用户名: 密码: 验证码:
表面计量学中样条滤波器理论的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在表面计量学中,表面评定基准线——中线的确定是一个关键问题,众多的表面特征参数与之有关。国际标准ISO11562规定用高斯滤波中线作为表面评定的中线。然而,在实际使用中,高斯滤波器存在严重的边缘效应问题,为剔除边缘效应的影响,人们常常将两边的一段表面数据在滤波后舍弃。损失有效分析数据,这是人们所不希望的。为了解决这个问题,国际标准ISO16610建议将平滑样条滤波器引入表面评定,通过选择边界条件,样条滤波器能够有效地抑制边缘效应。
     现在两个问题是必须要解决的。一个问题是平滑样条滤波器虽然已经被写入国际标准,但是迄今为止,在表面计量学中仍然没有给出一套完整的样条滤波器设计理论来指导样条滤波器的使用;另一个问题是样条滤波器虽然抑制了边缘效应,弥补了高斯滤波器的不足,但它与高斯滤波器的滤波特性不一致,因此就出现了两条不同的表面评定基准线,如何统一这两种方法所对应的滤波特性,也就成为表面计量学研究所要解决的理论问题。
     本文首先对三次样条滤波器理论进行了研究和总结,在此基础上,利用各种样条函数与Whittaker变分法相结合,设计出了一系列样条滤波器和实现算法,并进行了大量实验证明其正确性和可行性,对样条滤波器的设计和使用具有指导意义。围绕着样条滤波器的理论,主要研究工作如下:
     (1)对三次样条滤波器的构造原理进行了详细的研究,从而为设计更多应用于表面计量领域的样条滤波器提供理论基础。在此研究过程中,给出了二分迭代法大大加快了三次样条滤波器的计算速度;同时指出了三次样条滤波器设计复杂、计算量大,且三次样条滤波器没有明确的传递函数,这对滤波器研究极为不便。
     (2)为解决样条滤波器与高斯滤波器的滤波结果不一致的问题,提出了基于级联逼近样条滤波器的表面轮廓滤波方法,这是有关样条滤波的中心极限定理。研究了平滑样条滤波器的设计原理和实现算法。在平滑样条函数中加入一阶微分项,构造出逼近样条滤波器。它不但继承了平滑样条滤波器的边缘效应抑制能力和计算的高效性,而且其幅度传输特性与高斯滤波器接近。平滑样条滤波器与高斯滤波器的的幅度传输特性偏差最大为10.6%,而二阶级联后的逼近样条滤波器能将偏差控制在1%以内,逼近精度提高了一个数量级。
     (3)提出一种能够分别实现高斯滤波器、平滑样条滤波器和理想滤波器滤波特性的样条滤波器——分数阶B样条滤波器,并将其应用于表面形貌评定。B样条滤波器具有极高的计算效率,但因其采用递归实现算法,所以对边缘效应没有抑制能力。基于分数阶B样条函数构建了分数阶B样条滤波器,它的主要特点是具有可调的过渡带,一方面,通过对阶数的调整,它的传输特性可以接近理想滤波器,另一方面,当阶数选为3时,它可以逼近实现高斯滤波器。另外,当逼近系数为零时,它就退化成了平滑样条滤波器。文中给出了基于FFT变换的算法,使得各阶分数阶样条滤波器都可以方便的实现,且效率高。
     (4)研究了以B样条函数为基构造的巴特沃思小波及其特性,提出了利用巴特沃思小波进行表面形貌分析,同时还可以利用它建立工程表面轮廓中线。从表面轮廓滤波器的角度考虑,双正交样条小波和插值样条小波存在各自的缺点。双正交样条小波具有良好的传输特性,但是由于卷积算法的限制,实现速度都比较慢。插值样条小波提升算法计算高效,且能有效抑制边缘效应,但它的幅度传输特性不好,在低通带存在过冲,在过渡带存在转折,扭曲了滤波结果。从幅频特性上,二阶巴特沃思小波具有平滑的截止特性和优良的低通特性;从构造上,巴特沃思小波滤波器具有双正交特性,同样具有零相移特性;从算法上,巴特沃思小波滤波器采用提升和递归结合算法,加快了小波变换速度。综合幅频特性、零相移特性和计算效率,可知巴特沃思小波是一个优秀的可用于表面形貌测量的小波滤波器。
     理论分析和应用实验表明:文中的样条滤波器的设计理论和实现方法,丰富了样条滤波器的理论研究成果,并具有重要的应用价值。
In surface evaluation tasks, establishment of reference line——mean line is the key approach, based on which many texture parameters are calculated. International standard ISO11562 has proposed the Gaussian filtered mean line as the reference line for profile evaluation. However, in practice, Gaussian filter has serious end effect. In order to remove this effect, people always discard a part of filtered surface data on both sides. This has resulted in the loss of valid data. To solve this problem, the international standard ISO16610 introduces smoothing spline filter into surface evaluation. With the selection of end condition, smoothing spline filter can restrain the end effect effectively.
