用户名: 密码: 验证码:
基于碳纳米材料的一氧化氮电化学传感器的制备及生物医学应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一氧化氮(NO)既是一种神经递质又是一种重要的信使分子,它广泛存在于人体的各种组织器官中,有很强的生物活性,在神经信息传递、胃肠保护和动力调控、心肺功能、脏器血流调节、内分泌调节、机体防御免疫功能以及细胞凋亡等很多方面都起着重要的作用。电化学方法灵敏度高,响应快,可以对NO进行实时、在线检测,而且微电极及超微电极又可以实现活体检测和单细胞分析,因此电化学方法受到了科学家的高度关注。依赖于各种化学修饰电极的电化学传感器,是目前最受重视的电化学方法之一,因此,设计优异的电极界面,开发研制灵敏度高、选择性好的NO电化学传感器,以及深入探讨化学与生物分子的传感机理,其关键就在于寻找合适的分子敏感与高效换能的电极修饰材料。
     碳纳米材料比表面积大、导电性好、电催化性能好、吸附能力强、表面活性高,生物相容性好,因此被广泛地用作电极的修饰材料来制备电化学传感器。本论文中,基于碳纳米材料的高表面活性,我们将其与其他功能材料进行结合,制备出了选择性好、灵敏度高、生物相容性好的新型NO电化学传感器,并对这些NO电化学传感器在生物医学方面的应用做了研究。主要内容如下:
     (1)利用偶氮胭脂红(ACB)实现了对多壁碳纳米管(MWCNTs)的非共价功能化,制得了水溶性良好的MWCNTs.通过简单的电聚合方法,制得了一种新型的基于聚偶氮胭脂红(PACB)-水溶性多壁碳纳米管(MWCNTs)纳米膜修饰玻碳电极(GCE)的NO电化学传感器。该传感器对NO的电化学氧化有很好的催化作用。我们对PACB-MWCNTs复合膜进行了多种表征并对NO的检测条件进行了优化。该传感器具有重现性好、稳定性好、灵敏度高以及抗干扰能力强等特点,并能成功应用于小鼠肝细胞释放NO的检测。
     (2)碳纳米纤维(CNFs)经茜素红(AR)非共价功能化后,可以稳定地分散于水中,通过简单的在线电聚合法,制得了聚合茜素红(PAR)-CNFs复合膜修饰碳纤维电极(CFME),可用作NO电化学微传感器。用红外光谱表征技术研究了AR的电聚合机理,并用扫描电镜对PAR-CNFs复合膜的形貌进行了表征。PAR-CNFs复合膜疏松多孔的结构能够增大NO微传感器的有效面积,提高了NO检测的灵敏度。NO微传感器已成功应用于巨噬细胞NO释放的检测,说明该微传感器在生物医学分析领域有很大的应用潜力。
     (3)将铂纳米颗粒(PtNPs)通过恒电位法电沉积到乙炔黑(AB)修饰玻碳电极表面,制得了一种基于PtNPs-AB复合膜的NO传感器。用扫描电镜、X荧光光谱,电化学交流阻抗技术对PtNPs-AB复合膜进行了表征,并对NO在该传感器上的电化学反应机理进行了探讨。电化学实验表明,该PtNPs-AB复合膜对NO的电化学氧化有很好的催化作用。用该NO电化学传感器对NO进行检测,其线性范围为:0.18μM~120.0 gM,检出限为50 nM。将该NO电化学传感器用于豚鼠肝组织中NO的释放检测,取得了满意的效果。
     (4)自制了一种碳纳米纤维糊微电极(CNFPME),并制备了一种高灵敏的基于十六烷基三甲基溴化铵(CTAB)-Nafion复合膜修饰CNFPME的NO微传感器。扫描电镜和电化学技术表征表明,CTAB-Nafion复合膜具有较大的表面积和良好的导电性,所以可以大大提高NO微传感器的灵敏度。Nafion的抗阴离子干扰及防止电极表面钝化的作用又使得NO微传感器有很好的抗干扰作用。该NO微传感器还具有稳定性好、重现性好以及检出限低等特点,并成功用于了小鼠肝细胞中NO释放的检测。
     (5)利用香兰素(vanillin)实现了多壁碳纳米管(MWCNTs)在水中的稳定分散,并通过电聚合的方式将聚香兰素(PVN)-MWCNTs修饰于碳纤维微电极(CFME)表面。借助于扫描电镜、红外光谱及伏安法对PVN-MWCNTs复合膜进行了表征,结果表明,PVN-MWCNTs复合膜具有大面积的致密多孔结构。PVN-MWCNT/CFME对亚硝酸盐(NO2-)的电化学氧化有很好的电催化作用。我们将PVN-MWCNT/CFME用于了湖水中N02-浓度的检测。较好的回收率表明该修饰电极可以用于实际样品中NO2-的测定。
     (6)利用酵母细胞生物合成了纳米金银合金(Au-AgNPs)并将其用于高灵敏香兰素(vanillin)电化学传感器的制备。荧光电子显微镜和透射电子显微镜的表征结果表明,Au-AgNPs是由酵母细胞通过细胞外方式生物合成的,而且呈现出不规则的多角形。电化学研究表明,在基于Au-AgNPs修饰玻碳电极(GCE)的vanillin电化学传感器上,vanillin的电化学响应较在裸GCE上提高了近5倍。该vanillin电化学传感器成功用于了香荚兰豆和香草茶中vanillin含量的准确测定,说明它具有较好的实际应用价值。
Nitric oxide (NO) is a neurotransmitter and an important messenger molecule. It exists widely in human's organs and has strong biological activity. It also plays important roles in neural information transmitting, gastrointestinal protection, power control, cardiopulmonary, organ blood flow regulation, endocrine regulation, organism defense immune ability and apoptosis et al. Electrochemical methods have the merits of high sensitivity and quick response, and can realize the real time and online determination of NO; moreover, microelectrode and ultramicroelectrode are adequate for in vivo analysis and single cell analysis. So scientists have paid more attention to electrochemical methods. Electrochemical sensor depended on kinds of modified electrodes is one of the most important electrochemical methods. Therefore, looking for suitable electrode modifier that is molecular sensitive and energy transfer effective is essential for the excellent engineering of electrode interface, developing sensitive and selective NO electrochemical sensors and investigating the sensing mechanism of chemical and biological molecules.
     Carbon nano-materials are widely used as electrode modifier in fabricating electrochemical sensors due to their large surface area, good conductive ability, excellent electro-catalytic ability, strong adsorption ability, high surface activity and good biocompatibility. In this thesis, we combined carbon nano-materials with other function materials based on their high surface activity to fabricate some novel NO electrochemical sensors with good selectivity, sensitivity and biocompatibility. Moreover, the application of the NO electrochemical sensors in biomedicine had been investigated. The main results are summarized as follows:
     (1) A new noncovalent approach for the dissolution of MWCNTs in water by azocarmine B (ACB) was reported. Through a simple electropolymerization procedure, a novel electrochemical NO sensor based on water-soluble MWCNTs and polyazocarmine B (PACB) nanofilm electrode was prepared, which showed excellent electrocatalytic activity towards the oxidation of nitric oxide (NO). PACB-MWNTs composite film was characterized through many techniques and the NO detection conditions were optimized. The sensor has the merits of good stability, reproducibility, high sensitivity and selectivity, and it can be used to monitor NO released from rat liver cells effectively.
     (2) Carbon naofibers (CNFs) were functionalized by Alizarin Red (AR) through new noncovalent approach and could be dispersed in water stably. PAR-CNFs composite film modified carbon fiber miro-electrode (CFME) denoted as NO microsensor was fabricated through a simple in-situ electropolymerization. The electropolymerization mechanism of AR was studied with infrared spectrum and the surface morphology of PAR-CNFs composite film was characterized by scanning electron microscope. The PAR-CNFs composite film has loose structure with lots of nanopores which can improve the effect area and sensitivity of the NO micosensor. The NO microsensor was successfully used to detect the NO released from macrophage, which indicated its potential application in biomedicine.
     (3) A NO electrochemical sensor was fabricated through constant-potential electrodepositing Pt nanoparticles (PtNPs) onto the film of acetylene black (AB) modified glassy carbon electrode (GCE). Scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX) and electrochemical impedance spectroscopy (EIS) were used to characterize the PtNPs-AB. Electrochemical experiments revealed that the NO electrochemical sensor showed high electrocatalytic activity for the oxidation of nitric oxide. The linear range of the determination of nitric oxide was from 0.18μM to 120.0μM and the detection limit was low to 50 nM (S/N=3). This NO electrochemical sensor was applied to the determination of NO released from rat liver tissue and the result was satisfied.
     (4) We fabricated a novel carbon nanofiber paste microelectrode (CNFPME) and reported a sensitive NO microsensor based on cetyltrimethyl ammonium bromide (CTAB)-Nafion composite film modified CNFPME. The results from scanning electron microscope (SEM) and electrochemical technique showed that the CTAB-Nafion composite has large surface area and good conductive ability, which can improve the sensitivity of the NO microsensor. The NO microsensor also has good anti-interference ability because of the function of Nafion. The NO microsensor has good stability, reproducibility and low detection limit, and was successfully applied in the determination of NO released from rat liver cells.
     (5) We reported a simple method for the stable dispersion of multi-walled carbon nanotubes (MWNTs) in water by vanillin and controllable surface addition onto carbon fiber microelectrodes (CFME) via electropolymerization. We had characterized these polyvanillin-carbon nanotube (PVN-MWCNT) composite films, with techniques including scanning electron microscopy (SEM), infrared spectroscopy (IR) and voltammetry. These investigations showed that the film has a uniform porous nanostructure with a large surface area. This PVN-MWCNT composite-modified CFME (PVN-MWCNT/CFME) exhibited a sensitive response to the electrochemical oxidation of nitrite. We successfully applied the PVN-MWCNT/CFME system to the determination of nitrite from lake water. The efficient recovery of nitrite indicated that this electrode was able to detect nitrite in real samples.
     (6) In this work, Au-Ag alloy nanoparticles were biosynthesized by yeast cells and applied to fabricate a sensitive electrochemical vanillin sensor. Fluorescence microscopic and transmission electron microscopic characterizations indicated that the Au-Ag alloy nanoparticles were mainly synthesized via an extracellular approach and generally existed in the form of irregular polygonal nanoparticles. Electrochemical investigations revealed that the vanillin sensor based on Au-Ag alloy nanoparticles modified glassy carbon electrode was able to enhance the electrochemical response of vanillin for at least five times. This vanillin sensor was successfully applied to the determination of vanillin from vanilla bean and vanilla tea sample, suggesting that it may have practical applications in vanillin monitoring system.
引文
[1]R.F. Furchgott, J.V. Zawadzki. The obligatory role of the endothelium in the relaxation of arterial smooth muscle by acetylcholine, Nature 1980,288:373-376.
    [2]L.J. Ignarro, R.E. Byrns, K.S. Wood. Pharmacological and biological properties of endothelium-derived relaxing factor (EDRF):Evidence that EDRF is closely related to nitric oxide radical, Circulation 1986,74:11-287.
    [3]R.M.J. Palmer, A.G. Ferrige, S. Moncada. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 1987,327: 524-526.
    [4]L.J. Ignarro, R.E. Byrns, K.S. Wood. Endothelum-derived relaxing factor produced and release from artery and vein in nitric oxide, Proc Natl Acad Sci USA 1987,84:9265-9269.
    [5]D.E. Koshland. The molecule of the year, Science 1992,258:1861-1861.
    [6]L.J. Ignarro, J.M. Fukuto, J.M. Griscavage, N.E. Rogers, R.E. Byrns. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate:comparison with enzymatically formed nitric oxide from L-arginine, Proc. Natl. Acad. Sci. USA. 1993,90:8103-8107.
    [7]A.R. Butler, D.L.H. Williams. The physiological role of nitric oxide, Chem. Soc. Rev.1993,22:233-241.
    [8]J.F.J. Kerwin, J.R.J. Lancaster, P.L. Feldman. Nitric oxide:a new paradigm for second messengers, J. Med. Chem.1995,38:4343-4362.
    [9]赵保路,王建潮,侯京武,忻文娟.多形核白细胞产生的NO和超氧阴离子自由基主要形成ONOO-,中国科学1996,26:406-413.
    [10]Y.T. Zhang, B.L. Zhao. Green tea polyphenols enhance sodium nitroprusside induced neurotoxicity in human neuroblastoma SH-SY5Y cells, J. Neur. Chem. 2003,86:1189-1200.
    [11]Y. Wang, P.A. Marsden. Nitric oxide synthase:gene structure and regulation, Adv. Pharmacol,1995,34:71-90.
