009,37(9):38-40.
    [34]王亮.巨厚火成岩下远程卸压煤岩体裂隙演化与渗流特征及在瓦斯抽采中的应用[D].徐州:中国矿业大学,2009.
    [35]张宝春.保护层工作面瓦斯综合治理技术[J].煤矿安全,2007,38(12):16-19.
    [36]马永庆.提高底板岩巷穿层钻孔瓦斯抽放效果的技术措施[J].煤矿安全,2011,42(5):34-36.
    [37]张德江.大力推进煤矿瓦斯抽采利用[J].中国安全生产科学技术,2010,6(1):5-7.
    [38]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [39]于不凡.煤矿矿瓦斯灾害防治及利用技术手册[M].北京:煤矿工业出版社.2005.
    [40]程远平.煤矿瓦斯防治理论与工程应用[M].徐州:中国矿业大学出版社,2010.
    [41] Terzaghi K. Theoretical soil mechanics[J]. An institutional repository under national agriculturalresearch system,1943.
    [42] Terzaghi K, Proctor R, et al. Rock defects and loads on tunnel supports[M]. Harvard University,Graduate School of Engineering, Youngstown Ohio,1946.
    [43] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock[J]. Journal of SoilMechanics&Foundations Div,1968,94(3):637–660.
    [44]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [45]孙广中.岩体结构力学[M].北京:科学出版社,1988.
    [46]哈秋舲.长江三峡工程关键技术研究[M].广州:广东科技出版社,2002.
    [47]谢红强,何江达,徐进.岩石加卸载变形特性及力学参数试验研究[J].岩土工程学报,2003,25(3):336-338.
    [48]刘恩龙,黄润秋,何思明.循环加载时围压对岩石动力特性的影响[J].岩土力学,2011,32(10):3009-3013.
    [49]贾坚.逆作开挖深基坑控制卸载变形的方法与实践[J].岩土工程学报,2007,29(2):304-308.
    [50]杨春和,马洪岭,刘建锋.循环加,卸载下盐岩变形特性试验研究[J].岩土力学,2009,30(12):3562-3568.
    [51]夏才初,李宏哲,刘胜.含节理岩石试件的卸荷变形特性研究[J].岩石力学与工程学报,2010,29(4):697-704.
    [52]何江达,谢红强,范景伟,等.卸载岩体脆弹塑性模型在高边坡开挖分析中的应用[J].岩石力学与工程学报,2004,23(7):1082-1086.
    [53]田利勇,朱珍德,朱姝,等.粉砂岩卸荷变形破坏特征试验研究[J].长江科学院院报,2013,30(4):44-47.
    [54]包春燕,唐春安,唐世斌,等.单轴拉伸作用下层状岩石表面裂纹的形成模式及其机制研究[J].岩石力学与工程学报,2013,32(3):474-482.
    [55]许江,李波波,周婷,等.加卸载条件下煤岩变形特性与渗透特征的试验研究[J].煤炭学报,2012,37(9):1493-1498
    [56]孟召平,王保玉,谢晓彤,等.煤岩变形力学特性及其对渗透性的控制[J].煤炭学报,2012,37(8):1342-1347.
    [57]李永明,郝临山,魏胜利,等.煤岩加卸载不同应力途径变形破坏力学参数的研究[J].煤炭技术,2006,25(12):129-131.
    [58]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业大学学报,1987,16(1):21-28.
    [59]贺玉龙,杨立中.围压升降过程中岩体渗透率变化特性的试验研究[J].岩石力学与工程学报,2004,23(3):415-419.
    [60]赵洪宝,王家臣.卸围压时含瓦斯煤力学性质演化规律试验研究[J].岩土力学,2011,32(s1):270-274.
    [61]黄启翔.卸围压条件下含瓦斯煤岩力学特性的研究[D].重庆:重庆大学,2011.
    [62]蒋长宝,黄滚,黄启翔.含瓦斯煤多级式卸围压变形破坏及渗透率演化规律实验[J].煤炭学报,2011,36(12):2039-2042.
    [63] Chen H-D, Yuan-Ping C, Zhou H-X, et al. Damage and permeability development in coal duringunloading[J]. Rock Mechanics and Rock Engineering,2014,46(6):1377-1390.
    [64]袁亮.深井巷道围岩控制理论及淮南矿区工程实践[M].北京:煤炭工业出版社,2006.