     Now, there are two problems must be addressed. One is that although the smoothing spline filter has been written to the international standard, in surface metrology, there still is not an integrated design theoretics to guide its application; the other is that the inconsistent filtering characteristics of these two filters lead to two different reference lines, which has brought the surface metrology a new theoretical issue, that is, how to unify their filtering characteristics.
     In this dissertation, firstly, the theories of cubic spline filter are analyzed and summarized. Based on this step, a series of spline filters are constructed by combination with various kinds of spline functions and Whittaker variational principle, and their feasibility and validity are testified by a lot of experiments. These works provide a guideline for the design and further application of spline filters. Around the theory of spline filter, the main research subjects are explored as follows:
     (1) The theories about cubic spline filter’s construction are studied carefully to provide basic principles for more spline filters’construction. In the course of this study, to increase the computation speed, a dimidiate iterative method is introduced into cubic spline filtering. It’s found that cubic spline filter has complex construction theory and intensive computation, even has not an explicit transfer function that is very convenient for the filter’s study.
     (2) In order to solve the divarication of the filtering results between spline filter and Gaussian filter, cascaded approximating spline filter is proposed to evaluate the surface as profile filter, which is the implementation of central limit theory about the spline filter. Design principle and algorithm of smoothing spline filter are studied. By adding a first-order differential term in the smoothing spline function, approximating spline filter is constructed, which not only inherits the smoothing spline filter’s qualities including edge restraint and computaion efficiency, but also approximates to Gaussian filter with high precision. The maximal deviation of transmission characteristics of smoothing spline filter and Gaussian filter is 10.6%, but this deviation between two cascaded approximating spline filter and Gaussian filter can be controlled within 1%, the approximation precision has be improved by an order of magnitude.
     (3) A new fractional B spline filter, which can realize the filtering characteristics of Gaussian filter, smoothing spline filter and ideal filter arbitrarily, is proposed and implemented in the surface metrology. B spline filter has a very high computational efficiency, but serious end effect owing to the recursive difference algorithm. The fractional spline filter is constructed based on fractional spline B function, and endowed with adjustability of transition characteristics. When order is chosen higher enough, it can approach to ideal low pass filter, and when chosen 3, it also can approximate to Gaussian filter. In addition, it becomes a smoothing spline filter, when approximation coefficient equals zero. An algorithm based on FFT transform is proposed for the general application of fractional spline filter, which is testified convenient and efficient.
     (4) Butterworth wavelet constructed by B spline function and its properties are studied, furthermore it is proposed to implement the analysis of surface texture, and then extract the mean line of workpiece profile. The disadvantages of biorthogonal spline wavelet and cubic interpolating spline wavelet are studied from the perspective of profile filter. Biorthogonal wavelet has both linear phase property, and better transmission characteristics, but a slower calculation speed. On the contrary, interpolating spline filter has a fast calculation and a suppression ability to end effect, but unsatisfactory transmission characteristics, because there is an overshoot on its low pass band, and an inflexion on its transition band. In terms of amplitude characteristics, Butterworth wavelet has smooth cut-off and excellent low pass characteristics; because of construction theory, it has biorthogonal and zero phase-shift properties; for algorithm, it integrates lifting and recursive filtering method, and achieves fast computation. Considering of amplitude transmission characteristics, zero phase-shift property and computational efficiency comprehensively, Butterworth wavelet is believed as an excellent wavelet filter suitable for surface measurement.