    [12]J. Garthwaite, G Garthwaite, R.M. Palmer, S. Moncada. Nmda receptor activation induces nitric oxide synthesis from arginine in rat brain slices, Eur. J. Pharmacol.1989,172:413-416.
    [13]D.S. Bredt, P.M. Palmer, S.H. Snyder. Localization of nitric oxide synthase indicating a neural role for nitric oxide, Nature 1990,347:768-770.
    [14]D.D. Rees, R.M. Palmer, R. Schulz, H.F. Hodson, S. Moncada. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo, Br. J. Pharmacol. 1990,101:746-752.
    [15]赵保路,沈建刚,忻文娟.心肌缺血再灌注损伤过程中NO和超氧阴离子自由基的协同作用,中国科学1996,26:331-338.
    [16]D.G White, GM. Drew, J.M. Gurden, D.M. Penny, A.G Roach, I.S. Watts. The effect of NG-nitro-L-arginine methyl ester upon basal blood flow and endothelium-dependent vasodilatation in the dog hindlimb, Br. J. Pharmacol. 1993,108:763-768.
    [17]S.M. Gardiner, A.M. Compton, P.A. Kemp, T. Bennett. Regional and cardiac hemodynamic responses to glyceryl trinitrate, acetylcholine, bradykinin and endothelin-1 in conscious rats:effects of NG-nitro-L-arginine, Br. J. Pharmacol. 1990,101:632-639.
    [18]S. Moncada, R.M.Palmer, E.A.Higgs. Nitric oxide:physiology, pathophysiology, and pharmacology, Pharmacol. Rev.1991,43:109-142.
    [19]G Johnson, P.S. Tsao, D. Mulloy. Cardioprotective effects of acidified sodium nitrite in myocardial ischemia, J. Pharmacol. Exp. Ther.1990,252:35-41.
    [20]J.E. Parvillo. Pathogenetic mechanisms of septic shock. N. Eng. J. Med.1993, 328:1471-1478.
    [21]T. Hayashi, J.M. Fukuto, L.J. Ignarro. Gender differences in atherosclerosis: possible role of nitric oxide, J. Cardiovasc. Pharmacol.1995,26:792-802.
    [22]J.P. Guo, K.A. Milhoan, R.S. Tuan. Beneficial effect of SPM-5185, a cysteine-containing nitric oxide donor, in tat carotid artery intimal injury, Circ. Res.1994,75:77-84.
    [23]G.R.Y. Demeyer, H. Bult, L. Ustunes. Effect of nitric oxide donor on neointima
    formation and vascular reactivity in the collared carotid artery of rabitts, J. Cardiovasc. Pharmacol.1995,26:272-279.
    [24]J.P. Guo, M.M. Panday, P.M. Consigny. Mechanism of vascular preservation by a novel NO donor following rat carotid artery intimal injury, Am. J. Physiol.1995, 269:H1122-H1131.
    [25]M. Hamon, B. Vallet, C. Bauters. Long-term oral administration of L-arginine reduces intimal thickening and enhances neoendothelium-dependent acetylcholine-induced relaxation after arterial injury, Circulation 1994,90: 1357-1362.
    [26]J.S. Lee, C. Adrie, H.L. Jacob. Chronic inhalation of nitric oxide inhibits neointimal formation after ballon-induced arterial injury. Circ. Res.1996,78: 337-342.
    [27]T. Malinski, M. Kapturcazk, J. Dayharsh. Nitric oxide synthase activity in genetic hypertension, Biochem. Biophys. Res. Commun.1993,194:654-658.
    [28]J. Wang, N. Sevedi, X. Xu. Defective endothelium mediated control of coronary circulation in conscious dogs after heart failure, Am. J. Physiol.1994,266: H670-H680.
    [29]J.A. Gally, P.R. Montague, J.GN. Reeke, G.M. Edelman. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system, Proc. Natl. Acad. Sci. USA.1990,87:3547-3551.
    [30]H.H.D. Lam, A. Bhardwaj, M.T. O'Connell, D.F. Hanley, R.J. Traystman, M.V. Sofroniew. Nerve growth factor rapidly suppress basal, NMDA-evoked, and AMPA-evoked nitric oxide synthase activity in rat hippocampus in vivo, Proc. Natl. Acad. Sci. USA.1998,95:10926-10931.
    [31]M. Tanaka, S. Yoshida, M. Yano, F. Hanaoka. Roles of endogenous nitric oxide in cerebellar cortical development in slice cultures, Neuro. Report.1994,5: 2049-2052.
    [32]U. Schhindler, V. Libri, G Nistic. Inhibitors of nitric oxide synthase impair passive and active avoidance learning in rodents. In nitric oxide:Brain an immune system. By Moncada, G Nistico, E.A. Higgs, Portland Press, London, Chapel Hill 1992,181-189.
    [33]J.B. Schulz, R.T. Matthews, T. Klockgether, J. Dichgans, M.F. Beal. The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases, Mol. Cell. Biochem.1997,174:193-197.
    [34]S.A. Lipton. Neuronal protection and destruction by NO, Cell Death Differ.1999, 6:943-951.
    [35]J.M. Pique, B.J. Whittle, J.V. Esplugues. The vasodilator role of endogenous nitric oxide in the rat gastric microcirculation, Eur. J. Pharmacol.1989,174: 293-296.
    [36]A.M. Alberola, F.J. Salazar, T. Nakamura, J.P. Granger, Interaction between angiotensin II and nitric oxide in control of renal hemodynamics in conscious dogs,Am. J. Physiol.1994,267:R1472-R1478.
    [37]H. Trachtman, S. Futterweit, P. Singhal. Nitric Oxide Modulates the Synthesis of Extracellular Matrix Proteins in Cultured Rat Mesangial Cells, Biochem. Biophys. Res. Coummun.1995,207:120-125.
    [38]M. Takeda, R. Tang, E. Shapiro. Effects of nitric oxide on human and canine prostate, Urology 1995,45:440-446.
    [39]M. Zeini, S. Hortelano, P.G. Traves, A.G. Gomez-Valades, A. Pujol, J.C. Perales, R. Bartrons, L. Bosca. Assessment of a dual regulatory role for NO in liver regeneration after partial hepatectomy:protection against apoptosis and retardation of hepatocyte proliferation, FASEB. J.2005,19:995-997.
    [40]M.M. Cals-Grierson, A.D. Ormerod. Nitric oxide function in the skin, Nitric Oxide 2004,10:179-193.
    [41]H. MillarA, D.A. Day. Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria, FEBS. Lett.1996,398:155-158.
    [42]Y.Y. Leshem. Nitric oxide in biological system, Plant. Growth. Reg.1996,18: 155-159.
    [43]Y.Y. Leshem. Nitric oxide in plants:Occur, Function and Use, Kluwer Academic Publishers, Dordrecht, Boston.2000,50-78.
    [44]M.V. Beligni, L. Lamattina. Nitric oxide stimulates seed germination and deetiolation, and inhibits hypocotyl elongation, three light inducible responses in plants, Planta 2000,210:215-221.
    [45]A. Caro, S. Puntarulo. Nitric oxide generation by soybean embryonic axes: possible effect on mitochondrial function, Free Rad. Res.1999,31:S205-S212.
    [46]I.J. Dang. Plants just say NO to pathogens, Nature 1998,394:525-527.
    [47]J. Durner, D. Wendehenne, D.F. Klessig. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose, Proc. Natl. Acad. Sci. USA. 1998,95:10328-10333.
    [48]Y.Y. Leshem, R.B.H. Wills, V.V.V. Ku. Evidence for the function of the free radical gas-nitric oxide (NO) as an endogenous maturation and senescence regulating factor in higher plants, Plant Phys. Biochem.1998,36:825-833.
    [49]M.C. Pedroso, J.R. Magalhaes, D. Durzan. A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues, J. Exp. Bot.2000,51:1027-1036.
    [50]M.C. Pedroso, J.R. Magalhaes, D. Durzan. Nitric oxide induced cell death in Taxus cells, Plant Sci.2000,157:173-180.
    [51]T. Han, D. Hyduke, M. Vaughn, J. Fukuto, J. Liao. Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions, Proc.Natl. Acad. Sci. USA 2002,99:7763-7768.
    [52]H.S. Lee, S.J. Cross, J. Sawles. QT dispersion in patients with coronary artery disease:Effect of exercise, dobutamine and dipyridamole myocardial stress, Br. Heart J.1994,71:980-982.
    [53]K. Kikuchi, J.S. Nagano, H. Hayakawa, Y. Hirata, M. Hirobe. Real-time measurement of nitric oxide produced ex vivo by luminol-H2O2 chemiluminescence method, Anal. Chem.1993,65:1794-1799.
    [54]K. Kikuchi, J. S. Nagano, H. Hayakawa, Y. Hirata, M. Hirobe. Real time measurement of nitric oxide produced ex vivo by luminol-H2O2 chemiluminescence method, J. Biol. Chem.1993,268:23106-23110.
    [55]Y. Tsukada, M. Yasutake, D. Jia, Y. Kusama, H. Kishida, T. Takano, S. Tsukada. Real-time measurement of nitric oxide by luminol-hydrogen peroxide reaction in crystalloid perfused rat heart, Life Sci.2003,72:989-1000.
    [56]H. Kojima, K. Kikuchi, M. Hirobe, T. Nagano. Real-time measurement of nitric oxide production in rat brain by the combination of luminal-H2O2 chemiluminescence and microdialysis, Neurosci. Lett.1997,233:157-159.
    [57]周宜开,朱勇飞,柏正武,孙雅亮,鲁米诺-H202体系化学发光检测一氧化氮的研究,分析科学学报1999,15:476-479.
    [58]A.M. Leone, V.W. Furst, N.A. Foxwell, S. Cellek, S. Moncada. Visualization of nitric oxide generated by activated murine macrophages, Biochem. Biophys. Res. Commun.1996,221:37-41.
    [59]D. Yao, A.G Vlessidis, N.P. Evmiridis. On-line monitoring of nitric oxide complexed with porphyrine-bearing biochemical materials by using flow injection with chemiluminescence detection, Anal. Chim. Acta 2001,435: 273-280.
    [60]C.W.R. Shuttleworth, J.S. Weinert, K.M. Sanders. Detection of nitric oxide release from canine enteric neurons, J. Auto. Nerv. Syst.1995,56:61-68.
    [61]G Gabor, N. Allon. Spectrofluorometric method for NO determination, Anal. Biochem.1994,220:16-19.
    [62]T.P. Misko, R.J. Schilling, O. Salvemini. A fluorometric assay for the measurement of nitrite in biological samples, J. Anal. Biochem.1993,214:11-16.
    [63]A.M Miles, Y.Chen, M.W. Owens, M.B. Grishans, (Eds:J. Everse, M.B. Grisham) Fluorometric determination of nitric oxide. In:Methods:A Companion to Methods in Enzymology.1995, Academic Press, NY,7:40-47.
    [64]S. Trevin, F. Bedioui, F. Devynck. Electrochemical and spectrophotometric study of the behavior of electropolymerized nickel prophyrin films in the determination of nitric oxide in solution, Talanta 1996,43:303-311.
    [65]K. Shibuki. An electrochemical microprobe for detecting nitric oxide release in brain tissue, Neurosci. Res.1990,9:69-76.
    [66]K. Ichimori, H. Ishida, M. Fukahori, H. Nakazawa, E. Murakawi, Practical nitric oxide measurement employing a nitric oxide-selective electrode, Rev. Sci. Instrum.1994,65:2714-2718.
    [67]F. Pariente, J.L. Alonso, H.D. Abruna. Chemically modified electrode for the selective and sensitive determination of nitric oxide in vitro and in biological systems, J. Electroanal. Chem.1994,379:191-197.
    [68]F. Bedioui, S. Trevin, J. Devynck. The use of gold electrodes in the electrochemical detection of nitric oxide in aqueous, J. Electroanal. Chem.1994, 377:295-298.
    [69]M.N. Friedemann, S.W. Robinson, G.A. Gerhardt. o-Phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide, Anal. Chem.1996,68: 2621-2628.
    [70]K. Kim, H.T. Chung, G.S. Oh, H.O. Bae, S.H. kim, H.J. Chun. Integrated gold-disk microelectrode modified with iron(II)-phthalocyanine for nitric oxide detection in macrophages, Microchem. J.2005,80:219-226.
    [71]J. Oni, N. Diab, S. Reiter, W. Schuhmann. Metallophthalocyanine-modified glassy carbon electrodes:effects of film formation conditions on electrocatalytic activity towards the oxidation of nitric oxide, Sens. Actua. B 2005,105:208-213.
    [72]P. Audebert, P. Hapiot, P. Capdeielle, M. Maumy. Electrochemical polymerization of several salen-type complexes. Kinetic studies in the microsecond time range, J. Electroanal.Chem.1992,338:269-278.
