用户名: 密码: 验证码:
核因子NF-κB信号通路模型的建立及其小分子抑制剂山楂酸在肿瘤、免疫中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核因子NF-κB (Nuclear Factor-κB)作为一个关键的转录调节分子参与多种生物学功能。现在已经证实其广泛存在于真核细胞内,能与多种基因启动子或增强子序列的特定位点结合而促进转录和表达,参与炎症反应、免疫应答以及细胞的增殖、转化和凋亡等重要的病理生理过程。NF-κB的活性受到严格精密的调控,是一个受到多因素共同维持的平衡,只有严格维系这种平衡,细胞才能正常生存和行使生理功能。一旦这种平衡被打破,就会导致生理功能紊乱,产生疾病。研究发现大部分肿瘤组织中NF-κB活性升高,另外,在一些炎性疾病、感染性疾病,如哮喘,各种关节炎,肩周炎,牙周炎以及艾滋病感染早期患者中也发现NF-κB的活性显著升高,而在另外一些自身免疫性疾病中发现NF-κB活性降低。前期研究已经证实维持NF-κB活性的平衡具有重要作用,其活性异常与众多疾病密切相关。因此,NF-κB已经成为治疗包括癌症在内的多种疾病药物作用和开发的分子靶点。
     NF-κB的活化是一个多步骤的过程,当激活因子从细胞表面进入细胞内后,首先激活上游激酶(IKK),再通过激酶磷酸化NF-κB的抑制亚单位IκBα,进而导致NF-κB从细胞质进入到细胞核,与特定的靶标结合,调控相关基因表达,最后调控相关的生理过程。根据NF-κB这些特点,本课题进行了以下方面的研究:
     一、建立了NF-κB活性的各种检测方法,包括:NF-κB报告基因分析方法,免疫荧光的方法(检测NF-κB在细胞内的定位),电泳迁移率实验(EMSA-electrophoretic mobility shift assay),蛋白印迹的方法(分析抑制亚单位IκBα的降解情况和调控基因表达情况)和染色质免疫共沉淀的方法(chromatin immunoprecipitation assay, ChIP)来研究分析NF-κB对疾病的调控作用和筛选发现调控NF-κB活性的药物。另一方面,我们还建立了包括裸鼠荷瘤,肿瘤转移和骨质疏松的动物模型,以期望进一步在体内对NF-κB进行机理和应用方面的深入研究。
     二、利用建好的NF-κB实验模型,我们筛选得到了数个NF-κB信号通路的抑制剂,并选取了其中一个活性小分子——山楂酸,进一步对山楂酸在抗肿瘤方面的机理进行了研究。我们研究发现:
     1、山楂酸具有抑制胰腺癌细胞增值的作用。在TNFα存在时,这种抑制效果更加明显,统计表明显著增强;
     2、山楂酸与TNFα协同抑制胰腺癌细胞增殖的作用,是通过促进细胞凋亡来实现的;
     3、山楂酸是通过抑制NF-κB的活化来促进胰腺癌细胞凋亡的;
     4、在体外,山楂酸处理能够抑制NF-κB下游的相关基因的表达;
     5、裸鼠体内实验进一步证明山楂酸处理能够抑制胰腺癌肿瘤的生长,促进胰腺肿瘤细胞凋亡。
     这些结果提示山楂酸处理能够分别在体内和体外抑制肿瘤细胞的生长,他的抗癌机理是通过抑制NF-κB信号通路的活化和NF-κB下游相关基因的表达来实现的,这就提示,山楂酸和TNFα一起联合使用可能对胰腺癌的治疗有所帮助。
     三、我们课题的另外一个部分研究发现山楂酸能够抑制破骨细胞的分化和功能。这些研究结果包括:
     1、研究发现山楂酸能够抑制破骨细胞分化,而且具有时间和浓度剂量依赖性;
     2、山楂酸还能够抑制破骨细胞特殊的功能结构肌动蛋白环(ACTIN-RING)的形成;
     3、pits assay证实,在体外山楂酸能够抑制破骨细胞对骨片的吸收;4、在体内,我们进一步发现,山楂酸能够抑制由于卵巢切除导致的小鼠骨质流失;
     5、进一步研究表明,山楂酸能够抑制由于卵巢切除导致的破骨细胞活性升高。
     这些现象提示,山楂酸能够抑制破骨细胞的分化和功能,而且对卵巢切除导致的骨质疏松有预防和治疗作用。我们进一步探讨了这些现象的机理。研究发现:
     1、山楂酸处理能够抑制RANKL诱导引起的NF-κB信号通路的活化;
     2、山楂酸处理能够抑制RANKL诱导的引起的MAPK-AP1信号通路的活化;
     3、山楂酸处理能够抑制NFAT-c1的表达,但是不影响其活性;
     4、山楂酸处理能够抑制破骨细胞分化和功能相关基因的表达;
     5、山楂酸处理不影响RANKL诱发的细胞内钙流水平;
     通过上述研究,我们初步证明了山楂酸能够通过抑制NF-κB信号通路和MAPK-AP1信号通路的活化来抑制破骨细胞的分化和功能,而且我们在动物水平验证了山楂酸能够抑制由于激素水平下降导致的骨质流失,这些结果为山楂酸在预防和治疗破骨细胞相关疾病如骨质疏松症方面提供了理论支持。
     综上所述,我们成功的建立了在分子、细胞和动物水平的NF-κB信号通路研究模型,为下一步进行跟NF-κB信号通路相关的机理研究和运用研究奠定了基础。利用建立的模型,我们筛选获得了数个NF-κB信号通路的小分子抑制剂。紧接着,我们对其中之一的山楂酸的功能和机理进行了深入研究。我们发现:山楂酸和肿瘤坏死因子α联合使用具有良好的抗肿瘤效果。而且我们的研究还发现,山楂酸能够抑制破骨前体细胞的分化和功能,在体内能够抑制由于卵巢切除导致的骨质疏松。这些研究为以后山楂酸在肿瘤治疗,破骨细胞相关疾病的预防和治疗方面提供了理论支持。同时,我们的这部分研究也为以后利用NF-κB信号通路研究模型提供了有益探索和尝试。