     Theories and experiments all justify that the design method and implement algorithm of spline filters in this paper not only enrich the spline filter’s theory, but also extend more comprehensive applications.
引文
1 M. Sedlacek, B. Podgornik, J. Vizintin. Influence of Surface Preparation on Roughness Parameters, Friction and Wear. Wear. 2009, 266(3-4):482~487.
    2杨练根,王选择.新型表面形貌测量仪器.北京:科学出版社. 2008:1~20.
    3 Mike Holmes, David Trumper. Magnetic/Fluid-bearing Stage for Atomic-Scale Motion Control(the Angstrom Stage). Precision Engineering. 1996, 18(1):38~49.
    4中国机械工程学会.表面结构.北京:中国计划出版社. 2004:1~45.
    5 ASME B46.1. Surface Texture(Surface Roughness Waviness, and Lay). 1995: 1~4.
    6 J. Raja, B. Muralikrishnan, S. Yufu. Recent Advances in Separation of Rough ness Waviness and Form. Precision Engineering. 2002, 26(2):222~235.
    7 ISO 11562:1996. Geometrical Product Specifications (GPS)-Surface Texture: Profile Method-Metrological Characteristics of Phase Correct Filters.
    8 ISO/TS 16610-22. Geometrical Product Specifications (GPS)-Filtration-Part 22: Linear Profile Filters: Spline Filters.
    9 ISO 13565-1:1996. Geometrical Product Specification(GPS)-Surface Texture: Profile Method Surfaces Having Stratified Functional Properties. Part 1. Filtering and General Measurement Conditions.
    10毛起广.表面粗糙度的评定和测量.北京:机械工业出版社. 1991.
    11冯秀,顾伯勤.表面形貌的研究现状及发展趋势.润滑与密封. 2006, 174(2):168~170.
    12朴伟英.球面光栅干涉式表面测量仪若干关键技术研究.哈尔滨工业大学博士论文. 2009:3~12.
    13杨练根.基于微恒力位移传感器的表面形貌测量系统和二维Motif评定方法.华中科技大学博士学位论文. 2004:1~15.
    14 J. D. Garratt. A New Stylus Instrument with a Wide Dynamic Range for Use in Surface Metrology. Precision Engineering. 1982, 14(3):145~151.
    15王选择,郭军,谢铁邦.大量程杠杆式光学轮廓仪的非线性分析与补偿.传感器技术. 2003, 22(8):38~41.
    16蒋向前,肖少军,谢铁邦等.光栅技术在纳米测量中的应用.仪器仪表学报. 1995, 16(1):374~378.
    17肖刚,谢铁邦,王选择.一种以柱面全息光栅为标准器的大量程表面形貌测量仪.机床与液压. 2005, (11):22~24.
    18 Talor Hobson co.ltd. Form Talysurf PGI 1250A. www.taylor-hobson.com.
    19郑俊丽,赵学增,周莉莉.表面粗糙度的激光非接触检测方法. 2005, 35(3):148~150.
    20冯斌,王建华.表面形貌光学法测量技术. 2005, 23(6):4~6.
    21 G. E. Sommargren. Optical Heterodyne Profilometry. Applied Optics. 1981, 20(4):610~662.
    22 Tkaczyk, Tomasz, Jozwicki, et al. Experimental and Numerical Models of a Field Heterodyne Interferometer. Discussion on Optical Influences in Measurements. SPIE. 2000, 4076:192~200.