    [73]N. Hoshino, R. Konishi, N. Tezuka. Photochemistry of nitrosylmetal complexes: laser photolysis studies of nitrosyleobalt schiff bases in ethanol and toluene in the temperature range 160-300K,J. Phys. Chem.1996,100:13569-13573.
    [74]T. Malinski, Z. Taha. Nitric oxide release from a single cell measured in situ by porphyrinic-based microsensor, Nature 1992,358:676-678.
    [75]Y.J. Li, C. Liu, M.H. Yang, Y. He, E.S. Yeung. Large-scale self-assembly of hydrophilic gold nanoparticles at oil/water interface and their electro-oxidation for nitric oxide in solution, J. Electroanal. Chem.2008,622:103-108.
    [76]S. Thangavel, R. Ramaraj. Polymer membrane stabilized gold nanostructures modified electrode and its application in nitric oxide detection, J. Phys. Chem. C 2008,112:19825-19830.
    [77]朱民,刘敏,施国跃,陈俊水,金利通.Nafion/Au溶胶自组装微铂传感器的研究及其在心肌细胞中NO水平测定中的应用,高等学校化学学报2003,24:245-245.
    [78]Y.Z. Wang, C.Y. Li, S.S. Hu. Electrocatalytic oxidation of nitric oxide at nano-TiO2/Nafion composite film modified glassy carbon electrode, J. Solid State Electrochem.2006,10:383-388.
    [79]Y. Xian, W. Zhang, J. Xue, X. Ying, L. Jin, J.Y. Jin. Measurement of nitric oxide released in the rat heart with an amperometric microsensor, Analyst 2000,125: 1435-1439.
    [80]F.H. Wu, G.C. Zhao, X.W. Wei. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode, Electrochem. Commun.2002, 4:690-694.
    [81]Y.Z. Wang, Q. Li, S.S. Hu. A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria, Bioelectrochemistry 2005,62:135-142.
    [82]Y.Z. Wang, S.S. Hu. Nitric oxide sensor based on poly (p-phenylenevinylene) derivative modified electrode and its application in rat heart, Bioelectrochemistry 2009,74:301-305.
    [83]Y.F. Peng, C.G. Hu, D.Y. Zheng, S.S. Hu. A sensitive nitric oxide microsensor based on PBPB composite film-modified carbon fiber microelectrode, Sensor. Actuat. B.2008,133:571-576.
    [84]X.X. Chen, P.P. Xie, Q.L. Tian, S.S. Hu. Amperometric nitric oxide sensor based on poly(thionine)/Nafion-modified electrode and its application in monitoring nitric oxide release from rat kidney, Anal. Lett.2006,39:1321-1332.
    [85]Y.F. Peng, Y.P. Ji, D.Y. Zheng, S.S. Hu. In situ monitoring of nitric oxide release from rat kidney at poly(eosin b)-ionic liquid composite-based electrochemical sensors, Sensor. Actuat. B.2009,137:656-661.
    [86]J. Fiedler, J. Masek. On the reactivity of tetracyanonitrosylferrate(2-). I. Stereochemically controlled intramolecular electron transfer, Inorg. Chim. Acta 1984,81:117-120.
    [87]D.A. Wink, in:M. Feelisch, J.S. Stamler, Methods in Nitric Oxide Research (Chapter 28), Wiley, Chichester,1996.
    [88]K. Hara, M. Kamata, N. Sonoyama, T. Sakata. Electrocatalytic reduction of NO on metal electrodes and gas diffusion electrodes in an aqueous electrolyte, J. Electroanal. Chem.1998,451:181-186.
    [89]L. Zhang, D.B. Tian, J.J. Zhu. Direct electrochemistry and electrochemical catalysis of myoglobin-TiO2 coated multiwalled carbon nanotubes modified electrode, Bioelectrochemisty 2008,74:157-163.
    [90]H.H. Liu, Y.Q. Wan, GL. Zou. Redox reactions and enzyme-like activities of immobilized myoglobin in aqueous/organic mixtures, J. Eletroanal. Chem.2006, 594:111-117.
    [91]S. Kroning, F.W. Scheller, U. Wollenberger. Myoglobin-clay electrode for nitric oxide (NO) detection in solution, Electroanalysis 2004,16:253-259.
    [92]Q. Lu, S. Hu, D. Pang, Z. He. Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots on glassy carbon electrode, Chem. Commun.2005,20:2584-2585
    [93]S.S. Jia, J.J. Fei, J.P. Zhou. Direct electrochemistry of hemoglobin entrapped in cyanoethyl cellulose film and its electrocatalysis to nitric oxide, Biosens. Bioelectron.2009,24:3049-3054.
    [94]F. Wang, X.X. Chen, Y.X. Xu, S.S. Hu. Enhanced electron transfer for hemoglobin entrapped in a cationic gemini surfactant films on electrode and the fabrication of nitric oxide biosensor, Biosens. Bioelectron.2007,23:176-182.
    [95]E. Topoglidis, C.J. Campbell, A.E.G Cass. Nitric oxide biosensors based on the immobilization of hemoglobin on mesoporous titania electrodes, Electroanalysis 2006,18:882-887.
    [96]X.Y. He., L. Zhu. Direct electrochemistry of hemoglobin in cetylpyridinium bromide film:Redox thermodynamics and electrocatalysis to nitric oxide, Electrochem. Commun.2006,8:615-620.
    [97]X. Chen, H.Y. Long, W.L. Wu. Direct electrochemical behavior of cytochrome c on sodium dodecyl sulfate modified electrode and its application to nitric oxide biosensor, Thin Solid Films 2009,517:2787-2791.
    [98]W.C.A. Koh, M.A. Rahman, E.S. Choe. A cytochrome c modified-conducting polymer microelectrode for monitoring in vivo changes in nitric oxide, Biosens. Bioelectron.2008,23:1374-1381.
    [99]Y.C. Liu, S.Q. Cui, J. Zhao. Direct electrochemistry behavior of cytochrome c/L-cysteine modified electrode and its electrocatalytic oxidation to nitric oxide, Bioelectrochemistry 2007,70:416-420.
    [100]G.C. Zhao, Z.Z. Yin, X.W. Wei. A reagentless biosensor of nitric oxide based on direct electron transfer process of cytochrome C on multi-walled carbon nanotube, Front. Biosci.2005,10:2005-2010.
    [101]X.J. Liu, Y.X. Huang, L.B. Shang. Electron transfer reactivity and the catalytic activity of horseradish peroxidase incorporated in dipalmitoylphosphatidic acid films, Bioelectrochemistry 2006,68:98-104.
    [102]L.B. Shang, X.J. Liu, C.H. Fan. A nitric oxide biosensor based on horseradish peroxidase/kieselguhr co-modified pyrolytic graphite electrode, Ann. Chim.2004, 94:457-462.
    [103]X.J. Liu, W.J. Zhang, Y.X. Huang. Enhanced electron-transfer reactivity of horseradish peroxidase in phosphatidylcholine films and its catalysis to nitric oxide,J. Biotechnol.2004,2:145-152.
    [104]A.C.A Vooys, M.T.M. Koper, R.A. Santen, J.A.R. Veen. Mechanistic study on electrocatalytic reduction of nitric oxide on transition-metal electrodes, J. Catalysis 2001,202:387-394.
    [105]S. Iijima. Helical microtubules of graphitic carbon, Nature 1991,354:56-58.
    [106]J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, L. Forro. Elastic and shear moduli of single-walled carbon nanotube ropes, Phys. Rev. Lett.1999,82:944-947.
    [107]M.F.Yu, O. Lourie, M.J Dyer. Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load, Seience 2000,287:637-640.
    [108]J.P. Salvetal, J.M. Bonard, N.H.Thomson, A.J. Kulik, L.Forro, W. Benoit, L. ZuPPiroli. Mechanical properties of carbon nanotubes, Appl. Phys. A 1999,69: 255-260.
    [109]V.M. Harik. Mechanics of carbon nanotubes:applicability of the continuum-beam models, Comp. Mater. Sci.2002,24:328-342.
    [110]V. Lordi, N. Yao. Radial Compression and Controlled Cutting of Carbon Nanotubes,J.Chem. Phys.1998,109:2509-2512.
    [111]M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson. Exceptional high Young's modulus observed for individual carbon nanotubes, Nature 1996,381:678-680.
    [112]J.P. Lu. Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett. 1997,79:1297-1300.
    [113]N. Hamada, S. Sawada, A. Oshiyama. New one-dimensional conductors: graphitic microtubules, Phys. Rev. Lett.1992,68:1579-1581.
    [114]X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie. Hybridization effects and metallicity in small radius carbon nanotubes, Phys. Rev. Lett.1994,72: 1878-1881.
    [115]C.L. Kane, E.J. Mele. Size, shape, and low energy electronic structure of carbon nanotubes, Phys. Rev. Lett.1997,78:1932-1935.
    [116]J. Hone, M. Whitney, C. Piskoti, A. Zettl. Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 1999,59:R2514-R2516.
    [117]S. Berber, Y.K. Kwon, D. Tomanek. Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett.2000,84:4613-4616.
    [118]M. Effendi, H. Yokoi, N. Kuroda. Optical Study on Electronic Transport Properties of Single-Walled Carbon Nanotubes at High Temperature, J. Nanosci. Nanotechno.2010,10:4074-4077.
    [119]C. Ni, P.R. Bandaru. Enhanced optical absorption cross-section characteristics of multi-wall carbon nanotubes, Carbon 2009,47:2898-2903.
    [120]C.C. Yang, Y.J. Li, W.H. Chen. Electrochemical hydrogen storage behavior of single-walled carbon nanotubes (SWCNTs) coated with Ni nanoparticles, Int. J. Hydrogen Energy 2010,35:2336-2343.
    [121]H.Z. Geng, T.H. Kim, S.C. Lim. Hydrogen storage in microwave-treated multi-walled carbon nanotubes, Int. J. Hydrogen Energy 2010,35:2073-2082.
    [122]T.V. Hughes, C.R. Chambers. Manufacture of Carbon Filaments, U.S. Patent, No.405408,1889.
    [123]R.S. Lewis, M.Tang, J.F. Wecker, E. Anders, E. Stell. Interstellar diamonds in meteorites, Nature 1987,326:160-162.
    [124]R.S. Lewis, E. Anders, B.T. Draine. Properties, detectability and origin of interstellar diamonds in meteorites, Nature 1989,339:117-121.
    [125]N.R. Greiner, D.S. Phillips, J.D. Johnson, A.F. Volk. Diamonds in detonation soot, Nature 1988,333:440-446.
    [126]K.E. Spear. Diamond-ceramic coating of the future,J. Am. Ceram. Soc.1989, 72:171-191.
    [127]Y.K. Chang, H.H. Hsieh, W.F. Pong, M.H. Tsai, F.Z. Chien, P.K. Tseng, L.C. Chen, T.Y. Wang, K.H. Chen, D.M. Bhusari, J.R. Yang, S.T. Lin. Quantum confinement effect in diamond nanocrystals studied by X-ray-absorption spectroscopy, Phys. Rev. Lett.1999,82:5377-5380.
    [128]K.S. Novoselov, A.K. Geim, S.V. Morozov, D.Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films, Science 2004,306:666-669.
    [129]C.Lee, X.Wei, J.W. Kysar, J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 2008,321:385-388.
    [1]S. Iijima. Helical microtubules of graphitic carbon, Nature 1991,354:56-58.
    [2]G.L. Che, B.B. Lakschmi, E.R. Fisher, C.R. Martin. Carbon nanotubule membranes for electrochemical energy storage and production, Nature 1998,393: 346-349.
    [3]W.A.D. Heer, A. Chatelain, D. Ugarte. A Carbon Nanotube Field-Emission Electron Source, Science 1995,270:1179-1180.
    [4]S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Casselll, H.J. Dai. Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 1999,283:512-514.
    [5]P. Calvert. Strength in disunity, Nature 1992,357:365-366.
    [6]M.S. Dresselhaus. Down the straight and narrow, Nature 1992,358:195-196.
    [7]S.J. Tan, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Dekker. Individual single-wall nanotubes as quantum wires, Nature 1997,386:474-477.
    [8]P.G Collins, A. Zettl, H. Bando, A. Thess, R.E. Smally. Nanotube Nanodevice, Science 1997,278:100-102.
    [9]S.J. Tans, A.R.M. Verschueren, C. Dekker. Room-temperature transistor based on a single carbon nanotube, Nature 1998,393:49-52.
    [10]M. Menon, D. Srivatara. Carbon Nanotube "T Junctions":Nanoscale Metal-Semiconductor-Metal Contact Devices, Phys. Rev. Lett.1997,79: 4453-4456.