Abstract
     Nuclear Factor-KB (NF-κB), an well-known evolutionarily conserved transcriptional factor, which plays critical roles in many biological processes including inflammation, immunity, cell proliferation, survival and apoptosis through regulating related target genes expression. The activation of NF-κB, which is rigorously controlled in vivo, is essential for cellular physiological function. Once this activity is disturbed, many diseases, including cancer, arthrositis, periodontitis and bone degradaton are followed. Therefore, NF-κB has become a promising drug target for these diseases.
     The activation of NF-κB is a multiple steps progress, including IκBαphosphorylation and degradation, nuclear translocation of NF-κB subunits, binding with specific DNA sequences and finally regulating its target genes expression. According to these steps, we firstly established a systemic assays model to evaluate the activity of NF-κB. Secondly, we found some inhibitors of NF-κB signaling pathway by screening small molecular compounds, which come from traditional Chinese medicine(TCM) using these assay models. We then studied one of these active compounds, maslinic acid (MA), and discovered the functions of MA in cancer and osteoclastogenesis and also elucidated the exact mechanisms involved in these physiological functions.
     In this study, we firstly studied the antitumor effects of MA in pancreatic cancer, and we found the following results:
     1 MA could enhance TNFα-induced pancreatic cancer cell growth;
     2 MA could potentiates TNFα-induced pancreatic cancer cell apoptosis;
     3 MA could activate caspase-dependent apoptotic pathway;
     4 MA could inhibit TNFα-induced pancreatic cancer cell migration;
     5 MA blocked TNFα-induced NF-κB activation and genes expression;
     6 MA suppressed pancreatic tumor growth and induced apoptosis in vivo.
     Together, in this part of our study, for the first time, our results showed that MA can enhance the anti-tumor activities of TNFa and inhibit pancreatic tumor growth and invasion by activating caspase-dependent apoptotic pathway and by suppressing NF-κB activation and- its downstream genes expression. Therefore, we concluded that MA together with TNFa could be new promising agents in the treatment of pancreatic cancer.