    23于瀛洁.激光外差干涉技术用于表面形貌检测的研究.哈尔滨工业大学博士论文. 1998:1~5.
    24 C. C. Huang. Optical Heterodyne Profilometer. Opt. Eng.. 1984, 23(4): 365~370.
    25 Dan Pantzer, Jacob Politch, Leif Ek. Heterodyne Profiling Instrument for the Angstrom Region. Appl. Opt.. 1986, 25(22):4168~4172.
    26李海燕.多功能共焦表面测量系统研究.哈尔滨工业大学博士论文. 2009:1~18.
    27陈洪芳,丁雪梅,钟志等.高加速度超精密激光外差干涉测量模型.光电工程. 2007, 34(8):72~75.
    28 M. Minsky. Microscopy Apparatus, US Patent: 3012467, 1961.
    29李爱民,陶纯堪,刘明等.共焦激光扫描显微镜的研制.激光技术. 1994, 18(5):261~263.
    30高兴宇.线结构光共焦扫描显微系统的研究.桂林电子科技大学硕士论文. 2006:1~32.
    31李智.基于时间差法的光学共焦式测头.天津大学硕士学位论文. 2005:1~20.
    32 http://www.olympus.com.
    33 X. Liu, F. Gao. A Novel Multi-function Tribological Probe Microscope for Mapping Surface Properties. Meas. Sci. Technol.. 2004, 15(1):91~102.
    34谢勇君,史铁林,刘世元等.利用Linnik显微干涉技术测量微结构动态特性.计量与测试技术. 2009, 36(4): 4~6.
    35李秋柱,刘毅,牛康康等.基于白光干涉测量技术的微器件三维形貌重构.测试技术学报. 2009, 23(3):201~204.
    36 Eric S. Buice, David Otten, Raymond H. Yang, et al. Design Evaluation of a Single-Axis Precision Controlled Positioning Stage. Precision Engineering. 2009, 33(4):418~424.
    37张红霞,张以谟,井文才等.检测微表面形貌的Mirau相移干涉轮廓仪.天津大学学报. 2005, 38(5):377~380.
    38焦国华,李育林,胡宝文. Mirau相移干涉法测量微透镜阵列面形.光子学报. 2007, 36(10):1924~1927.
    39 http://www.taylor-hobson.com.
    40王海珊,史铁林,刘世元.林尼克结构干涉测量系统误差分析.功能材料与器件学报. 2008, 14(1):142~147.
    41王海珊,史铁林,廖广兰等.基于干涉显微镜的表面形貌测量系统.光电工程. 2008, 35(7):84~89.
    42 http://www.zygo.com.cn.
    43戴蓉,谢铁邦,龚文等. A High Precision Profilometer Based on Vertical Scanning Microscope Interferometry.上海大学学报. 2008, 12(3):255~260.
    44许谊,许毓娴.微分相衬干涉显微镜定量测量表面形貌.光学精密工程. 2001, 9(3):227~230.
    45李成贵,李行善,强锡富.三维表面微观形貌的测量方法.宇航计测技术. 2000, 20(4):2~10.
    46 G. Binnig, H. Rohrer, Ch. Gerber, et al. Tunneling Through a Controllable Vacuum Gap. Applied Physics Letters. 1981, 40(2):178~180.
    47 http://www.nanosurf.com.
    48 G. Binnig, C. F. Quate, Ch. Gerber. Atomic Force Microscope. Physical Review Letters. 1986, 56(9):930~933.
    49 H. Trumpold. Why Filtering Surface Profiles?. Int. J. Mach. Tools Manufact.. 1998, 38(5-6):639~646.
    50 D. J. Whitehouse. Survey of Reference Lines in the Assessment of Surface Texture. Ann. CiRP.. 1972, 21(2):267~273.
    51 J. Raja, V. Tadhakrishnan. Filtering of Surface Profiles Using Fast Fourier Transform. Int. J. Mach. Tool Des. Res.. 1979, 19(3):133~141.