    [11]K.P. Gong, Y.M. Yan, M.N. Zhang, L.Q. Mao. Electrochemistry and electroanalytical applications of carbon nanotubes:A review, Anal. Sci.2005,21: 1383-1393.
    [12]G. Mestl, N.I. Maksimova, N. Keller, V.V. Roddatis, R. Schlogl. Carbon nanofilaments in heterogeneous catalysis:An industrial application for new carbon materials? Angew. Chem. Int. Ed.2001,40:2066-2068.
    [13]P. Serp, M. Corrias, P. Kalck. Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A:Gen.2003,253:337-358.
    [14]P.J. Kulesza, M. Skunik, B. Baranowska, K. Miecznikowski, M. Chojak, K. Karnicka, E. Frackowiak, F. Beguin, A. Kuhn, M.H. Delville, B. Starobrzynska, A. Ernst. Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures, Electrochim. Acta 2006,51: 2373-2379.
    [15]M.A. Correa-Duarte, M. Grzelczak, V. Salgueirino-Maceira, M. Giersig, L.M. Liz-Marzan, M. Farle, K. Sierazdki, R. Diaz. Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles, J. Phys. Chem. B 2005,109:19060-19063.
    [16]D.M. Guldi, G.M.A. Rahman, N. Jux, D. Balbinot, U. Hartnagel, N. Tagmatarchis, M. Prato. Functional single-wall carbon nanotube nanohybrids-associating SWNTs with water-soluble enzyme model systems,J. Am. Chem. Soc.2005,127:9830-9838.
    [17]K.A.S. Fernando, Y. Lin, W. Wang, S. Kumar, B. Zhou, S.Y. Xie, L.T. Cureton, Y.P. Sun. Diminished band-gap transitions of single-walled carbon nanotubes in complexation with aromatic molecules, J. Am. Chem. Soc.2004,126: 10234-10235.
    [18]Y.Y. Liu, J. Tang, X.Q. Chen, W. Chen, GK.H. Pang, J.H. Xin. A wet-chemical route for the decoration of CNTs with silver nanoparticles, Carbon 2006,44: 381-383.
    [19]K. Balasubramanian, M. Burghard. Chemically functionalized carbon nanotubes, Small 2005,1:180-192.
    [20]F. Murad. Discovery of some of the biological effects of nitric oxide and its role in cell signaling (Nobel lecture), Angew. Chem. Int. Ed.1999,38:1857-1868.
    [21]R.F. Furchgott. Endothelium-derived relaxing factor:Discovery, early studies, and identifcation as nitric oxide (Nobel lecture), Angew. Chem. Int. Ed.1999,38: 1870-1880.
    [22]R.M.J. Palmer, A.G. Ferrige, S. Moncada. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 1987,327: 524-526.
    [23]J.B. Hibbs, Z. Vavrin Jr., R.R. Tainton. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells,J. Immunol.1987,138:550-565.
    [24]E.M. Schuman, D.V. Madison. A requirement for the intercellular messenger nitric oxide in long-term potentiation, Science 1991,254:1503-1506.
    [25]M. Maskus, F. Pariente, Q. Wu, A. Toffanin, J.P. Shapleigh, H.D. Abruna. Electrocatalytic Reduction of Nitric Oxide at Electrodes Modified with Electropolymerized Films of [Cr(v-tpy)2]3+and Their Application to Cellular NO Determinations, Anal. Chem.1996,68:3128-3134.
    [26]S. Trevin, F. Bedioui, J. Devynck. Electrochemical and spectrophotometric study of the behavior of electropolymerized nickel porphyrin films in the determination of nitric oxide in solution, Talanta 1996,43:303-311.
    [27]S. Trevin, F. Bedioui, J. Devynck. New electropolymerized nickel porphyrin films. Application to the detection of nitric oxide in aqueous solution, J. Electroanal. Chem.1996,408:261-265.
    [28]A. Torstensson, L. Gorton. Catalytic oxidation of NADH by surface-modified graphite electrodes. J. Electroanal. Chem.1981,130:199-207.
    [29]J. Ye, R.P. Baldwin. Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene blue, Anal. Chem.1988,60: 2263-2268.
    [30]F.D. Munteanu, L.T. Kubota, L. Gorton.2001. Effect of pH on the catalytic electrooxidation of NADH using different two-electron mediators immobilised on zirconium phosphate. J. Electroanal. Chem.2001,509:2-10.
    [31]N.F. Atta, A. Galal, A.E. Karagozler, H. Zimmer, J.F. Rubinson, H.B. Mark. Voltametric studies of the oxidation of reduced nicotinamode adenine dinucleotide at a conducting polymer electrode, J. Chem. Soc. Chem. Commun. 1990,19:1347-1349.
    [32]B. Persson, L. Gorton. A comparative study of some 3,7-diaminophenoxazine derivations and related compounds for electrocatalytic oxidation of NADH, J. Electroanal. Chem.1990,292:115-138.
    [33]J. Begum, K.S. Rao, C. Rambabu. Extractive spectrophotometric determination of clomipramine, Asian J. Chem.2006,18:1437-1442.
    [34]Q.E. Cao, Z.B. Li, J.L. Wang, C.N. Li. Spectrophotometric study on the interACBtion of azocarmine B with serum albumin and its analytical applications, Chinese J. Anal. Chem.2002,30:222-226.
    [35]H.M. Chao, W.C. Bao, J.J. An (Eds.). Handbooks of Inorganic Synthesis, Science Publication Company, Beijing,1983, p.243.
    [36]A.R. Butler, D.L.H. Williams. The physiological roles of nitric oxide, Chem. Soc. Rev.1993,22:233-241.
    [37]J.M. Bonard, T. Stora, J.P. Salvetat, F. Maier, T. Stockli, C. Duschl. Purification and size-selection of carbon nanotubes, Adv. Mater.1997,9:827-831.
    [38]胡长员,胡仲禹,李凤仪.有机硅聚醚共聚物功能化处理制备多壁碳纳米管悬浊液,化学学报2008,66:1943-1948
    [39]M. Shim, N.W.S. R.J. Kam,Chen. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition, Nano Lett.2002,2:285-288.
    [40]S. Haider, S.Y. Park, K. Saeed, B.L. Farmer. Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes, Sensor. Actuat. B 2007,124:517-528
    [41]T. Spataru, N. Spataru, A. Fujishima. Detection of aniline at boron-doped diamond electrodes with cathodic stripping voltammetry, Talanta 2007,73: 404-406.
    [42]Y.Q. Wang, H.Z. Yu, J.Z. Cheng, J.W. Zhao, S.M. Cai, Z.F. Liu. End-Group-Dominated Electrochemical Kinetics of Azobenzene Self-Assembled Monolayers on Gold, Langmuir 1996,12:5466-5471.
    [43]H. Luo, Z.J. Shi, N.Q. Li, Z.N. Gu, Q.K. Zhuang. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode, Anal. Chem.2001,73:915-920.
    [44]J.H. Rouse, P.T. Lillehei. Electrostatic assembly of polymer/single walled carbon nanotube multilayer films, Nano Lett.2003,3:59-62.
    [45]M.N. Zhang, L. Su, L.Q. Mao, Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid, Carbon 2006,44:276-283.
    [46]M. Zhang, Y. Yan, K. Gong, L. Mao, Z. Guo, Y. Chen. Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O2 reduction, Langmuir 2004,20:8781-8785.
    [47]I.W. Chiang, B.E. Brinson, A.Y. Huang, P.A. Willis, M.J. Bronikowski, J.L. Margrave, R.E. Smalley, R.H. Hauge. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process),J. Phys. Chem. B 2001,105:8297-8301.
    [48]C.G. Hu, C.H. Yang, S.S. Hu. Hydrophobic adsorption of surfactants on water-soluble carbon nanotubes:A simple approach to improve sensitivity and antifouling capacity of carbon nanotubes-based electrochemical sensors, Electrochem. Commun.2007,9:128-134.
    [49]F. Moussy, D.J. Harrison. Prevention of the rapid degradation of subcutaneously implanted Ag/AgCl reference electrodes using polymer coatings, Anal. Chem. 1994,66:674-679.
    [50]F. Moussy, S. Jakeway, D.J. Harrlson, R.V. Rajottet. In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing, Anal. Chem.1994,66:3882-3888.
    [51]G.A. Gerhardt, A.F. Oke, G. Nagy, B. Moghaddam, R.N. Adams. Nafion-coated electrodes with high selectivity for CNS electrochemistry, Brain Res.1984,290: 390-395.
    [52]T. Luckza. Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution, Electrochim. Acta 2008,53:5725-5731.
    [53]E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem.1979, 101:19-28.
    [54]Y. Wang, P.A. Marsden. Nitric oxide synthase:gene structure and regulation, Adv. Pharmacol,1995,34:71-90.
    [1]L.J. Ignarro, G.M. Bugga, K.S. Wood, R.E. Byrns, G. Chaudhuri. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. USA 1987,84:9265-9269.
    [2]D.E. Koshland. The molecule of the year, Science 1992,258:1861-1861.
    [3]P.M.J. Palmer, A.G. Ferrige, S. Moncada. Nitric oxide release accounts for the biological activity of endothelium derived relaxing factor, Nature 1987,327: 524-526.
    [4]A. Ciszewski, G. Milczarek. Electrochemical detection of nitric oxide using polymer modified electrodes, Talanta 2003,61:11-26.
    [5]S.C. Chang, N. Pereira-Rodrigues, J.R. Henderson, A. Cole, F. Bedioui, C.J. McNeil. An electrochemical sensor array system for the direct, simultaneous in vitro monitoring of nitric oxide and superoxide production by cultured cells, Biosens. Bioelectron.2005,21:917-922.
    [6]J.P. Lei, H.X. Ju, O. Ikeda. Catalytic oxidation of nitric oxide and nitrite mediated by water-soluble high-valent iron porphyrins at an ITO electrode, J. Electroanal. Chem.2004,567:331-338.
    [7]Y.F. Peng, Y.P. Ji, D.Y. Zheng, S.S. Hu. In situ monitoring of nitric oxide release from rat kidney at poly(eosin b)-ionic liquid composite-based electrochemical sensors, Sensor. Actuat. B 2009,137:656-661.
    [8]A. Sivanesan, S.A. John. Highly sensitive electrochemical sensor for nitric oxide using the self-assembled monolayer of 1,8,15,22-Tetraaminophthalocyanatocobalt(II) on glassy carbon electrode, Electroanalysis 2010,22:639-644.
    [9]Y.Z. Wang, S.S. Hu. A novel nitric oxide biosensor based on electropolymerization poly(toluidine blue) film electrode and its application to nitric oxide released in liver homogenate, Biosens. Bioelectron.2006,22:10-17.
    [10]F.H. Wu, G.C. Zhao, X.W. Wei. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode, Electrochem. Commun.2002, 4:690-694.
    [11]S.U. Kim, K.H. Lee. Carbon nanofiber composites for the electrodes of electrochemical capacitors, Chem. Phys. Lett.2004,400:253-257.
    [12]S.H. Yoon, S. Lim, Y. Song, Y. Ota, W.M. Qiao, A. Tanaka, I. Mochida. KOH activation of carbon nanofibers, Carbon 2004,42:1723-1729.
    [13]M.K. van der Lee, A. Jos van Dillen, J.H. Bitter, K.P. de Jong. Deposition precipitation for the preparation of carbon nanofiber supported nickel catalysts, J. Am.Chem. Soc.2005,127:13573-13582.
    [14]H. Cui, S.V. Kalinin, X. Yang, D.H. Lowndes. Growth of carbon nanofibers on tipless cantilevers for high resolution topography and magnetic force imaging, Nano Lett.2004,4:2157-2161.
    [15]H. Hacker, E. Wallnofer, W. Baumgartner, T. Schaffer, J.O. Besenhard, H. Schrottner, M. Schmied. Carbon nanofiber-based active layers for fuel cell cathodes-preparation and characterization, Electrochem. Commun.2005,7: 377-382.
    [16]S. Maldonado, K.J. Stevenson. Direct preparation of carbon nanofiber electrodes via pyrolysis of iron(II) phthalocyanine:Electrocatalytic aspects for oxygen reduction,J. Phys. Chem. B 2004,108:11375-11383.
    [17]M. Musameh, J. Wang, A. Merkoci, Y.H. Lin. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Commun.2002,4:743-746.
    [18]P. Werner, R. Verdejo, F. Wollecke, V. Altstadt, J.K.W. Sandler, M.S.P. Shaffer. Carbon nanofibers allow foaming of semicrystalline poly(ether ether ketone), Adv. Mater.2005,17:2864-2869.
    [19]A. Salimi, R.G. Compton, R. Hallaj. Glucose biosensor prepared by glucose oxide encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode, Anal. Biochem.2004,333:49-56.