     We next determined the effects of MA on osteoclast differentiation and functions. And we observed the following phenomena:
     1 MA suppressed osteoclast differentiation and these suppressions were only observed at early stage during ostoclastogenesis;
     2 MA had little effects on precursors of osteoclast when treated with the lower concentration used in differentiation assay;
     3 MA blocked RANKL-induced actin-ring formation;
     4 MA inhibited RANKL-induced bone resorption on spicula in pits assay;
     5 MA ameliorated ovariectomy-induced bone loss in vivo;
     We further studied the molecular mechanisms of these observations. And we found that:
     1 MA blocked NF-κB and MAPK-AP1 activation;
     2 MA suppressed NFAT-c1 expression but not its activation;
     3 MA down regulated some osteoclast related genes expression;
     4 Maslinic acid cannot break RANKL induced calcium signaling in RAW264.7 cells.
     Taken together, in this part of our study, our results firstly demonstrated that MA could suppress RANKL-induced osteoclastogenesis and function through suppression NF-κB and MAPKs/AP-1 signaling pathway. These results suggested that MA could be a new promising agent in the treatment of osteoclast related diseases such as osteoporosis.
     Taken all together, we discovered some novel inhibitors of NF-κB signaling pathway using a systemic study platform for NF-κB signaling pathway we established in our lab. Furthermore, we also studied the effects of maslinic acid (MA), one of our discovered active compounds from TCM, on its antitumor and antiosteoclastogenic activities in vitro and in vivo. We found that MA could potentiate TNFα-induced pancreatic cancer cell apoptosis and suppress RANKL-induced osteoclastogenesis by regulating NF-κB signaling pathway. These results supported that MA could be a new promising agent both in the treatment of cancer and osteoclast related diseases such as osteoporosis.
引文
1. Sen R, Baltimore D:Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 1986,47:921-928.
    2. Sen R, Baltimore D:Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986,46:705-716.
    3. Ghosh S, May MJ, Kopp EB:NF-kappa B and Rel proteins:evolutionary conserved mediators of immune responses. Annu Rev Immunol 1998,16:225-260.
    4. Kumar A, Takada Y, Boriek AM, Aggarwal BB:Nuclear factor-kappaB:its role in health and disease. JMol Med 2004,82:434-448.
    5. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D:Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 1995,376:167-170.
    6. Karin M, Cao Y, Greten FR, Li ZW:NF-kappaB in cancer:from innocent bystander to major culprit. Nat Rev Cancer 2002,2:301-310.
    7. Hayden MS, Ghosh S:Signaling to NF-kappaB. Genes Dev 2004,18:2195-2224.
    8. Xiao G, Fong A, Sun SC:Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. JBiol Chem 2004,279:30099-30105.
    9. Betts JC, Nabel GJ:Differential regulation of NF-kappaB2(p100) processing and control by amino-terminal sequences. Mol Cell Biol 1996,16:6363-6371.
    10. Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, et al:TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 2005,19:2668-2681.
    11. Bonizzi G, Karin M:The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004,25:280-288.
    12. Luo JL, Kamata H, Karin M:IKK/NF-kappaB signaling:balancing life and death-a new approach to cancer therapy. JClin Invest 2005,115:2625-2632.
    13. Perkins ND:Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007,8:49-62.
    14. Karin M, Ben-Neriah Y:Phosphorylation meets ubiquitination:the control of NF-[kappa]B activity. Annu Rev Immunol 2000,18:621-663.
    15. Ye J, Xie X, Tarassishin L, Horwitz MS:Regulation of the NF-kappaB activation pathway by isolated domains of FIP3/IKKgamma, a component of the IkappaB-alpha kinase complex. J Biol Chem 2000,275:9882-9889.
    16. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A:IKK-1 and IKK-2:cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 1997,278:860-866.
    17. Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M:Identification and characterization of an IkappaB kinase. Cell 1997,90:373-383.