    52 N. L. Luo, P. J. Sullivan, K. J. Stout. Gaussian Filtering of Three-Dimensional Engineering Surface Topography. Proc. SPIE. 1993, 2101:527~538.
    53 Pawel Dobrzanski, Pawel Pawlus, Digital Filtering of Topography: Part I, Separation of One-Process Surface Roughness and Waviness by Gaussian Convolution, Gaussian Regression and Spline Filters. Precision Engineering. 2010, to be published.
    54 M. Krystek. A Fast Gauss Filtering Algorithm for Roughness Measurements. Precsion Engineering. 1996, 19(2-3):198~200.
    55 M. Krystek. Form Filtering by Splines. Measurement. 1996, 18(1):9~15.
    56 M. Krystek. Discrete L-Spline Filtering in Roundness Measurements. Measu..1996, 18(2):129~138.
    57 Y. B. Yuan, T. V. Vorburger, J. F. Song. A Fast Algorithm for Determining the Gaussian Filtered Mean Line in Surface Metrology. Precsion Engineering. 2000, 24(1):62~69.
    58许景波,袁怡宝,朴伟英等.表面粗糙度测量中的高斯滤波快速算法.计量学报. 2005, 4(26):209~312.
    59许景波,袁怡宝.圆度测量中的高斯滤波快速算法.南京理工大学学报. 2007, 3(31):342~345.
    60 S. Brinkmann, H. Bodschwinna, H. W. Lemke. Development of a Robust Gaussian Regression Filter for Three-Dimensional Surface Analysis. Proceedings of the Xth International Colloquium on Surface, Chemnitz University of Technology. 2000:122~132.
    61 S. Brinkmann, H. Bodschwinna, H. W. Lemke. Accessing Roughness in Three- Dimensions Using Gaussian Regression Filtering. Machine Tools & Manufacture. 2001, 41(13-14):2153~2161.
    62冯秀,顾伯勤.表面形貌的研究现状及发展趋势.润滑与密封. 2006, 174(2):960~971.
    63曾文涵,高咏生,谢铁邦.三维表面粗糙度高斯滤波快速算法.计量学报. 2003, 24(1):10~13.
    64 Huifen Li, Xaingqian Jiang, Zhu Li. Robust Estimation in Gaussian Filtering for Engineering Surface Characterization. Precision Engineering. 2004, 28(2):186~ 193.
    65李惠芬,蒋向前,李柱.高斯滤波稳健性能的研究与改进.仪器仪表学报. 2004, 5(25):633~637.
    66 Huifen Li, C. F. Cheung, X. Q. Jiang, et al. A Novel Robust Gaussian Filtering Method for the Characterization of Surface Generation in Ultra-Precision Machining. Precision Engineering. 2006, 20(4):421~430.
    67 Pawel Dobrzanski, Pawel Pawlus. Digital Filtering of Surface Topography: Part II. Application of Robust and Valley Suppression Filters. Precision Engineering. 2010, to be published.
    68 T. Goto, J. Miyakura, K. Umeda. A Robust Spline Filter on the Basis of L2-Norm. Precision Engineering. 2005, 29(2):157~161.
    69 M. Numada, T. Nomura, K. Kamiya. Filter with Variable Transmission Characteristics for Determination of Three-Dimensional Roughness. Precision Engineering. 2006, 30(4): 431~442.
    70 M. Numada, T. Nomura, K. Yanagi. High-Order Spline Filter and Ideal Lowpass Filter at the Limit of Its Order. Precision Engineering. 2007, 31(3):234~242.
    71杨大勇,刘莹,李小兵.小波分析及其在摩擦表面研究中的应用.江西科学. 2006, 24(4):238~241.
    72孙延奎.小波分析及其应用.北京:机械工业出版社. 2005:31~58.
    73 X. Chen, J. Raja, S. Simanapalli. Multi-Scale Analysis of Engineering Surfaces. Int. J. Mach. Tools Manufact.. 1995, 35(2):231~238.