    [20]C.E. Banks, R.G. Compton. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection:an edge plane pyrolytic graphite electrode study, Analyst 2005,130:1232-1239.
    [21]L. Li, C.M. Lukehart. Synthesis of hydrophobic and hydrophilic graphitic carbon nanofiber polymer brushes, Chem. Mater.2006,18:94-99.
    [22]Y. Saito, S. Uemura, K. Hamaguchi. Cathode ray tube lighting elements with carbon nanotube field emitters, Jpn. J. Appl. Phys.1998,37:L346-L348.
    [23]O.M. Kuttel, O. Groening, C. Emmenegger, L. Schlapbach, Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma, Appl. Phys. Lett.1998,73:2113-2115.
    [24]S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai. Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 1999,283:512-514.
    [25]H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa. Field emission from well-aligned, patterned carbon nanotube emitters, Appl. Phys. Lett.2000,76: 1776-1778.
    [26]L.N. Wu, X.J. Zhang, H.X. Ju. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential, Anal. Chem. 2007,79:453-458.
    [27]L.N. Wu, J.P. Lei, X.J. Zhang, H.X. Ju. Biofunctional nanocomposite of carbon nanofiber with water-soluble porphyrin for highly sensitive ethanol biosensing, Biosens. Bioelectron.2008,24:644-649
    [28]T. Malinski, Z. Taha, S. Grunfeld, A. Burewicz, P. Tomboulian, F. Kiechle. Measurements of nitric oxide in biological materials using a porphyrinic microsensor, Anal. Chim. Acta 1993,279:135-140.
    [29]J. Park, P.H. Tran, J.K.T. Chao, R. Ghodadra, R. Rangarajan, N.V. Thakor. In vivo nitric oxide sensor using non-conducting polymer-modified carbon fiber, Biosens. Bioelectron.1998,13:1187-1195.
    [30]M.N. Friedemann, S.W. Robinson, G.A. Gerhardt. o-Phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide, Anal. Chem.1996,68: 2621-2628.
    [31]Y.Z. Wang, Q. Li, S.S. Hu. A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria, Bioelectrochemistry 2005,65:135-142.
    [32]F.Y. Du, W.H. Huang, Y.X. Shi. Real-time monitoring of NO release from single cells using carbon fiber microdisk electrodes modified with single-walled carbon nanotubes, Biosens. Bioelectron.2008,24:415-421.
    [33]Y.F. Peng, C.G. Hu, D.Y. Zheng, S.S. Hu. A sensitive nitric oxide microsensor based on PBPB composite film-modified carbon fiber microelectrode, Sensor. Actuat. B 2008,133:571-576.
    [34]W.H. Huang, D.W. Pang, H. Tong, Z.L. Wang, J.K. Cheng. Method for the fabrication of low-noise carbon fiber nanoelectrodes, Anal. Chem.2001,73: 1048-1052.
    [35]T.H. Henning, F. Salama. Carbon in the universe, Science 1998,282:2204-2210.
    [36]K. Otobe, H. Nakao, H. Hayashi, F. Nihey, M. Yudasaka, S. Iijima. Fluorescence visulization of carbon nanotubes by modification with silicon-based polymer, Nano Lett.2002,10:1157-1160.
    [37]杜慷慨,林志勇.碳纤维表面氧化的研究,华侨大学学报(自然群学版)1999,20:135-141.
    [38]赵东宇,李滨耀,余赋生.碳纤维表面的液相氧化处理改性,应用化学1997,14:114-116.
    [39]C.H. Li, K.F. Yao, J. Liang. Influence of acid treatments on the activity of carbon nanotube-supported catalysts, Carbon 2003,41:858-860.
    [40]K.B. Wu, S.S. Hu. Deposition of a thin film of carbon nanotubes onto a glassy carbon electrode by electropolymerization, Carbon 2004,42:3237-3242.
    [41]朱为宏,杨雪艳,李晶.有机波谱及性能分析法,化学工业出版社2007,64-70.
    [42]慈云祥,周天泽.分析化学中的配位化合物,北京大学出版社1984,第243页.
    [43]F. Moussy, S. Jakeway, D.J. Harrlson, R.V. Rajottet. In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing, Anal. Chem.1994,66:3882-3888.
    [44]S.M. Chen, G.H. Chuang, V.S. Vasantha. Preparation and electrocatalytic properties of the TBO/nafion chemically-modified electrodes, J. Electroanal. Chem.2006,588:235-243.
    [45]Y. Wang, P.A. Marsden. Nitric oxide synthase:gene structure and regulation, Adv. Pharmacol,1995,34:71-90.
    [46]D.J. Stuehr, M.A. Marletta. Mammslian nitriate biosynthesis:mouse acrophages produce nitrite and nitate in response to escherichin coli lipopolysaccharide, Proc. Natl. Acad. Sci. USA.1985,82:7738-7742.
    [47]W. Alessandro, L. Shinobu, C. Luigi. Dual mechanism for the control of inducible-type NO synthase gene expression in macrophages during activation by interferon-γ and lipopolysaccharide, J. Biol. Chem.1994,269:8324-8333.
    [48]D.D. Rees, R.M. Palmer, R. Schulz, H.F. Hodson, S. Moncada. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo, Br. J. Pharmacol.1990,101:746-752.
    [49]D.G White, GM. Drew, J.M. Gurden, D.M. Penny, A.G. Roach, I.S. Watts. The effect of NG-nitro-L-arginine methyl ester upon basal blood flow and endothelium-dependent vasodilatation in the dog hindlimb, Br. J. Pharmacol. 1993,108:763-768.
    [50]S.M. Gardiner, A.M. Compton, P.A. Kemp, T. Bennett. Regional and cardiac hemodynamic responses to glyceryl trinitrate, acetylcholine, bradykinin and endothelin-1 in conscious rats:effects of NG-nitro-L-arginine, Br. J. Pharmacol. 1990,101:632-639.
    [51]丁航,侯敢,周克元,祝其锋.香菇多糖对巨噬细胞一氧化氮和一氧化氮合酶活性的影响,广东药学2003,13:32-33.
    [52]黄迪南,侯敢,祝其峰.香菇多糖对小鼠腹腔巨噬细胞一氧化氮生成的影响及其机理,基础医学与临床1999,19:68-70.
    [53]K. Kamei, M. Mie, Y. Yanagida, M. Aizawa, E. Kobatake. Construction and use of an electrochemical NO sensor in a cell-based assessing system, Sensor. Actuat. B 2004,99:106-112.
    [54]M. Pekarova, J. Kralova, L. Kubala, M. Ciz, A. Lojek, C. Gregor, J. Hrbac. Continuous electrochemical monitoring of nitric oxide production in murine macrophage cell line RAW 264.7, Anal. Bioanal. Chem.2009,394:1497-1504.
    [1]T.J. O'Dell, R.D. Hawkins, E.R. Kandel,O. Arancio. Tests of the roles of two diffusible substances in long-term potentiation:evidence for nitric oxide as a possible early retrograde messenger, Proc. Natl. Acad. Sci. USA 1991,88: 11285-11289.
    [2]J.B. Hibbs, J.R. Taintor, Z. Vavrin. Macrophage cytotoxicity:role for L-arginine deiminase and imino nitrogen oxidation to nitrite, Science 1987,235:473-476.
    [3]H. Jaeschke, V. Schini, A. Farhood. Role of nitric oxide in the oxidant stress during ischemia/reperfusion injury of the liver, Life Sci.1992,50:1797-1804.
    [4]M.W. Radomski, R.M.J. Palmer, S. Moncada. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation, Proc. Natl. Acad. Sci. USA 1990, 87:5193-5197.
    [5]L.J. Ignarro, G.M. Bugga, K.S. Wood, R.E. Byrns, G. Chaudhuri. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. USA 1987,84:9265-9269.
    [6]D.E. Koshland. The molecule of the year, Science 1992,258:1861-1865.
    [7]A. Ciszewski, G. Milczarek. A new Nafion-free bipolymeric sensor for selective and sensitive detection of nitric oxide, Electroanalysis 1998,10:791-793.
    [8]T. Malinski, Z. Taha. Nitric Oxide Release From a Single Cell Measured in. Situ by a Porphyrinic Microsensor, Nature 1992,358:676-678.
    [9]M. Maskus, F. Pariente, Q. Wu, A. Toffanin, J.P. Shapleigh, H.D. Abruna. Electrocatalytic reduction of nitric oxide at electrodes modified with electropolymerized films of [Cr(v-tpy)2]3+and their application to cellular NO determinations, Anal. Chem.1996,68:3128-3134.
    [10]D.G. Wu, G. Ashkenasy, D. Shvarts, R. Ussyshkia, R. Maaman, A. Shanzer, D. Cahen. Novel NO Biosensor Based on the Surface Derivatization of GaAs by "Hinged" Iron porphyrins, Angew. Chem. Int. Ed.2000,39:4496-4500.
    [11]Y. Lee, B.K. Oh, M.E. Meyerhoff. Improved planar amperometric nitric oxide sensor based on platinized platinum anode, Anal. Chem.2004,76:536-544.
    [12]S. Vilakazi, T. Nyokong. Interaction of nitric oxide with cobalt(Ⅱ) phthalocyanine: kinetics, equilibria and electrocatalytic studies, J. Electroanal. Chem.2001,512:56-63.
    [13]C. Jeyabharathi, J. Mathiyarasu, K.L.N. Phani. Methanol tolerant oxygen-reduction activity of carbon supported platinum-bismuth bimetallic nanoparticles, J. Appl. Electrochem.2009,39:45-53.
    [14]Z.H. Wen, S.Q. Ci, J.H. Li. Pt Nanoparticles Inserting in Carbon Nanotube Arrays:Nanocomposites for Glucose Biosensors, J. Phys. Chem. C 2009,113: 13482-13487.
    [15]J. Xie, Z.H. Yu, D.G. Xia. Electrochemical sensor for oxidation of NO based on Au-Pt nanoparticles self-assembly film, Chin. J. Chem.2009,27:887-890.
    [16]S.Q. Wang, X.Q. Lin. Electrodeposition of Pt-Fe(III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor, Electrochim. Acta 2005, 50:2887-2891.
    [17]Z.B. He, J.H. Chen, D.Y. Liu, H.H. Zhou, Y.F. Kuang. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation, Diam. Relat. Mater.2004,13:1764-1769.
    [18]H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays, Carbon 2004,42:191-197.
    [19]C.H. Yang, J. Zhao, J.H. Xu. A highly sensitive electrochemical method for the determination of Sudan I at polyvinylpyrrolidone modified acetylene black paste electrode based on enhancement effect of sodium dodecyl sulphate, Int. J. Environ. Anal. Chem.2009,89:233-244.
    [20]Y.L. Wei, S.W. Zhang. Study on the electroreduction process of oxygen to superoxide ion by using acetylene black powder microelectrode, Russ. J. Electrochem.2008,44:967-971.
    [21]Y. Peng, J.H. Xu, J. Zhao. Electrochemical behavior of phenol at acetylene black-dihexadecyl hydrogen phosphate composite modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide, Russ. J. Electrochem.2008,44:206-212.
    [22]H.J. Zhang, C.G Hu, L. Wei, S.S. Hu. Development of an acetylene black-dihexadecyl hydrogen phosphate composite-modified glassy-carbon electrode, and its application in the determination of lovastatin in dosage drug forms, Anal Bioanal. Chem.2004,380:303-309.
    [23]S. Iijima. Helical microtubules of graphitic carbon, Nature 1991,354:56-58.
    [24]C. Batchelor-McAuley, GG Wildgoose, R.G Compton, L.D. Shao, M.L.H. Green. Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes, Sensor. Actuat. B 2008,132:356-360.
    [25]Y. Wang, W.Z. Wei, X.Y. Liu, X.D. Zeng. Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique, Mat. Sci. Eng. C:Bios.2009,29:50-54.
    [26]YJ. Zou, C.L. Xiang, Lixian Sun, Fen Xu. Amperometric glucose biosensor prepared with biocompatible material and carbon nanotube by layer-by-layer self-assembly technique, Electrochim. Acta 2008,53:4089-4095.
    [27]S. Jo, H. Jeong, S.R Bae, S. Jeon. Modified platinum electrode with phytic acid and single-walled carbon nanotube:Application to the selective determination of dopamine in the presence of ascorbic and uric acids, Microchem. J.2008,88:1-6.
    [28]A.H. Liu, I. Honma, H.S. Zhou. Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode, Biosens. Bioelectron.2007,23:74-80.
    [29]L. Xiang, Y.Q. Lin, P. Yu, L. Su, L.Q. Mao. Laccase-catalyzed oxidation and intramolecular cyclization of dopamine:A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors, Electrochim. Acta.2007,52:4144-4152.