    18. Fan CM, Maniatis T:Generation of p50 subunit of NF-kappa B by processing of p105 through an ATP-dependent pathway. Nature 1991,354:395-398.
    19. Chen Z.I, Parent L, Maniatis T:Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 1996,84:853-862.
    20. Senftleben U, Li ZW, Baud V, Karin M:IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 2001,14:217-230.
    21. Ling L, Cao Z, Goeddel DV:NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci U S A 1998,95:3792-3797.
    22. Zandi E, Chen Y, Karin M:Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB-bound substrate. Science 1998,281:1360-1363.
    23. Gerondakis S, Grossmann M, Nakamura Y, Pohl T, Grumont R:Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function:transgenics and knockouts. Oncogene 1999,18:6888-6895.
    24. Bours V, Franzoso G, Azarenko V, Park S, Kanno T, Brown K, Siebenlist U:The oncoprotein Bcl-3 directly transactivates through kappa B motifs via association with DNA-binding p50B homodimers. Cell 1993,72:729-739.
    25. Chen ZJ:Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005,7:758-765.
    26. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M:The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 1997,91:243-252.
    27. Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, Kirk HE, Kay RJ, Israel A: Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 1998,93:1231-1240.
    28. Liao G, Zhang M, Harhaj EW, Sun SC:Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 2004, 279:26243-26250.
    29. Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, Perry A, Cheng G:Critical role of TRAF3 in the Toll-like receptor-dependent and-independent antiviral response. Nature 2006,439:208-211.
    30. Grech AP, Amesbury M, Chan T, Gardam S, Basten A, Brink R:TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 2004,21:629-642.
    31. Huang Q, Yang J, Lin Y, Walker C, Cheng J, Liu ZG, Su B:Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 2004,5:98-103.
    32. McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T:IFN-regulatory factor 3-dependent gene expression is defective in Tbkl-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA 2004,101:233-238.
    33. Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H, Hoshino K, Kaisho T, Kuwata H, Takeuchi O, Takeshige K, et al:Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature 2004,430:218-222.
    34. Kuwata H, Matsumoto M, Atarashi K, Morishita H, Hirotani T, Koga R, Takeda K:IkappaBNS inhibits induction of a subset of Toll-like receptor-dependent genes and limits inflammation. Immunity 2006,24:41-51.
    35. Hayden MS, Ghosh S:Shared principles in NF-kappaB signaling. Cell 2008,132:344-362.
    36. Prajapati S, Verma U, Yamamoto Y, Kwak YT, Gaynor RB:Protein phosphatase 2Cbeta association with the IkappaB kinase complex is involved in regulating NF-kappaB activity. J Biol Chem 2004,279:1739-1746.
    37 DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M:A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 1997,388:548-554.
    38. Karin M, Greten FR:NF-kappaB:linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005,5:749-759.
    39. May MJ, D'Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S:Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science 2000,289:1550-1554.
    40. Heissmeyer V, Krappmann D, Hatada EN, Scheidereit C:Shared pathways of IkappaB kinase-induced SCF(betaTrCP)-mediated ubiquitination and degradation for the NF-kappaB precursor p105 and IkappaBalpha. Mol Cell Biol 2001,21:1024-1035.
    41. Miller BS, Zandi E:Complete reconstitution of human IkappaB kinase (IKK) complex in yeast. Assessment of its stoichiometry and the role of IKKgamma on the complex activity in the absence of stimulation. J Biol Chem 2001,276:36320-36326.
    42. Yang J, Lin Y, Guo Z, Cheng J, Huang J, Deng L, Liao W, Chen Z, Liu Z, Su B:The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2001,2:620-624.
    43. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T:IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003,4:491-496.