    [65]石必明,俞启香,周世宁.保护层开采远距离煤岩破裂变形数值模拟[J].中国矿业大学学报,2004,33(3):259-263.
    [66]杨大明,俞启香.缓倾斜下解放层开采后岩层地应力变化规律的研究[J].中国矿业大学学报,1988,(1):32-38..
    [67] Ammosov I I, Eremin I. Fracturing in coal[M]. Moscow: IIZDAT Publishers,1963.
    [68] Mckee C, Bumb A, Koenig R. Stress-dependent permeability and porosity of coal and other geologicformations[J]. SPE formation evaluation,1988,3(1):81-91.
    [69]张胜利.煤层割理及其在煤层气勘探开发中的意义[J].煤田地质与勘探,1995,23(4):27-30.
    [70]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [71]肖晓春,潘一山.滑脱效应影响的低渗煤层气运移实验研究[J].岩土工程学报,2009,10(2):1554-1558.
    [72]苏现波,冯艳丽,陈江峰.煤中裂隙的分类[J].煤田地质与勘探,2002,30(4):21-24.
    [73] Mastalerz M, Solano-Acosta W, Schimmelmann A, et al. Effects of coal storage in air on physical andchemical properties of coal and on gas adsorption[J]. International Journal of Coal Geology,2009,79(4):167-174.
    [74]傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(1):51-55.
    [75] Klinkenberg L. The permeability of porous media to liquids and gases[C]. Drilling and productionpractice,1941:200-213
    [76] Sereshki F. Improving coal mine safety by identifying factors that influence the sudden release ofgases in outburst prone zones[D]. Wollongong: University of Wollongong,2005.
    [77] Harpalani S, Schraufnagel R A. Shrinkage of coal matrix with release of gas and its impact onpermeability of coal[J]. Fuel,1990,69(5):551-556.
    [78]杨新乐,张永利,李成全,等.考虑温度影响下煤层气解吸渗流规律试验研究[J].岩土工程学报,2008,30(12):1811-1814.
    [79]赵阳升,万志军,张渊,等.岩石热破裂与渗透性相关规律的试验研究[J].岩石力学与工程学报,2010,29(10):1970-1976.
    [80] Somerton W H, S ylemezo lu I, Dudley R. Effect of stress on permeability of coal[C]; proceedings ofthe International journal of rock mechanics and mining sciences&geomechanics abstracts, F,1975.Elsevier.
    [81] Brace W. A note on permeability changes in geologic material due to stress[J]. Pure and AppliedGeophysics,1978,116(4-5):627-633.
    [82]唐巨鹏,潘一山,李成全,等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(8):1563-1568.
    [83] Enever J, Henning A. The relationship between permeability and effective stress for Australian coaland its implications with respect to coalbed methane exploration and reservoir model[C]; proceedingsof the Proceedings of the1997International Coalbed Methane Symposium, F,1997. Tuscaloosa, AL,USA: University of Alabama.
    [84]许江,彭守建,陶云奇,等.蠕变对含瓦斯煤渗透率影响的试验分析[J].岩石力学与工程学报,2009,28(11):2273-2279.
    [85] Klimentos T, Mccann C. Relationships among compressional wave attenuation, porosity, clay content,and permeability in sandstones[J]. Geophysics,1990,55(8):998-1014.
    [86]同登科,刘珊.变形介质煤层气不稳定渗流问题[J].天然气工业,2005,25(1):74-76.
    [87]缪协兴,刘卫群,陈占清.采动岩体渗流与煤矿灾害防治[J].西安石油大学学报(自然科学版),2007,22(2):74-79.
    [88]缪协兴.采动岩体的力学行为采动岩体的力学行为研究与相关工程技术创新进展综述[J].岩石力学与工程学报,2010,29(10):1987-1998.
    [89]杨永杰,宋扬,陈绍杰.煤岩全应力应变过程渗透性特征试验研究[J].岩土力学,2007,28(2):381-385.
    [90]邓志刚,齐庆新,李宏艳,等.采动煤体渗透率示踪监测及演化规律[J].煤炭学报,2008,33(3):273-276.
    [91]李世平,李玉寿.岩石全应力应变过程对应的渗透率—应变方程[J].岩土工程学报,1995,17(2):13-19.