    [30]W.W. Tu, J.P. Lei, H.X. Ju. Noncovalent nanoassembly of porphyrin on single-walled carbon nanotubes for electrocatalytic reduction of nitric oxide and oxygen, Electrochem. Commun.2008,10:766-769.
    [31]D.Y. Zheng, C.G Hu, Y.F. Peng, W.Q Yue, S.S. Hu. Noncovalently functionalized water-soluble multiwall-nanotubes through azocarmine B and their application in nitric oxide sensor, Electrochem. Commun.2008,10:90-94.
    [32]F.H. Wu, GC. Zhao, X.W. Wei. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode, Electrochem. Commun.2002, 4:690-694.
    [33]D.L. Fu, Y.P. Xu, L.J. Li, Y. Chen, S.G Mhaisalkar, F.Y.C. Boey, T.W. Lin, S. Moochhala. Electrical detection of nitric oxide using single-walled carbon nanotube network devices, Carbon 2007,45:1911-1914.
    [34]L.N. Wu, X.J. Zhang, H.X. Ju. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential, Anal. Chem. 2007,79:453-458.
    [35]L.N. Wu, J.P. Lei, X.J. Zhang, H.X. Ju. Biofunctional nanocomposite of carbon nanofiber with water-soluble porphyrin for highly sensitive ethanol biosensing, Biosens. Bioelectron.2008,24:644-649
    [36]J.S. Zheng, M.X. Wang, X.S. Zhang, Y.X. Wu, P. Li, X.G. Zhou, W.K. Yuan. Platinum/carbon nanofiber nanocomposite synthesized by electrophoretic deposition as electrocatalyst for oxygen reduction, J. Power Sources 2008,175: 211-216.
    [37]Y.Y. Xue, Y. Guo, Z.G. Zhang, Y.L. Guo, Y.Q. Wang, G.Z. Lu. The role of surface properties of activated carbon in the catalytic reduction of NO by carbon, Appl. Surf. Sci.2008,255:2591-2595.
    [38]Y.Y. Xue, GZ. Lu, Y. Guo, Y.L. Guo, Y.Q. Wang, Z.G Zhang. Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO, Appl. Catal. B 2008,79:262-269.
    [39]S.V. Lokesh, B.S. Sherigaral, Jayadev, H.M. Mahesh, R.J. Mascarenhas. Electrochemical Reactivity of C60 Modified Carbon Paste Electrode by Physical Vapor Deposition Method, Int. J. Electrochem. Sci.2008,3:578-587.
    [40]H.M. Abu-Shawish, S.M. Saadeh. Chemically modified carbon paste electrode for potentiometric analysis of Cyproheptadine hydrochloride in serum and urine, Can. J. Anal. Sci. Spectros.2007,52:225-232
    [41]R.E. Sabzi, A. Hasanzadeh, K. Ghasemlu, P. Heravi. Preparation and characterization of carbon paste electrode modified with tin and hexacyanoferrate ions, J. Serb. Chem. Soc.2007,72:993-1002.
    [42]K. Balal, H. Mohammad, B. Bahareh, B. Ali, H. Maryamc, Z. Mozhgand. Zeolite nanoparticle modified carbon paste electrode as a biosensor for simultaneous determination of dopamine and tryptophan, J. Chin. Chem. Soc.2009,56: 789-796
    [43]L.H. Marcolino-Junior, V.G. Bonifacio, F.C. Vicentini, B.C. Janegitz, O. Fatibello-Filho. Amperometric determination of captopril using a carbon paste electrode in flow analysis, Can. J. Ana. Sci. Spectros.2009,54:45-51.
    [44]S. Shahrokhiana, M. Karimia, H. Khajehsharifi. Carbon-paste electrode modified with cobalt-5-nitrolsalophen as a sensitive voltammetric sensor for detection of captopril, Sensor. Actuat. B 2005,109:278-284.
    [45]B.W. Allena, C.A. Piantadosi. Electrochemical activation of electrodes for amperometric detection of nitric oxide, Nitric Oxide 2003,8:243-252.
    [46]E. Laviron. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem.1979,101: 19-28.
    [47]D. Dutta, D. Landolt. Electrochemical behavior of nitric oxide in 4 M H2SO4 on platinum,J.Electrochem. Soc.1972,119:1320-1325.
    [48]J. Garthwaite, G Garthwaite, R.M. Palmer, S. Moncada. Nmda receptor activation induces nitric oxide synthesis from arginine in rat brain slices, Eur. J. Pharmacol.1989,172:413-416.
    [49]D.S. Bredt, P.M. Palmer, S.H. Snyder. Localization of nitric oxide synthase indicating a neural role for nitric oxide, Nature 1990,347:768-770.
    [50]D.D. Rees, R.M. Palmer, R. Schulz, H.F. Hodson, S. Moncada. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo, Br. J. Pharmacol.1990,101:746-752.
    [51]赵保路,沈建刚,忻文娟.心肌缺血再灌注损伤过程中NO和超氧阴离子自由基的协同作用,中国科学1996,26:331-338.
    [52]Y.F. Peng, C.G. Hu, D.Y. Zheng, S.S. Hu. A sensitive nitric oxide microsensor based on PBPB composite film-modified carbon fiber microelectrode, Sensor. Actuat. B 2008,133:571-576.
    [1]A. Oberlin, M. Endo, T. Koyama. Filamentous growth of carbon through benzene decomposition,J.Cryst. Growth 1976,32:335-349.
    [2]M. Endo, Y.A. Kim, T. Fukai, T. Hayashi, K. Oshisa, M. Terrones, T. Yanagisawa, S. Higaki, M.S. Dresselhaus. Structure characterization of cup-stacked-type nanofibres with an entirely hollow core, Appl. Phys. Lett.2002,80:1267-1269.
    [3]H. Dai, E.W.Wong, Y.Z. Lu, S. Fan, C.M. Lieber. Synthesis and Characterization of Carbide Nanorods, Nature 1995,375:769-772.
    [4]M. Matsumoto, T. Hashimoto, Y. Uchiyama, K. Murata, S. Goto. Use of modified carbon whiskers as an electrode in cou-lometric cells, Carbon 1993,31: 1003-1004.
    [5]K.P. De Jong, J.W. Geus. Carbon nanofibers:catalytic synthesis and applications, Catal. Rev. Sci. Eng.2000,42:481-510.
    [6]B. Xu, F. Wu, R.J. Chen. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte,J.Power Sources 2010,195:2118-2124.
    [7]N.M. Rodriguez. A review of catalytically grown carbon nanofibers, J. Mater. Res. 1993,8:3233-3250.
    [8]V.A. Likholobov, V.B. Fenelonov, L.G. Okkel, O.V. Goncharova, L.B. Avdeeva, V.I. Zaikovskii, G.G. Kuvshinov, V.A. Semikolenov, V.K. Duplyakin, O.N. Baklanova, G.V. Plaksin. New carbon-carbonaceous composites for catalysis and adsorption, React. Kinet. Catal. Lett.1995,54:381-411.
    [9]N.M. Rodriguez, M.S. Kim, R.T.K. Baker. Carbon nanofibers:A unique catalyst support medium, J. Phys. Chem.1994,98:13108-13111.
    [10]M.J. Ledoux, R. Vieira, C. Pham-Huu, N. Keller. New catalytic phenomena on nanostructured (fibers and tubes) catalysts, J. Catal.2003,216:333-342.
    [11]P. Serp, M. Corrias, P. Kalck. Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A:Gen.2003,253:337-358.
    [12]V.A. Likholobov, in:G. Centi (Ed.). Catalysis by Unique Metal Ion Structures in Solid Matrics,2001, Kluwer Academic Publishers, Netherlands, p.295.
    [13]B. Zhang, R.W. Fu, M.Q. Zhang, X.M. Dong, L.C. Wang, C.U. Pittman. Gas sensitive vapor grown carbon nanofiber/polystyrene sensors, Mater. Res. Bull. 2006,41:553-562.
    [14]J. Jang, J. Bae. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor, Sensor. Actuat. B 2007,122:7-13.
    [15]V. Vamvakaki, K. Tsagaraki, N. Chaniotakis. Carbon Nanofiber-Based Glucose Biosensor, Anal. Chem.2006,78:5538-5542.
    [16]H. Cui, S.V. Kalinin, X. Yang, D.H. Lowndes. Growth of carbon nanofibers on tipless cantilevers for high resolution topography and magnetic force imaging, Nano Lett.2004,4:2157-2161.
    [17]J. Jang, J. Bae, M. Choi, S.H. Yoon. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor, Carbon 2005,43: 2730-2736.
    [18]S.M.S.I. Dulal, M.S. Won, Y.B. Shim. Carbon fiber supported platinum nanoparticles for electrooxidation of methanol and phenol, J. Alloys Compd.2010, 494:463-467.
    [19]L.N. Wu, X.J. Zhang, H.X. Ju. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential, Anal. Chem. 2007,79:453-458.
    [20]L.N. Wu, J.P. Lei, X.J. Zhang, H.X. Ju. Biofunctional nanocomposite of carbon nanofiber with water-soluble porphyrin for highly sensitive ethanol biosensing, Biosens. Bioelectron.2008,24:644-649.
    [21]Y. Liu, L. Zhang, Q.H. Guo. Enzyme-free ethanol sensor based on electrospun nickel nanoparticle-loaded carbon fiber paste electrode, Anal. Chim. Acta 2010,663: 153-157.
    [22]肖进新,赵振国。表面活性剂应用原理,2003,化学工业出版社,北京,p.5.
    [23]A.W. Adamson, A.P. Gast:Physical Chemistry of Surfaces,6th ed.1997, John Wiley & Sons, New York, pp.371.
    [24]D.K. Smith, B.A. Korgel. The Importance of the CTAB Surfactant on the Colloidal Seed-Mediated Synthesis of Gold Nanorods, Langmuir 2008,24: 644-649.
    [25]S.M.S. Kumar, K. Chandrasekara Pillai. Cetyltrimethyl ammonium bromide surfactant-assisted morphological and electrochemical changes in electrochemically prepared nanoclustered iron(III) hexacyanoferrate, J. Electroanal. Chem.2006,589:167-175.
    [26]J.F. Rusling. in:J. Bard (Ed.). Electroanalytical Chemistry, A Series of Advances, Dekker, NewYork,1994, vol.18, ChapterI.
    [27]G Muthuraman, K. Chandrasekara Pillai. Surfactant effects on mediated electrocatalytic dechlorination of allylchloride, J. Mol. Catal. A.2001,169: 137-146.
    [28]G Muthuraman, K. Chandrasekara Pillai. Dechlorination of P-methylallyl chloride by electrogenerated [Co(I)(bipyridine)3]+:An electrochemical study in the presence of cationic surfactants, J. Colloid Interf. Sci.2006,297:687-695.
    [29]H. Carrero, L.E. Leon. Electrochemically active films of negatively charged molecules, surfactant and synthetic clays, Electrochem. Commun.2001,3: 417-420.
    [30]R.Vittal, M. Jayalakshmi, H. Gomathi, GP. Rao. Surfactant Promoted Enhancement in Eleectrochemivcal and Eleectrochromic Properties of Flims of Prussian Blue and Its Analogs, J. Electrochem. Soc.1999,146:786-793.
    [31]R. Vittal, H. Gomathi, K.J. Kim. Beneficial role of surfactants in electrochemistry and in the modification of electrodes, Adv. Colloid Interface Sci. 2006,119:55-68.
    [32]S.S. Hu, Y.Q. Yan, Z.F. Zhao. Determination of progesterone based on the enhancement effect of surfactants in linear sweep polarography, Anal. Chim. Acta 1991,248:103-108.
    [33]S.S. Hu, K.B. Wu, H.C. Yi, D.F. Cui. Voltammetric behavior and determination of estrogens at Nafion-modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide, Anal. Chim. Acta 2002,464:209-216.
    [34]L.Q. Luo, Q.X. Li, Y.P. Ding. Docosyltrimethylammonium chloride modified glassy carbon electrode for simultaneous determination of dopamine and ascorbic acid, J. Solid State Electrochem.2010,14:1311-1316.
    [35]R.N. Goyal, S. Bishnoi. Effect of single walled carbon nanotube-cetyltrimethyl ammonium bromide nanocomposite film modified pyrolytic graphite on the determination of betamethasone in human urine, Colloids Surf. B 2010,77: 200-205.
    [36]J.F. Rusling. Controlling electrochemical catalysis with surfactant microstructures, Acc. Chem. Res.1991,24:75-81.
    [37]Y. Peng, J.H. Xu, J. Zhao. Electrochemical behavior of phenol at acetylene black-dihexadecyl hydrogen phosphate composite modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide, Russ. J. Electrochem.2008,44:206-212.