    44. Pomerantz JL, Baltimore D:NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. Embo J 1999,18:6694-6704.
    45. Delhase M, Hayakawa M, Chen Y, Karin M:Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 1999,284:309-313.
    46. Li Q, Verma IM:NF-kappaB regulation in the immune system. Nat Rev Immunol 2002, 2:725-734.
    47. Liou HC:Regulation of the immune system by NF-kappaB and IkappaB. J Biochem Mol Biol 2002,35:537-546.
    48. Liang Y, Zhou Y, Shen P:NF-kappaB and its regulation on the immune system. Cell Mol Immunol 2004,1:343-350.
    49. Vallabhapurapu S, Karin M:Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009,27:693-733.
    50. Rae C, Langa S, Tucker SJ, MacEwan DJ:Elevated NF-kappaB responses and FLIP levels in leukemic but not normal lymphocytes:reduction by salicylate allows TNF-induced apoptosis. Proc Natl Acad Sci USA 2007,104:12790-12795.
    51. Doi TS, Takahashi T, Taguchi O, Azuma T, Obata Y:NF-kappa B RelA-deficient lymphocytes: normal development of T cells and B cells, impaired production of IgA and IgG1 and reduced proliferative responses. JExp Med 1997,185:953-961.
    52. Ferreira V, Sidenius N, Tarantino N, Hubert P, Chatenoud L, Blasi F, Korner M:In vivo inhibition of NF-kappa B in T-lineage cells leads to a dramatic decrease in cell proliferation and cytokine production and to increased cell apoptosis in response to mitogenic stimuli, but not to abnormal thymopoiesis. J Immunol 1999,162:6442-6450.
    53. Roman-Blas JA, Jimenez SA:NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 2006,14:839-848.
    54. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J:Triggering the interferon antiviral response through an IKK-related pathway. Science 2003,300:1148-1151.
    55. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S:Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 2005,6:1087-1095.
    56. Karin M:Nuclear factor-kappaB in cancer development and progression. Nature 2006, 441:431-436.
    57. Ranjan D, Chen C, Johnston TD, Jeon H, Nagabhushan M:Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFkappaB activation, and IL-2 signaling. J Surg Res 2004,121:171-177.
    58. Takeda K, Takeuchi O, Tsujimura T, Itami S, Adachi O, Kawai T, Sanjo H, Yoshikawa K, Terada N, Akira S:Limb and skin abnormalities in mice lacking IKKalpha. Science 1999,284:313-316.
    59. Clohisy JC, Hirayama T, Frazier E, Han SK, Abu-Amer Y:NF-kB signaling blockade abolishes implant particle-induced osteoclastogenesis. J Orthop Res 2004,22:13-20.
    60. Aggarwal BB, Sethi G, Baladandayuthapani V, Krishnan S, Shishodia S:Targeting cell signaling pathways for drug discovery:an old lock needs a new key. J Cell Biochem 2007,102:580-592.
    61. Rothwarf DM, Karin M:The NF-kappa B activation pathway:a paradigm in information transfer from membrane to nucleus. Sci STKE 1999,1999:RE1.
    62. Haefner B:The transcription factor NF-kappaB as drug target. Prog Med Chem 2005, 43:137-188.
    63. Muriel P:NF-kappaB in liver diseases:a target for drug therapy. J Appl Toxicol 2009, 29:91-100.
    64. Roodman GD:Cell biology of the osteoclast. Exp Hematol 1999,27:1229-1241.
    65. Boyle WJ, Simonet WS, Lacey DL:Osteoclast differentiation and activation. Nature 2003, 423:337-342.
    66. Bruzzaniti A, Baron R:Molecular regulation of osteoclast activity. Rev Endocr Metab Disord 2006,7:123-139.
    67. Vaananen HK, Zhao H, Mulari M, Halleen JM:The cell biology of osteoclast function. J Cell Sci 2000,113 (Pt3):377-381.
    68. Matsuo K, Ray N:Osteoclasts, mononuclear phagocytes, and c-Fos:new insight into osteoimmunology. Keio J Med 2004,53:78-84.
    69. Miyamoto T, Suda T:Differentiation and function of osteoclasts. Keio J Med 2003,52:1-7.
    70. Cielinski MJ, Marks SC, Jr.:Understanding bone cell biology requires an integrated approach: reliable opportunities to study osteoclast biology in vivo. J Cell Biochem 1994,56:315-322.