    [92]姜振泉,季梁军.岩石全应力-应变过程渗透性试验研究[J].岩土工程学报,2001,23(2):153-156.
    [93]彭苏萍,孟召平,王虎,等.不同围压下砂岩孔渗规律试验研究[J].岩石力学与工程学报,2003,22(5):742-746.
    [94]王环玲,徐卫亚,杨圣奇.岩石变形破坏过程中渗透率演化规律的试验研究[J].岩土力学,2006,27(10):1703-1708.
    [95]张守良,沈琛,邓金根.岩石变形及破坏过程中渗透率变化规律的实验研究[J].岩石力学与工程学报,2000,19(S1):885-888.
    [96]孙培德.变形过程中煤样渗透率变化规律的实验研究[J].岩石力学与工程学报,2001,20(1):1801-1804.
    [97]王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1):61-68.
    [98]曾亿山,卢德唐,曾清红,等.单裂隙流-固耦合渗流的试验研究[J].实验力学,2005,20(1):10-16.
    [99]梁尧篪.裂隙岩体中的渗流与岩体变形[J].岩土力学,1988,9(3):51-57.
    [100] Somerton W. Effect of stress on permeability of coal[J]. International journal of rock mechanics andmining sciences&geomechanics abstracts,1975,12(5):129-145
    [101] Harpalani S, Mcpherson M. Effect of stress on permeability of coal[J]. Quarterly Review of Methanefrom Coal Seams Technology,1985,3(2):23-28.
    [102] Durucan S, Edwards J. The effects of stress and fracturing on permeability of coal[J]. Mining Scienceand Technology,1986,3(3):205-216.
    [103] Jasinge D, Ranjith P G, Choi S K. Effects of effective stress changes on permeability of latrobe valleybrown coal[J]. Fuel,2011,90(3):1292-1300.
    [104] Yin S, Wang S. Effect and mechanism of stresses on rock permeability at different scales[J]. Sciencein China Series D,2006,49(7):714-723.
    [105] Connell L D, Lu M, Pan Z. An analytical coal permeability model for tri-axial strain and stressconditions[J]. International Journal of Coal Geology,2010,84(2):103-114.
    [106] Berryman J G. Mechanics of layered anisotropic poroelastic media with applications to effectivestress for fluid permeability[J]. International Journal of Engineering Science,2011,49(1):122-139.
    [107] Day S, Sakurovs R, Weir S. Supercritical gas sorption on moist coals[J]. International Journal of CoalGeology,2008,74(3):203-214.
    [108] Shi J, Durucan S. Drawdown induced changes in permeability of coalbeds: A new interpretation ofthe reservoir response to primary recovery[J]. Transport in porous media,2004,56(1):1-16.
    [109] Viete D, Ranjith P. The effect of CO2on the geomechanical and permeability behaviour of browncoal: Implications for coal seam CO2sequestration[J]. International Journal of Coal Geology,2006,66(3):204-216.
    [110] Jasinge D, Ranjith P, Choi S, et al. Mechanical properties of reconstituted Australian black coal[J].Journal of geotechnical and geoenvironmental engineering,2009,135(7):980-985.
    [111] St George J, Barakat M. The change in effective stress associated with shrinkage from gas desorptionin coal[J]. International Journal of Coal Geology,2001,45(2):105-113.
    [112] Singh K S K S. Establishing permeability trend for Illinois coals[M]. ProQuest, Umi DissertationPublishing,2008.
    [113]曹树刚,郭平,李勇,等.瓦斯压力对原煤渗透特性的影响[J].煤炭学报,2010,35(4):595-599.
    [114]李宏艳,齐庆新,梁冰,等.煤岩渗透率演化规律及多尺度效应分析[J].岩石力学与工程学报,2010,29(6):1192-1197.
    [115]汪有刚,李宏艳,齐庆新,等.采动煤层渗透率演化与卸压瓦斯抽放技术[J].煤炭学报,2010,35(3):406-410.
    [116]薛东杰,周宏伟,唐咸力,等.采动煤岩体瓦斯渗透率分布规律与演化过程[J].煤炭学报,2013,38(6):930-935.
    [117] Esterle J, Williams R, Sliwa R, et al. Variability in gas reservoir parameters that impact on emissionsestimations for Australian black coals[J]. Final Report for ACARP Project C,2006,13071:1-36.