    [38]C.G Hu, Q. He, Q. Li. Enhanced reduction and determination of trace thyroxine at carbon paste electrode in the presence of trace cetyltrimethylammonium bromide, Anal. Sci.2004,20:1049-1054.
    [39]S.S. Hu, K.B. Wu, H.C. Yi. Voltammetric behavior and determination of estrogens at Nafion-modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide, Anal. Chim. Acta 2002,464:209-216.
    [40]S. M. Chen,W.Y. Chzo. Simultaneous voltammetric detection of dopamine and ascorbic acid using didodecyldimethylammoniumbromide (DDAB) film-modied electrodes, J. Electroanal. Chem.,2006,587:226-234.
    [41]S.S. Shankar, B.E.K. Swamy, U. Chandra. Simultaneous determination of dopamine, uric acid and ascorbic acid with CTAB modified carbon paste electrode, Int. J. Electrochem. Sci.2009,4:592-601.
    [42]N. Shinozuka, S. Hayano. In:K.L. Mital (Ed.). Solution chemistry of surfactants,
    Plenum, New York,1979,2:599.
    [43]H.C. Yi, K.B. Wu, S.S. Hu. Adsorption stripping voltammetry of phenol at Nafion-modified glassy carbon electrode in the presence of surfactants, Talanta 2001,55:1205-1210.
    [44]S.H. Zhang, K.B. Wu, S.S. Hu. Voltammetric determination of diethylstilbestrol at carbon paste electrode using cetylpyridine bromide as medium, Talanta,2002,58: 747-754.
    [45]C.G. Hu, C.H. Yang, S.S. Hu. Hydrophobic adsorption of surfactants on water-soluble carbon nanotubes:A simple approach to improve sensitivity and antifouling capacity of carbon nanotubes-based electrochemical sensors, Electrochem. Commun.2007,9:128-134.
    [46]F. Moussy, D.J. Harrison. Prevention of the rapid degradation of subcutaneously implanted Ag/AgCl reference electrodes using polymer coatings, Anal. Chem. 1994,66:674-679.
    [47]F. Moussy, S. Jakeway, D.J. Harrlson, R.V. Rajottet. In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing, Anal. Chem.1994,66:3882-3888.
    [48]G.A. Gerhardt, A.F. Oke, G. Nagy, B. Moghaddam, R.N. Adams. Nafion-coated electrodes with high selectivity for CNS electrochemistry, Brain Res.1984,290: 390-395.
    [49]Rekha, B.E.K. Swamy, R. Deepa. Electrochemical Investigations of Dopamine at Chemically Modified Alcian Blue Carbon Paste Electrode:A Cyclic Voltammetric Study, Int. J. Electrochem. Sci.2009,4:832-845.
    [50]R.R. Naik, B.E.K. Swamy, U. Chandra. Separation of ascorbic acid, dopamine and uric acid by acetone/water modified carbon paste electrode:A cyclic voltammetric study, Int. J. Electrochem. Sci.2009,4:855-862.
    [51]H.S. Yin, Y.L. Zhou, S.Y. Ai. Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection,J. Electroanal. Chem.2009,626:80-88.
    [52]W. Sun, M.X. Yang, K. Jiao. Electrocatalytic oxidation of dopamine at an ionic liquid modified carbon paste electrode and its analytical application, Anal. Bioanal. Chem.2007,389:1283-1291.
    [53]R. Akbari, M. Noroozifar, M. Khorasani-Motlagh. Simultaneous determination of ascorbic acid and uric acid by a new modified carbon nanotube-paste electrode
    using chloromercuriferrocene, Anal. Sci.2010,26:425-430.
    [54]S. Suresh, A.K. Gupta, V.K. Rao. Amperometric immunosensor for ricin by using on graphite and carbon nanotube paste electrodes, Talanta 2010,81:703-708.
    [55]H. Yaghoubian, H. Karimi-Maleh, M.A. Khalilzadeh. Electrochemical detection of carbidopa using a ferrocene-modified carbon nanotube paste electrode, J. Serb. Chem. Soc.2009,74:1443-1453.
    [56]M.A. Khalilzadeh, H. Karimi-Maleh. Sensitive and selective determination of phenylhydrazine in the presence of hydrazine at a ferrocene monocarboxylic acid modified carbon nanotube paste electrode, Anal. Lett.2010,43:186-196.
    [57]H. Yaghoubian, H. Karimi-Maleh, M.A. Khalilzadeh. Electrocatalytic oxidation of levodopa at a ferrocene modified carbon nanotube paste electrode, Int. J. Electrochem. Sci.2009,4:993-1003.
    [58]C.H. Yang, J. Zhao, J.H. Xu. A highly sensitive electrochemical method for the determination of Sudan I at polyvinylpyrrolidone modified acetylene black paste electrode based on enhancement effect of sodium dodecyl sulphate, Int. J. Environ. Anal. Chem.2009,89:233-244.
    [59]G. Zhan, C. Li, D. Luo. Electrochemical investigation of bovine hemoglobin at an acetylene black paste electrode in the presence of sodium dodecyl sulfate, Bull. Korean Chem. Soc.2007,28:1720-1724.
    [60]X.F. Yang, H.J. Zhang. Sensitive determination of kojic acid in foodstuffs using PVP (polyvinylpyrrolidone) modified acetylene black paste electrode, Food Chem. 2007,102:1223-1227.
    [61]G Li, Z.M. Ji, K.B. Wu. Square wave anodic stripping voltammetric determination of Pb2+ using acetylene black paste electrode based on the inducing adsorption ability of I-, Anal. Chim. Acta 2006,577:178-182.
    [62]E. Laviron. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem.1979, 101:19-28.
    [63]D. Dutta, D. Landolt. Electrochemical behavior of nitric oxide in 4 M H2SO4 on platinum,J.Electrochem. Soc.1972,119:1320-1325.
    [64]M.N. Alvarez, M. Trujillo, R. Radi. Peroxynitrite formation from biochemical and cellular fluxes of nitric oxide and superoxide, Methods Enzymol.2002,359: 353-366.
    [1]S. Iijima. Helical microtubules of graphitic carbon, Nature 1991,354:56-58.
    [2]P. Kim, T. Odom, J.L. Huang, C.M. Lieber. STM study of single-walled carbon nanotubes, Carbon 2000,38:1741-1744.
    [3]M. Briman, K. Bradley, G. Gruner. Source of 1/f noise in carbon nanotube devices, J.Appl. Phys.2006,100:013505-1-013505-5.
    [4]C. Batchelor-McAuley, GG Wildgoose, R.G Compton, L.D. Shao, M.L.H. Green. Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes, Sensor. Actuat. B 2008,132:356-360.
    [5]Y. Wang, W.Z. Wei, X.Y. Liu, X.D. Zeng. Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique, Mat. Sci. Eng. C:Bios.2009,29:50-54.
    [6]Y.J. Zou, C.L. Xiang, Lixian Sun, Fen Xu. Amperometric glucose biosensor prepared with biocompatible material and carbon nanotube by layer-by-layer self-assembly technique, Electrochim. Acta 2008,53:4089-4095.
    [7]S. Jo, H. Jeong, S.R Bae, S. Jeon. Modified platinum electrode with phytic acid and single-walled carbon nanotube:Application to the selective determination of dopamine in the presence of ascorbic and uric acids, Microchem. J.2008,88:1-6.
    [8]A.H. Liu, I. Honma, H.S. Zhou. Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode, Biosens. Bioelectron.2007,23:74-80.
    [9]L. Xiang, Y.Q. Lin, P. Yu, L. Su, L.Q. Mao. Laccase-catalyzed oxidation and intramolecular cyclization of dopamine:A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors, Electrochim. Acta.2007,52:4144-4152.
    [10]W.W. Tu, J.P. Lei, H.X. Ju. Noncovalent nanoassembly of porphyrin on single-walled carbon nanotubes for electrocatalytic reduction of nitric oxide and oxygen, Electrochem. Commun.2008,10:766-769.
    [11]D.Y. Zheng, C.G Hu, Y.F. Peng, W.Q Yue, S.S. Hu. Noncovalently functionalized water-soluble multiwall-nanotubes through azocarmine B and their application in nitric oxide sensor, Electrochem. Commun.2008,10:90-94.
    [12]F.H. Wu, GC. Zhao, X.W. Wei. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode, Electrochem. Commun.2002, 4:690-694.
    [13]D.L. Fu, Y.P. Xu, L.J. Li, Y. Chen, S.G. Mhaisalkar, F.Y.C. Boey, T.W. Lin, S. Moochhala. Electrical detection of nitric oxide using single-walled carbon nanotube network devices, Carbon 2007,45:1911-1914.
    [14]A. Morsy, E. Apasery. Solvent-free one-pot synthesis of some azo disperse dyes under microwave irradiation:Dyeing of polyester fabrics, J. Appl. Polym. Sci. 2008,109:695-699.
    [15]T. Ikeda, Y. Tomimura, K. Magara, S.J. Hosoya. Sulfuric acid bleaching of kraft pulp II:Behavior of lignin and carbohydrate during sulfuric acid bleaching, J. Wood. Sci.1999,45:313-318.
    [16]H.W. Song, V. Saraswathy, S. Muralidharan, C.H. Lee, K. Thangavel. Role of alkaline nitrites in the corrosion performance of steel in composite cements, J. Appl. Electrochem.2009,39:15-22.
    [17]B.C. Moon, H. Lee, Y. Kim. Experimental study on the development of new corrosion inhibitor contained a lot of Ca(No2)2 using concrete structure, Adv. Fract. Dam. Mech. VII.2008,385:605-608.
    [18]J.S. Reou, K.Y. Ann. The electrochemical assessment of corrosion inhibition effect of calcium nitrite in blended concretes, Mater. Chem. Phys.2008,109: 526-533.
    [19]L. Luo, GD. Schutter. Influence of corrosion inhibitors on concrete transport properties, Mater. Struct.2008,41:1571-1579.
    [20]P. Garces, P. Saura, A. Mendez. Effect of nitrite in corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments of micropores of concrete in the propagation period, Corros. Sci.2008,50:498-509.
    [21]K.Y. Ann, N.R. Buenfeld. The effect of calcium nitrite on the chloride-induced corrosion of steel in concrete, Mag. Concrete. Res.2007,59:689-697.
    [22]S. Zarringhalami, M.A. Sahari, Z. Hamidi-Esfehani. Partial replacement of nitrite by annatto as a colour additive in sausage, Meat. Sci.2009,81:281-284.
    [23]N. Bemrah, J.C. Leblanc, J.L. Volatier. Assessment of dietary exposure in the french population to 13 selected food colours, preservatives, antioxidants, stabilizers, emulsifiers and sweeteners, Food. Addit. Contam.2008,1:2-14.
    [24]C. Menard, F. Heraud, J.L. Volatier. Assessment of dietary exposure of nitrate and nitrite in France, Food. Addit. Contam.2008,25:971-988.
    [25]F.M. Salih. Risk assessment of combined photogenotoxic effects of sunlight and food additives, Sci. Total. Environ.2006,362:68-73.
    [26]H. Ishiwata, M. Nishijima, Y. Fukasawa. Estimation of inorganic food additive (nitrite, nitrate and sulfur dioxide), antioxidant (BHA and BHT), processing agent (propylene glycol) and sweetener (sodium saccharin) concentrations in foods and their daily intake based on official inspection results in Japan in fiscal year 1998, J. FoodHyg. Soc. Jpn.2000,44:132-143.
    [27]D.L. Archer, Evidence that ingested nitrate and nitrite are beneficial to health, J. Food. Protect.2002,65:872-875.
    [28]H. Ishiwata, T. Sugita, Y. Kawasaki, Y. Takeda, T. Yamada, M. Nishijima, Y. Kawasawa. Estimation of inorganic food additive (nitrite, nitrate, and sulfur dioxide) concentrations in foods and their daily intake based on official inspection results in Japan in fiscal year 1996, J. Food. Hyg. Soc. Jpn.2000,41:79-85.
    [29]A. Alonso, B. Etxaniz, M.D. Martinez. The determination of nitrate in cured meat products. A comparison of the HPLC UV/VIS and Cd/spectrophotometric methods, Food. Addit. Contam.1992,9:111-117.
    [30]N. Spataru, T.N. Rao, D.A. Tryk, A. Fujishima. Determination of nitrite and nitrogen oxides by anodic voltammetry at conductive diamond electrodes, J. Electrochem. Soc.2001,148:E112-E117.
    [31]P.F. Swann. The toxicology of nitrate, nitrite and n-nitroso compounds, J. Sci. Food.Agric.1975,26:1761-1770.
    [32]C.S. Bruningfann, J.B. Kaneene. The effects of nitrate, nitrite, and N-nitroso compounds on animal health, Vet. Human. Toxicol.1993,35:237-253.