    71. Chambers TJ:Regulation of the differentiation and function of osteoclasts. J Pathol 2000, 192:4-13.
    72. Suda T, Kobayashi K, Jimi E, Udagawa N, Takahashi N:The molecular basis of osteoclast differentiation and activation. Novartis Found Symp 2001,232:235-247; discussion 247-250.
    73. Teitelbaum SL, Ross FP:Genetic regulation of osteoclast development and function. Nat Rev Genet 2003,4:638-649.
    74. Takayanagi H:[Molecular determinants in osteoclast differentiation and osteoimmunology]. Rinsho Ketsueki 2009,50:447-452.
    75. Takayanagi H:Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med 2005,83:170-179.
    76. Karsenty G, Wagner EF:Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002,2:389-406.
    77. Kollet O, Dar A, Lapidot T:The multiple roles of osteoclasts in host defense:bone remodeling and hematopoietic stem cell mobilization. Annu Rev Immunol 2007,25:51-69.
    78. Hardy R, Cooper MS:Bone loss in inflammatory disorders. J Endocrinol 2009,201:309-320.
    79. Lorenzo J, Horowitz M, Choi Y:Osteoimmunology:interactions of the bone and immune system. Endocr Rev 2008,29:403-440.
    80. Boyce BF, Xing L:Bruton and Tec:new links in osteoimmunology. Cell Metab 2008, 7:283-285.
    81. Takayanagi H:Osteoimmunology:shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007,7:292-304.
    82. Leibbrandt A, Penninger JM:RANK/RANKL:regulators of immune responses and bone physiology. Ann N YAcad Sci 2008,1143:123-150.
    83. Takayanagi H:[Osteoclast differentiation and activation]. Clin Calcium 2007,17:484-492.
    84. David JP:Osteoimmunology:a view from the bone. Adv Immunol 2007,95:149-165.
    85. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y:Osteoimmunology:interplay between the immune system and bone metabolism. Annu Rev Immunol 2006,24:33-63.
    86. Rho J, Takami M, Choi Y:Osteoimmunology:interactions of the immune and skeletal systems. Mol Cells 2004,17:1-9.
    87. Targonska M, Kochanowska I, Ostrowski K, Gorski A:[Osteoimmunology:new area of research on the associations between the immune and bone systems]. Pol Arch Med Wewn 2001,105:435-440.
    88. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U:Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 1997,11:3482-3496.
    89. Xing L, Bushnell TP, Carlson L, Tai Z, Tondravi M, Siebenlist U, Young F, Boyce BF: NF-kappaB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK-and cytokine-mediated osteoclastogenesis. J Bone Miner Res 2002,17:1200-1210.
    90. Xing L, Carlson L, Story B, Tai Z, Keng P, Siebenlist U, Boyce BF:Expression of either NF-kappaB p50 or p52 in osteoclast precursors is required for IL-1-induced bone resorption. J Bone Miner Res 2003,18:260-269.
    91. Ogasawara T, Katagiri M, Yamamoto A, Hoshi K, Takato T, Nakamura K, Tanaka S, Okayama H, Kawaguchi H:Osteoclast differentiation by RANKL requires NF-kappaB-mediated downregulation of cyclin-dependent kinase 6 (Cdk6). JBone Miner Res 2004,19:1128-1136.
    92. Kunugiza Y, Tomita T, Tomita N, Morishita R, Yoshikawa H:Inhibitory effect of ribbon-type NF-kappaB decoy oligodeoxynucleotides on osteoclast induction and activity in vitro and in vivo. Arthritis Res Ther 2006,8:R103.
    93. Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K, et al:NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATcl. J Biol Chem 2007,282:18245-18253.
    94. Vaira S, Johnson T, Hirbe AC, Alhawagri M, Anwisye I, Sammut B, O'Neal J, Zou W, Weilbaecher KN, Faccio R, Novack DV:RelB is the NF-kappaB subunit downstream of NIK responsible for osteoclast differentiation. Proc Natl Acad Sci U S A 2008,105:3897-3902.