    [118] Briggs H, Sinha R. Expansion and contraction of coal caused respectively by the sorption anddischarge of gas[J]. Proceedings of the Royal Society of Edinburgh,1933,53(2):48-53.
    [119] Moffat D, Weale K. Sorption by coal of methane at high pressures[J]. Fuel,1955,34(1):449-462.
    [120] Pan Z, Connell L D. A theoretical model for gas adsorption-induced coal swelling[J]. InternationalJournal of Coal Geology,2007,69(4):243-252.
    [121]何满潮,王春光,李德建,等.单轴应力–温度作用下煤中吸附瓦斯解吸特征[J].岩石力学与工程学报,2010,29(5):865-872.
    [122]刘延保,曹树刚,李勇,等.煤体吸附瓦斯膨胀变形效应的试验研究[J].岩石力学与工程学报,2010,29(12):2484-2491.
    [123] Karacan C, Mitchell G D. Behavior and effect of different coal microlithotypes during gas transportfor carbon dioxide sequestration into coal seams[J]. International Journal of Coal Geology,2003,53(4):201-217.
    [124]傅雪海,李大华,秦勇.煤基质收缩对渗透率影响的实验研究[J].中国矿业大学学报,2002,31(2):129-131.
    [125]付玉,郭肖,贾英,等.煤基质收缩对裂隙渗透率影响的新数学模型[J].天然气工业,2005,25(2):143-145.
    [126]陈金刚,张世雄,秦勇,等.煤基质收缩能力内在控制因素的试验研究[J].煤田地质与勘探,2004,5(9):26-28.
    [127]周军平,鲜学福,姜永东,等.考虑有效应力和煤基质收缩效应的渗透率模型[J].西南石油大学学报(自然科学版),2009,31(1):4-8.
    [128] Day S, Fry R, Sakurovs R. Swelling of Australian coals in supercritical CO2[J]. International Journalof Coal Geology,2008,74(1):41-52.
    [129] Robertson E P. Measurement and modeling of sorption-induced strain and permeability changes incoal[M]. United States. Department of Energy,2005.
    [130] Mckee C, Bumb A, Koenig R. Stress-dependent permeability and porosity of coal and other geologicformations[J]. SPE formation evaluation,1988,3(1):81-91.
    [131] Palmer I, Mansoori J. How permeability depends on stress and pore pressure in coalbeds: a newmodel[C]. proceedings of the SPE Annual Technical Conference and Exhibition, F,1996.
    [132] Robertson E, Christiansen R. A permeability model for coal and other fractured, sorptive-elasticmedia[C]. proceedings of the SPE Eastern Regional Meeting, F,2006.
    [133] Rose R, Foh S. Liquid permeability of coal as a function of net stress[C]. proceedings of the SPEUnconventional Gas Recovery Symposium, F,1984.
    [134] Law B. The relationship between coal rank and cleat spacing: implications for the prediction ofpermeability in coal[C]. proceedings of the Proceedings of the1993International Coalbed MethaneSymposium, F,1993.
    [135]黄学满.煤结构异性对瓦斯渗透特性影响的实验研究[J].矿业安全与环保,2012,39(2):1-3.
    [136]于永江,王来贵,赵娜.冲量及层理对煤块冲击韧度的影响[J].辽宁工程技术大学学报2006,25(6):842-844.
    [137] Pomeroy C, Robinson D J. The effect of applied stresses on the permeability of a middle rank coal towater[C]; proceedings of the International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts, F,1967. Elsevier.
    [138] Koenig R, Stubbs P. Interference testing of a coalbed methane reservoir[C]. proceedings of the SPEUnconventional Gas Technology Symposium, F,1986.
    [139] Gash B W, Volz R F, Potter G, et al. The effects of cleat orientation and confining pressure on cleatporosity, permeability and relative permeability in coal[J]. paper,1992,93(21):17-21.
    [140]潘荣锟,程远平,董骏,等.不同加卸载下层理裂隙煤体的渗透特性研究[J].煤炭学报,2014,39(3):473-477.
    [141] Wang S, Elsworth D, Liu J. Permeability evolution in fractured coal: the roles of fracture geometryand water-content[J]. International Journal of Coal Geology,2011,87(1):13-25.