    74 X. Y. Liu, J. Raja. Analyzing Engineering Surface Texture Using Wavelet Filter. Proc. SPIE. 1996, 2825:942~949.
    75陈庆虎,周丽萍,谢铁邦等.表面综合形貌的小波分离法.华中理工大学学报. 1997, 5(25):25~27.
    76陈庆虎,李柱.表面粗糙度评定的小波基准线.计量学报. 1998, 19(4):254~ 257.
    77 Qinghu Che, Shunian Yang, Zhu Li. Surface Roughness Evaluation by Using Wavelets Analysis. Precision Engineering. 1999, 23(3):209~212.
    78 X. Q. Jiang, L. Blunt, K. J. Stout. Lifting Wavelet for Three-Dimensional Surface Analysis. Int. J. Mach. Tools Manufact.. 2001, 41(13-14):2163~2169.
    79 S. J. Xiao, X. Q. Jiang, L. Blunt, et al. Comparison Study of the Biorthogonal Spline Wavelet Filtering for Areal Rough Surfaces. Int. J. Mach. Tools Manufact.. 2001, 41(13-14):2103~2111.
    80 S. Y. Fu, B. Muralikrishnan, J. Raja. Engineering Surface Analysis with Different Wavelet Bases. Journal of Manufacturing Science and Engineering. 2003, 125(4):844~852.
    81 ISO/TS 16610-29. Geometrical Product Specifications (GPS)-Filtration-Part29: Linear Profile Filters: Spline Wavelets.
    82 W. Zeng, X. Q. Jiang, P. Scott. Metrological Characteristics of Dual Tree Complex Wavelet Transform for Surface Analysis. Measurement Science and Technology. 2005, 16(7):1410~1417.
    83 X. Q. Jiang, L. Blunt. Third Generation Wavelet for The Extraction of Morphological Features from Micro and Nano Scalar Surfaces. Wear. 2004, 257(12):1235~1240.
    84李海燕,刘国栋,刘炳国等.双密度小波在表面形貌信号分离中的应用.光学精密工程. 2008, 16(6):1093~1097.
    85 H. L. Wienert. Efficient Computation for Whittaker-Henderson Smoothing. Computation Statistics and Data Analysis. 2007, 52(2):959~974.
    86 E. T. Whittaker. On a New Method of Graduation. Proc. Edinburgh Math. Soc.. 1923, 41:63~75.
    87 A. W. Joseph. The Whittaker-Henderson Method of Graduation. J. Inst. Actu.. 1952, 78:99~114.
    88 I. J. Schoenberg. Spline Functions and the Problem of Graduation. Proc. Nat. Acad. Sci.. 1964, 41:947~950.
    89 C. H. Reinsh. Smoothing by Spline Functions. Numer. Math.. 1967, 10:177~183.
    90 Dariusz Janecki. A Generalized L2-Spline Filter. Measurement. 2009, 42(6):937~ 943.
    91 H. L. Weinert. A Fast Compact Algorithm for Cubic Spline Smoothing. Computation Statistics and Data Analysis. 2009, 53(4):932~940.
    92丁丽娟.数值计算方法.北京:北京理工大学出版社. 1997:89~145.
    93吴勃英.数值分析原理.北京:科学出版社. 2008:134~147.
    94王省富.样条函数及其应用.西安:西北工业大学出版社. 1989.
    95 T. Tadao, S. Kazuyuki. An Optimum Sampling Interval for Digitizing Surface Asperity Profiles. Wear. 1982, 83(1):119~128.
    96袁怡宝.表面形貌测量若干基本理论的研究.哈尔滨工业大学博士论文. 1997:22~35.
    97王忠滨,张彦春,冯银辉等.样条滤波器算法的实现.中国仪器仪表. 2005, (5):69~71.
    98 R. Henderson. Further Remarks on Graduation. Trans. Actuarial Soc. Amer.. 1938, 26:52~57.
    99 R. S. Martin, G. Peters, J. H. Wilkinson. Symmetric Decomposition of a Positive Definite Matrix. Numerische Mathematik. 1965, 7:362~383.