    95. Soysa NS, Alles N, Shimokawa H, Jimi E, Aoki K, Ohya K:Inhibition of the classical NF-kappaB pathway prevents osteoclast bone-resorbing activity. J Bone Miner Metab 2009, 27:131-139.
    96. Xu J, Wu HF, Ang ES, Yip K, Woloszyn M, Zheng MH, Tan RX:NF-kappaB modulators in-osteolytic bone diseases. Cytokine Growth Factor Rev 2009,20:7-17.
    97. Otero JE, Dai S, Alhawagri MA, Darwech I, Abu-Amer Y:IKKbeta activation is sufficient for RANK-independent osteoclast differentiation and osteolysis. J Bone Miner Res.
    98. Goltzman D:Discoveries, drugs and skeletal disorders. Nat Rev Drug Discov 2002,1:784-796.
    99. Wei S, Siegal GP:Mechanisms modulating inflammatory osteolysis:a review with insights into therapeutic targets. Pathol Res Pract 2008,204:695-706.
    100. Blackwood J:Denosumab, osteoporosis, and prevention of fractures. N Engl J Med 2009, 361:2189; author reply 2190-2181.
    101. Hayashibara T, Hiraga T, Sugita A, Wang L, Hata K, Ooshima T, Yoneda T:Regulation of osteoclast differentiation and function by phosphate:potential role of osteoclasts in the skeletal abnormalities in hypophosphatemic conditions. J Bone Miner Res 2007, 22:1743-1751.
    102. Blythe SL:Denosumab, osteoporosis, and prevention of fractures. N Engl J Med 2009, 361:2189-2190; author reply 2190-2181.
    103. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, et al:Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 2009,361:756-765.
    104. Kiechl S, Willeit J, Schett G:Denosumab, osteoporosis, and prevention of fractures. N Engl J Med 2009,361:2188-2189; author reply 2190-2181.
    105. Kyrgidis A:Denosumab, osteoporosis, and prevention of fractures. N Engl J Med 2009, 361:2189; author reply 2190-2181.
    106. Lewiecki EM:Managing osteoporosis:challenges and strategies. Cleve Clin J Med 2009, 76:457-466.
    107. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ:Cancer statistics,2008. CA Cancer J Clin 2008,58:71-96.
    108. Koliopanos A, Avgerinos C, Paraskeva C, Touloumis Z, Kelgiorgi D, Dervenis C:Molecular aspects of carcinogenesis in pancreatic cancer. Hepatobiliary Pancreat Dis Int 2008,7:345-356.
    109. Feldmann G, Maitra A:Molecular genetics of pancreatic ductal adenocarcinomas and recent implications for translational efforts. J Mol Diagn 2008,10:111-122.
    110. Furukawa T:Molecular targeting therapy for pancreatic cancer:current knowledge and perspectives from bench to bedside. JGastroenterol 2008,43:905-911.
    111. Hamacher R, Schmid RM, Saur D, Schneider G:Apoptotic pathways in pancreatic ductal adenocarcinoma. Mol Cancer 2008,7:64.
    112. Ahn KS, Sethi G, Shishodia S, Sung B, Arbiser JL, Aggarwal BB:Honokiol potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through modulation of nuclear factor-kappaB activation pathway. Mol Cancer Res 2006,4:621-633.
    113. Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB:Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood 2008,111:4880-4891.
    114. Aggarwal BB:Signalling pathways of the TNF superfamily:a double-edged sword. Nat Rev Immunol 2003,3:745-756.
    115. Mocellin S, Rossi CR, Pilati P, Nitti D:Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev 2005,16:35-53.
    116. Lejeune FJ, Ruegg C, Lienard D:Clinical applications of TNF-alpha in cancer. Curr Opin Immunol 1998,10:573-580.
    117. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB:NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999,401:82-85.
    118. Mocellin S, Pilati P, Nitti D:Towards the development of tumor necrosis factor (TNF) sensitizers:making TNF work against cancer. Curr Pharm Des 2007,13:537-551.