    [33]M.L. Guo, J.H. Chen, J.L., B. Tao, S.Z. Yao. Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite, Anal. Chim. Acta.2005,532:71-77.
    [34]J.X. Zeng, W.Z. Wei, X.R. Zhai, P.H. Yang, J. Yin, L. Wu, X.Y. Liu, K. Liu, S.G. Gong. Assemble-electrodeposited ultrathin conducting poly(azure A) at a carbon nanotube-modified glassy carbon electrode, and its electrocatalytic properties to the reduction of nitrite, Microchim. Acta.2006,155:379-386.
    [35]L.Y. Jiang, R.X. Wang, X.M. Li. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode, Electrochem. Commun.2005,7:597-601.
    [36]F. Xiao, L.Q. Liu, J. Li, B.Z. Zeng. Electrocatalytic oxidation and voltammetric determination of nitrite on hydrophobic ionic liquid-carbon nanotube gel-chitosan composite modified electrodes, Elelectroanal.2008,20:2047-2054.
    [37]S.H. Glarum, J.H. Marshall, M.Y. Hellman, G.N. Taylor. Characterization of polyphenylene oxide anodic films, J. Electrochem. Soc.1987,134:81-84.
    [38]M. Gattrell, D.W. Kirk. A fourier transform infrared spectroscopy study of the passive film produced during aqueous acidic phenol electro-oxidation, Electrochem. Soc.1992,139:2736-2744.
    [39]R. Lapuente, F. Cases, P. Garces, E. Morallon, J.L. Vazquez. A voltammetric and FTIR-ATR study of the electropolymerization of phenol on platinum electrodes in carbonate medium influence of sulfide, J. Electroanal. Chem.1998,451:163-167.
    [40]K.B. Wu, S.S. Hu. Deposition of a thin film of carbon nanotubes onto a glassy carbon electrode by electropolymerization, Carbon 2004,42:3237-3242.
    [1]N. Toshima, T. Yonezawa. Bimetallic nanoparticles-novel materials for chemical and physical applications, New J. Chem.1998,22:1179-1201.
    [2]S. Link, Z.L. Wang, M.A. El-Sayed. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition, J. Phys. Chem. B.1999,103:3529-3533.
    [3]M.P. Mallin, C.J. Murphy. Solution-Phase Synthesis of. Sub-10nm Au-Ag Alloy Nanoparticles, Nano Lett.2002,2:1235-1237.
    [4]S.H. Liu, M.Y. Han. Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles:Robust bioprobes. Adv. Funct. Mater.2005,15:961-967.
    [5]J.L. Fernandez, D.A. Walsh, A.J. Bard. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-Co (M:Pd, Ag, Au), J. Am. Chem. Soc. 2005,127:357-365.
    [6]R. Ferrando, J. Jellinek, R.L. Johnston. Nanoalloys:from theory to applications of alloy clusters and nanoparticles, Chem. Rev.2008,108:845-910.
    [7]S. Gurmena, B. Ebina, S. Stopic'b, B. Friedrichb. Nanocrystalline spherical iron-nickel (Fe-Ni) alloy particles prepared by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR), J. Alloy. Compod.2009,480:529-533.
    [8]C.C. Lee, Y.Y. Cheng, H. Y. Chang, D. H. Chen. Synthesis and electromagnetic wave absorption property of Ni-Ag alloy nanoparticles,J. Alloy. Compod.2009, 480:674-680.
    [9]M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman. Synthesis of thiol derivatised gold nanoparticles in a two phase liquid-liquid system,J. Chem. Soc. Chem. Commun.1994,7:801-802.
    [10]P. Mulvaney, M. Giersig, A. Henglein. Surface chemistry of colloidal gold: Deposition of lead and accompanying optical effects, J. Phys. Chem.1993,97: 7061-7064.
    [11]M. Gericke, A. Pinches. Biological synthesis of metal nanoparticles, Hydrometallurgy 2006,83:132-140.
    [12]A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, M. Sastry. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids Surf. B.2003,28:313-318.
    [13]P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar, M. Sastry. Extracellular synthesis of gold nanoparticles by the fungus fusarium oxysporum, Chem. BioChem.2002,5:461-463.
    [14]P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar, M. Sastry. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis, Nano Lett.2001,1: 515-519.
    [15]P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry, R. Kumar. Bioreduction of AuCl4- ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed, Angew. Chem. Int. Ed.2001,40:3585-3588.
    [16]A. Ahmad, S. Senapati, M.I. Khan, R. Kumar, M. Sastry. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp., Langmuir 2003,19:3550-3553.
    [17]S. Senapati, A. Ahmad, M.I. Khan, M. Sastry, R. Kumar. Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles, Small 2005,1:517-520.
    [18]I. Milosev, M. Remskar. In vivo production of nanosized metal wear debris formed by tribochemical reaction as confirmed by highresolution TEM and XPS analyses, J. Biomed. Mater. Res. Part A 2009,91:1100-1110.
    [19]B.D. Reiss, C.B. Mao, D.J. Solis, K.S. Ryan, T. Thomson, A.M. Belcher. Biological routes to metal alloy ferromagnetic nanostructures, Nano lett.2004,4: 1127-1132.
    [20]B. Nair, T. Pradeep. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus Strains, Cryst. Growth. Des.2002,2: 293-298.
    [21]K. Aslan, S.N. Malyn, C.D. Geddes. Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence, J. Am. Chem. Soc. 2006,128:13372-13373.
    [22]Q. Kang, L.X. Yang, Q.Y. Cai. An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array, Bioelectrochemistry 2008, 74:62-65.
    [23]S.J. Guo, S.J. Dong, E.K. Wang. Gold/Platinum Hybrid Nanoparticles Supported on Multiwalled Carbon Nanotube/Silica Coaxial Nanocables:Preparation and Application as Electrocatalysts for Oxygen Reduction, J. Phys. Chem. C.2008, 112:2389-2393.
    [24]N. Toshima, T. Yonezawa, K. Kushihashi. Polymer-protected Palladium/Platinum bimetallic clusters. Preparation, catalytic Properties and structural considerations,J. Chem. Soc. Faraday Trans.1993,89:2537-2543.
    [25]N.N. Kariuki, J. Luo, M.M. Maye, S.A. Hassan. Composition-controlled synthesis of bimetallic gold-silver nanoparticles, Langmuir 2004,20: 11240-11246.
    [26]S.H. Zhou, K. Mcllwrath, G. Jackson, B. Eichhorn. Enhanced CO Tolerance for Hydrogen Activation in Au-Pt Dendritic Heteroaggregate Nanostructures, J. Am. Chem. Soc.2006,128:1780-1781.
    [27]J.J. Huang, W.S. Hwang, Y.C. Weng, T.C. Chou. Determination of alcohols using a Ni-Pt alloy Amperometric Sensor, Thin Solid Films 2008,516: 5210-5216.
    [28]H.F. Cui, J.S. Ye, W.D. Zhang, C.M. Li, J.H.T. Luong, F.S. Sheu. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites, Anal. Chim. Acta 2007,594:175-183.
    [29]X.H. Zhu, G.F. Kang, X.Q. Lin. PdCu alloy nanoclusters:Generation and activity tuning for electrocatalytic oxidation of nitrite, Microchim. Acta 2007,159: 141-148.
    [30]A. Pal, S. Shah, S. Devi. Synthesis of Au, Ag and Au-Ag alloy nanoparticles in aqueous polymer solution, Colloids Surf. A 2007,302:51-57.
    [31]H.B. Heath. Flavor Technology:Profiles, Products, Applications,1978, AVI Publishing Co., Westport, CT, USA, pp.199-207.
    [32]Y.H. Hui (Ed.). Encyclopedia of Food Science and Technology,1992, Vol.4, Wiley, New York, pp.2641-2657.
    [33]F. Rosengarten. The Book of Spices,1969, Livingston, Wynnewood, PA, pp. 453-466.
    [34]P.L. Teissedre, A.L. Waterhouse. Inhibition of oxidation of human low-density lipoproteins by phenolic substances in different essential oil varieties, J. Agric. Food Chem.2000,48:3801-3805.
    [35]D. Farthing, D. Sica, C. Abernathy, I. Fakhry, J.D. Roberts. D.J. Abraham, P. Swerdlow. High-performance liquid chromatographic method for determination of vanillin and vanillic acid in human plasma, red blood cells and urine. J. Chromatogr. B 1999,726:303-307.
    [36]U. Butehorn, U. Pyell. Micellar electrokinetic chromatography as a screening method for the analysis of vanilla flavourings and vanilla extracts,J. Chromatogr. A 1996,736:321-332.
    [37]E. Anklam, S. Gaglione, A. Muller. Oxidation behavior of vanillin in dairy products, Food Chem.1997,60:43-51.
    [38]O. Negishi, T. Ozawa. Determination of hydroxycinnamic acids, hydroxybenzoic acids, hydroxybenzaldehydes, hydroxybenzyl alcohols and their glucosides by high-performance liquid chromatography, J. Chromatogr. A 1996,756:129-136.
    [39]M.C. Boyce, P.R. Haddad, T. Sostaric. Determination of flavour components in natural vanilla extracts and synthetic flavourings by mixed micellar electrokinetic capillary chromatography, Anal. Chim. Acta 2003,485:179-186.
    [40]G. Lamprect, F. Pichlmayer, E.R. Schmid, Determination of the authenticity of vanilla extracts by stable isotope ratio analysis and component analysis by HPLC, J. Agric. Food Chem.1994,42:1722-1727.
    [41]T. Sostaric, M.C. Bone, E.E. Spickett. Analysis of the volatile components in vanilla extracts and flavorings by solidphase microextraction and gas chromatography, J. Agric. Food Chem.2000,48:5802-5807.
    [42]M. Avila, M. Zougagh, A. Escarpa, A. Rios. Fast single run of vanilla fingerprint markers on microfluidic-electrochemistry chip for confirmation of common frauds, Electrophoresis 2009,30:3413-3418.
    [43]M. Avila, M.C. Gonzalez, M. Zougagh, A. Escarpa, A. Rios. Rapid sample screening method for authenticity controlling vanilla flavors using a CE microchip approach with electrochemical detection, Electrophoresis 2007,28: 4233-4239.
    [44]M. Luque, E. Luque-Perez, A. Rios, M. Valcarce. Supported liquid membranes for the determination of vanillin in food samples with amperometric detection, Anal. Chim. Acta 2000,410:127-134.
    [45]L. Agui, J.E. Lopez-Guzm'an, A. Gonzalez-Cort'es, P. Yanez-Sedeno, J.M. Pingarron. Analytical performance of cylindrical carbon fiber microelectrodes in low-permitivity organic solvents:determination of vanillin in ethyl acetate, Anal. Chim. Acta 1999,385:241-248.
    [46]J.L. Hardcastle, C.J. Paterson, R.G. Compton. Biphasic sonoelectroanalysis: Simultaneous extraction from, and determination of vanillin in food flavoring, Electroanalysis 2001,13:899-905.
    [47]F. Bettazzi, I. Palchetti, S. Sisalli, M. Mascini. A disposable electrochemical sensor for vanillin detection, Anal. Chim. Acta.555 (2006) 134-138.
    [48]A.S. Ranadive. Vanillin and related flavor compounds in vanilla extracts made from beans of various global origins, J. Agric. Food Chem.1992,40:1922-1924.
    [49]S. Mandal, P.R. Selvakannan, R. Pasricha, M. Sastry. Keggin Ions as UV-switchable Reducing Agents in the synthesis of Au core-Ag shell nanoparticles, J. Am. Chem. Soc.2003,125:8440-8441.
    [50]A. Bayler, A. Schier, G.A. Bowmaker, H. Schmidbaur. Gold is smaller than silver. Crystal structures of [Bis(trimesitylphosphine)gold(Ⅰ)] and [Bis(trimesitylphosphine)silver(Ⅰ)] tetrafluoroborate, J. Am. Chem. Soc.1996, 118:7006-7007.
    [51]C.S. Fadley, D.A. Shirley. Electronic densities of states from. X-ray photoelectron spectroscopy, J. Res. Natl. Bur. Stand.1970,74 A:543-545.
    [52]T. Luckza. Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution, Electrochim. Acta 2008,53:5725-5731.
    [53]E. Laviron. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem.1979, 101:19-28.
    [54]H.S. Yin, L. Cui, S.Y. Ai, H. Fan, L.S. Zhu. Electrochemical determination of bisphenol A at Mg-Al-CO3 layered double hydroxide modified glassy carbon electrode, Electrochim. Acta 2010,55:603-610.
    [55]G. Arslan, B. Yazici, M. Erbil. The effect of pH, temperature and concentration on electrooxidation of phenol, J. Hazard. Mater.2005,124:37-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700