    100 P. F. Johannes, D'haeyer. Gaussian Filtering of Images: a Regularization Approach. Signal proc.. 1989, 18(2):169~181.
    101 M. Unser, A. Aldroubi, M. Eden. B-Spline Signal Processing: Part I-Theory. IEEE Transactions on Signal Processing. 1993, 41(2):821~832.
    102 M. Unser, A. Aldroubi, M. Eden. Fast B-Spline Transforms for Continuous Image Representation and Interpolation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991, 3(13):277~285.
    103 M. Unser, A. Aldroubi, M. Eden. Recursive Regularization Filters: Design, Properties, and Applications. IEEE. Trans. Pattern Anal. Machine Intell.. 1991, 13(3):272~277.
    104 S. Horbelt, A. Munoz, T. Blu, et al. Spline Kernels for Continuous-Space Image Processing. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2000:2191~2194.
    105 M. Unser, A. Aldroubi, M. Eden. B-Spline Signal Processing: Part II-Efficient Design and Applications. IEEE Transactions on Signal Processing. 1993, 41(2): 834~848.
    106 M. Unser, T. Blu. Fractional Spline and Wavelets. SIAM. 2000, 42(1):43~47.
    107 T. Blu, M. Unser. Wavelets, Fractals, and Radial Basis Functions. IEEE Transactions on Signal Processing. 2002, 2(50):543~553.
    108 M. Unser, T. Blu. Self-Similarity: Part I-Splines and Operators. IEEE Transactions on Signal Processing. 2007, 55(4):1352~1362.
    109 R. Panda, G. Rath, B. N. Chatterji. Generalized B-Spline Signal Processing. Signal Processing. 1996, 55(1):1~14.
    110 R. Panda, B. N. Chatterji. Least Squares Generalized B-Spline Signal and Image Processing. Signal Processing. 2001, 81(10):2005~2017.
    111 M. Unser, T. Blu. Generalized Smoothing Splines and the Optimal Discretization of the Winer Filter. IEEE Transactions on Signal Processing. 2005, 53(6):2146~2159.
    112 M. Unser, T. Blu. Construction of Fractional Spline Wavelet Bases. Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing VII. 1999:422~431.
    113 S. Tirosh, Dimitri Van De Ville, M. Unser. Polyharmonic Smoothing Splines and the Multidimensional Wiener Filtering of Fractal-Like Signals. IEEE Transactions on Image Processing. 2006, 15(9):2616~2630.
    114 Hikaru Hanada, Teruaki Saito, Masayudi Hasegawa, et al. Sophisticated Filtration Technique for 3D Surface Topography Data of Rectangular Area. Wear. 2008, 264(5-6):422~427.
    115杨福生.小波变换的工程分析与应用.北京:科学出版社. 2001:32~106.
    116李弼程,罗建书.小波分析及其应用.北京:电子工业出版社. 2003:9~26.
    117 S. Mallat. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Trans. Pattern Anal. Mach. Intell.. 1989, 11(7):674~693.
    118杨汉生.提升小波在电能质量分析中的应用研究.南京理工大学博士论文. 2006:20~22.
    119 A. Aldroubi, P. Abry, M. Unser. Construction of Biorthogonal Wavelets Starting from any Two Multiresolutions. IEEE Transactions on Signal Processing. 1998, 46(4):1130~1133.
    120 A. Cohen, I. Daubechies, J. Feauveau. Biorthogonal Bases of Compactly Supported Wavelets. Commun. Pure Appl. Math.. 1992, 45(5):484~560.
    121 G. Fernandez, S. Periaswamy, W. Sweldens. Liftpack: A Software Package for Wavelet Transforms Using Lifting. Wavelet Applications in Signal and Image Processing IV. Proc. SPIE. 1996, 2825.
    122 W. Sweldens. The Lifting Scheme: a Custom-Design Construction of Biorthogonal Wavelets. Applied and Computational Harmonic Analysis. 1996, 3(2):186~200.