    119. Woolf AD, Pfleger B:Burden of osteoporosis and fractures in developing countries. Curr Osteoporos Rep 2005,3:84-91.
    120. Handa R, Ali Kalla A, Maalouf G:Osteoporosis in developing countries. Best Pract Res Clin Rheumatol 2008,22:693-708.
    121. Koide M, Kinugawa S, Ninomiya T, Mizoguchi T, Yamashita T, Maeda K, Yasuda H, Kobayashi Y, Nakamura H, Takahashi N, Udagawa N:Diphenylhydantoin inhibits osteoclast differentiation and function through suppression of NFATcl signaling. J Bone Miner Res 2009,24:1469-1480.
    122. Vaira S, Alhawagri M, Anwisye I, Kitaura H, Faccio R, Novack DV:RelA/p65 promotes osteoclast differentiation by blocking a RANKL-induced apoptotic JNK pathway in mice. J Clin Invest 2008,118:2088-2097.
    123 Wilson SR, Peters C, Saftig P, Bromme D:Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption. J Biol Chem 2009,284:2584-2592.
    124. Luo J, Zhou W, Zhou X, Li D, Weng J, Yi Z, Cho SG, Li C, Yi T, Wu X, et al:Regulation of bone formation and remodeling by G-protein-coupled receptor 48. Development 2009, 136:2747-2756.
    125. He X, Liu RH:Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple's anticancer activity. J Agric Food Chem 2007, 55:4366-4370.
    126. Wang R, Wei W, Wang L, Liu R, Yi D, Du L:Constituents of the flowers of Punica granatum. Fitoterapia 2006,77:534-537.
    127. Wang D, Xia M, Cui Z:New Triterpenoids Isolated from the Root Bark of Ulmus pumila L. Chem Pharm Bull (Tokyo) 2006,54:775-778.
    128. Rodriguez-Rodriguez R, Perona JS, Herrera MD, Ruiz-Gutierrez V:Triterpenic compounds from "orujo" olive oil elicit vasorelaxation in aorta from spontaneously hypertensive rats. J Agric Food Chem 2006,54:2096-2102.
    129. Sultana N, Lee NH:Antielastase and free radical scavenging activities of compounds from the stems of Cornus kousa. Phytother Res 2007,21:1171-1176.
    130. Scalon Cunha LC, Andrade e Silva ML, Cardoso Furtado NA, Vinholis AH, Gomes Martins CH, da Silva Filho AA, Cunha WR:Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens. Z Naturforsch [C] 2007,62:668-672.
    131. Martin R, Carvalho J, Ibeas E, Hernandez M, Ruiz-Gutierrez Y, Nieto ML:Acidic triterpenes compromise growth and survival of astrocytoma cell lines by regulating reactive oxygen species accumulation. Cancer Res 2007,67:3741-3751.
    132. Liu J, Sun H, Duan W, Mu D, Zhang L:Maslinic acid reduces blood glucose in KK-Ay mice. Biol Pharm Bull 2007,30:2075-2078.
    133. Reyes FJ, Centelles JJ, Lupianez JA, Cascante M: (2Alpha,3beta)-2,3-dihydroxyolean-12-en-28-oic acid, a new natural triterpene from Olea europea, induces caspase dependent apoptosis selectively in colon adenocarcinoma cells. FEBS Lett 2006,580:6302-6310.
    134. Marquez-Martin A, De La Puerta R, Fernandez-Arche A, Ruiz-Gutierrez V, Yaqoob P: Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil in human mononuclear cells. Cytokine 2006,36:211-217.
    135. Juan ME, Wenzel U, Ruiz-Gutierrez V, Daniel H, Planas JM:Olive fruit extracts inhibit proliferation and induce apoptosis in HT-29 human colon cancer cells. J Nutr 2006, 136:2553-2557.
    136. Amico V, Barresi V, Condorelli D, Spatafora C, Tringali C:Antiproliferative terpenoids from almond hulls (Prunus dulcis):identification and structure-activity relationships. J Agric Food Chem 2006,54:810-814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700