    [142] Cooke M L, Underwood C A. Fracture termination and step-over at bedding interfaces due tofrictional slip and interface opening[J]. Journal of Structural Geology,2001,23(2):223-238.
    [143] Li H, Shimada S, Zhang M. Anisotropy of gas permeability associated with cleat pattern in a coalseam of the Kushiro coalfield in Japan[J]. Environmental Geology,2004,47(1):45-50.
    [144] Li H, Ogawa Y, Shimada S. Mechanism of methane flow through sheared coals and its role onmethane recovery[J]. Fuel,2003,82(10):1271-1279.
    [145]杨宇,孙晗森,彭小东,等.煤层气储层孔隙结构分形特征定量研究[J].特种油气藏,2013,20(1):31-34.
    [146]李永明,刘长友,乔元栋,等.急倾斜煤层不同覆岩结构导水裂隙演化规律[J].山东科技大学学报2012,31(5):1-8.
    [147]张小东,刘浩,刘炎昊,等.煤体结构差异的吸附响应及其控制机理[J].地球科学:中国地质大学学报,2009,34(5):848-854.
    [148] Palmer I. Permeability changes in coal: analytical modeling[J]. International Journal of Coal Geology,2009,77(1):119-126.
    [149] Cui X, Bustin R M. Volumetric strain associated with methane desorption and its impact on coalbedgas production from deep coal seams[J]. Aapg Bulletin,2005,89(9):1181-1202.
    [150] Qu P, Shen R, Fu L, et al. Time delay effect due to pore pressure changes and existence of cleats onborehole stability in coal seam[J]. International Journal of Coal Geology,2011,85(2):212-218.
    [151] Briggs S M, Yin A, Manning C E, et al. Late paleozoic tectonic history of the ertix fault in the chinesealtai and its implications for the development of the central asian orogenic system[J]. GeologicalSociety of America Bulletin,2007,119(7):944-960.
    [152] Gu F, J. Chalaturnyk J. Analysis of coalbed methane production by reservoir and geomechanicalcoupling simulation[J]. Journal of Canadian Petroleum Technology,2005,44(10):33-42.
    [153] Gu F, Chalaturnyk R. Permeability and porosity models considering anisotropy and discontinuity ofcoalbeds and application in coupled simulation[J]. Journal of Petroleum Science and Engineering,2010,74(3):113-131.
    [154] Liu H-H, Rutqvist J. A new coal-permeability model: internal swelling stress and fracture–matrixinteraction[J]. Transport in Porous Media,2010,82(1):157-171.
    [155] Dullien F,扬言民,黎用启.多孔介质-流体渗移与孔隙结构[M].北京:石油工业出板社,1990.
    [156] Hotot B. Coal and gas outburst[M]. Beijing: Publishing House of China Industry,1966.
    [157]郝琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报,1987,12(4):51-57.
    [158]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.
    [159] Wang G, Massarotto P, Rudolph V. An improved permeability model of coal for coalbed methanerecovery and CO2geosequestration[J]. International Journal of Coal Geology,2009,77(1):127-136.
    [160]潘荣锟,王力,陈向军,等.卸载煤体渗透特性及微观结构应力效应研究[J].煤炭科学技术,2013,41(7):75-78.
    [161]赵坚,李海波.莫尔-库仑和霍克-布朗强度准则用于评估脆性岩石动态强度的适用性[J].岩石力学与工程学报,2003,22(2):171-176.
    [162]于不凡,王佑安.煤矿瓦斯灾害防治及利用手册(修订版)[M].北京:煤炭工业出版社.2005.
    [163]孙强,朱术云,张蕊,等.岩石应力-应变过程中渗透率变化分析[J].煤田地质与勘探,2012,40(1):60-63.
    [164]袁亮.松软低透煤层群瓦斯抽采理论与技术[M].北京:煤炭工业出版社,2004.
    [165]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T23561煤和岩石物理力学性质测定方法[S].北京:中国标准出版社,2009.
    [166] Kermani A. Permeability of stressed concrete: Steady‐state method of measuring permeability ofhardened concrete studies in relation to the change in structure of concrete under various short‐termstress levels[J]. Building research and information,1991,19(6):360-366.
    [167] Henderson G, Danesh A, Tehrani D, et al. Measurement and correlation of gas condensate relativepermeability by the steady-state method[J]. SPE Reservoir Evaluation&Engineering,1998,1(2):134-140.