    123 W. Sweldens. The Lifting Scheme: a Construction of Second Generation Wavelets. SIAM J. Math. Anal.. 1998, 29(2):511~546.
    124 Alexander B. Pevnyi, Valery A. Zheludev. On the Interpolation by Discrete Splines with Equidistant Nodes. Journal of Approximation Theory. 2000, 102(2):286~301.
    125 Amir Z. Averbuch, Valery A. Zheludev. Construction of Biorthogonal Discrete Wavelet Transforms Using Interpolatory Splines. Applied and Computational Harmonic Analysis. 2002, 12(1):25~56.
    126 Amir Z. Averbuch, Alexander B. Pevnyi, Valery A. Zheludev. Butterworth Wavelet Transforms Derived from Discrete Interpolatory Splines: Recursive Implementation. Signal Processing. 2001, 81(1):2363~2382.
    127 I. Daubechies. Orthonormal Bases of Compactly Supported Wavelets. Commun. Pure. Appl. Math.. 1988, 41(7): 909~996.
    128 X. Jiang, P. Scott, D. Whitehouse. Wavelets and Their Applications for Surface Metrology. Manufacturing Technology. 2008, 57(1):555~558.
    129 Son H. Bui, B. Muralikrishnan, J. Raja. A Framework for Internet-Based Surface Texture Analysis and Information System. Precision Engineering. 2005, 29(3):298~306.
    130强锡富.传感器.北京:机械工业出版社. 2001:60~100.
    131 Pawel Pawlus, Miroslaw Smieszek. The Influence of Stylus Flight on Change of Surface Topography Parameters. Precision Engineering. 2005, 29(3):272~280.
    132 Chen Yurong, Yang Xudong, Xie Tiebang. A Three-Dimensional Precision Platform Based on Vertical Scanning and Its Application in Surface Topography Measurement. SPIE. 2006, 6280:62801X-1~62801X-7.
    133 GB/T 350-2000.产品几何技术规范表面结构轮廓发表面结构的术语、定义及参数.
    134 B. Muralikrishnan, H. Bui Son, J. Raja. Classification and Recognition of Surface Texture.纳米技术与精密工程. 2004, 2(2):141~151.
    135 W. Grzesik, S. Brol. Wavelet and Fractal Approach to Surface Roughness Characterization after Finish Turning of Different Workpiece Materials. Journal of Materials Processing Technology. 2009, 209(5):2522~2531.
    136王安良,杨春信.评价机械加工表面形貌的小波变换方法.机械工程学报. 2001, 8(37):65~74.
    137李成贵,袁长良,张国雄.分形理论在表面计量学中的应用. 2000, 8(1): 13~19.
    138李成贵,董申,张国雄.表面粗糙度评定参数的分形表征.宇航计测技术. 1998, 18(4):33~40.
    139 I. A. El-sonbaty, U. A. Khashaba, A. I. Selmy, et al. Prediction of Surface Roughness Profiles for Milled Surfaces Using an Artificial Neural Network and Fractal Geometry Approach. Journal of Materials Processing Technology. 2008, 200(1-3):271~278.
    140 P.R. Nayak. Some Aspects of Surface Roughness Measurements. Wear. 1973, 26(2):165~174.
    141 A. Majumdar, C. L. Tien. Fractal Characterization and Simulation of Rough Surfaces. Wear. 1990, 136(2):313~327.
    142 Xu Jingbo, Yuan Yibao. A Fast Algorithm of Gaussian Filtering for Three- Dimensional Surface Topography. The 3rd International Conference on Mechatronics and Information Technology. Chongqing, China. 2005:60411C-1~ 60411C-7.
    143 Piao Weiying, Yuan Yibao, Xu Jingbo. A Fast Gaussian Filtering Algorithm for Three-Dimensional Surface Roughness Measurement. The 4th International Symposium on Instrumentation Science and Technology. Harbin, China. 2006:1-510~1-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700