    [168] Brace W, Walsh J, Frangos W. Permeability of granite under high pressure[J]. Journal of GeophysicalResearch,1968,73(6):2225-2236.
    [169] Goodman R E. Methods of geological engineering in discontinuous rocks[M]. St. Paul: WestPublishing,1976.
    [170]梁宁慧,刘新荣,艾万民,等.裂隙岩体卸荷渗透规律试验研究[J].土木工程学报,2011,44(1):88-92.
    [171] Min K-B, Rutqvist J, Tsang C-F, et al. Stress-dependent permeability of fractured rock masses: anumerical study[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(7):1191-1210.
    [172]周创兵,於三大.论岩体表征单元体积REV—岩体力学参数取值的一个基本问题[J].工程地质学报,1999,7(4):332-336.
    [173]陈鹏,周志伟.基于RFPA~(2D)的岩石尺寸效应试验[J].辽宁工程技术大学学报2012,31(6):842-845.
    [174]李碧勇,朱哲明.压缩载荷作用下分支裂纹断裂与扩展的数值和实验研究[J].煤炭学报,2013,38(7):1207-1214.
    [175]黄达,金华辉,黄润秋.拉剪应力状态下岩体裂隙扩展的断裂力学机制及物理模型试验[J].岩土力学,2011,32(4):997-1002.
    [176] Xie H, He C. Study of the unloading characteristics of a rock mass using the triaxial test and damagemechanics[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(3):74-80.
    [177]杨更社,孙钧,谢定义,等.岩石材料损伤变量与CT数间的关系分析[J].力学与实践,1998,20(4):47-49.
    [178] Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. Journal of EngineeringMaterials and Technology,1985,107(1):83-89.
    [179] Chen H-D, Yuan-Ping C, Zhou H-X, et al. Damage and Permeability Development in Coal DuringUnloading[J]. Rock Mechanics and Rock Engineering,2013,46(6):1377-1390.
    [180] Lee E H. Elastic-plastic deformation at finite strains[J]. Journal of Applied Mechanics,1969,36:1-6.
    [181] Fung L. A coupled geomechanic-multiphase flow model for analysis of in situ recovery incohesionless oil sands[J]. Journal of Canadian Petroleum Technology,1992,31(6):1120-1132.
    [182]周福宝,李金海,昃玺,等.煤层瓦斯抽放钻孔的二次封孔方法研究[J].中国矿业大学学报,2009,38(6):764-768.
    [183]韩宝平.任丘油田雾迷山组白云岩储集层的渗透性试验研究[J].地质科学,2000,35(4):396-403.
    [184] Bai M, Elsworth D. Modeling of subsidence and stress-dependent hydraulic conductivity for intactand fractured porous media[J]. Rock mechanics and rock engineering,1994,27(4):209-234.
    [185] Wang S, Elsworth D, Liu J. A mechanistic model for permeability evolution in fractured sorbingmedia[J]. Journal of Geophysical Research: Solid Earth,2012,117(B6):1978-2012.
    [186] Remner D, Ertekin T, Sung W, et al. A parametric study of the effects of coal seam properties on gasdrainage efficiency[J]. SPE Reservoir Engineering,1986,1(6):633-646.
    [187]谢和平,高峰,周宏伟,等.煤与瓦斯共采中煤层增透率理论与模型研究[J].煤炭学报,2013,38(7):1101-1108.
    [188]余楚新,鲜学福,谭学术.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报(自然科学版),1989,12(5):1-9.
    [189]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [190] Rutqvist J. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluidflow and crustal deformations[J]. Computers&Geosciences,2011,37(6):739-750.
    [191] Zhang M, Shimada H, Sasaoka T, et al. Evolution and effect of the stress concentration and rockfailure in the deep multi-seam coal mining[J]. Environmental Earth Sciences,2011,12(5):1-15.
    [192] Xu T, Tang C, Yang T, et al. Numerical investigation of coal and gas outbursts in undergroundcollieries[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(6):905-919.
    [193] Wang Y-G, Li H-Y, Qi Q-X, et al. The evolution of permeability and gas extraction technology inmining coal seam[J]. Journal of China Coal Society,2010,24(3):1145–1152.
    [194]李国君.铁法矿区高瓦斯低透气性煤层群煤层气产业化研究与工程实践[D].徐州:中国矿业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700