用户名: 密码: 验证码:
富勒烯类碳材料低温制备、表面改性及在聚合物基体中的分散性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体是由两种或两种以上具有不同折光指数的材料在空间按照一定的周期顺序排列所形成的有序结构材料。光子带隙是光子晶体的最根本特征之一,光子带隙的存在可以使我们如愿地控制光子的运动,制造出高性能的光学器件和通信元件。非密堆积结构的光子晶体由于对光子带隙有展宽作用,更易形成完全光子带隙,因而进一步研究非密堆积结构的光子晶体的制备更有着深远的意义。理论计算表明C_(60)/AlN、C_(60)/GaN、C_(70)/AlN、C_(60)薄膜和二氧化硅包覆碳球(CSs)在紫外、可见以及近红外光区存在光子带隙,这预示了洋葱状富勒烯(OLFs)、碳球类碳材料在光子晶体领域具有潜在的应用前景。本文围绕构成碳基光子晶体结构单元即OLFs类碳材料的低成本制备、表面修饰和在聚合物基体中的分散进行展开,为进一步探索其作为碳光子晶体材料的应用提供重要的基础性实验准备。主要取得了以下几方面的结果:
     (1)采用CVD法,以Fe/Al(OH)_3和Fe/NaCl为催化剂低温(400℃)制备了OLFs。首先,考察了温度对Fe/Al(OH)_3催化CVD法产物结构与形貌的影响,结果表明低温400℃有利于OLFs的生长,产物为纯度高的内包Fe_3C的OLFs,对其进行真空热处理得到了纯度高、石墨化程度较高、直径分布在15-60nm之间的OLFs。其次考察了催化剂活性组分Fe的含量对Fe/NaCl催化CVD法产物结构与形貌的影响,结果表明低的Fe负载量有利于合成纯度高的OLFs,当Fe负载量为0.3wt%时,合成了直径在15-50nm的OLFs,对其进行真空热处理得到了纯度高、石墨化程度较高、直径分布在15-50nm之间的OLFs。由于载体NaCl仅通过水溶就可以将其从产物中去除,因此Fe/NaCl催化CVD法是低成本制备高纯度OLFs的有效方法。在实验结果的基础上,提出了内包碳化铁OLFs生长机理—VS生长模型:碳源气体C2H2在催化剂颗粒(纳米Fe颗粒)吸附、分解,分解和初步缩聚出的碳原子簇在催化剂晶格间的扩散、析出、重组成层状堆积结构排列的石墨片层。由于反应温度较低,在催化剂晶格间扩散的碳原子不能完全析出,便与Fe形成碳化铁,被已经形成的石墨片层所包裹,最终形成内包碳化铁的石墨化程度不高的OLFs。
     (2)以CSs为模板核,以正硅酸乙酯为二氧化硅的前驱体,通过溶胶-凝胶法在CSs表面包覆SiO_2得到了CSs-SiO_2核-壳结构的复合物球,实现了CSs表面的包覆改性。然后经过高温焙烧除去复合物球中的CSs核得到空心二氧化硅球。首先考察了包覆时的介质条件对包覆效果的影响,发现碱性介质有利于在CSs表面包覆二氧化硅,得到的复合物球表面光滑,包覆层厚且厚度均一。通过改变前驱体TEOS的用量和反应时间可控制包覆层的厚度,即空心SiO_2球壳层的厚度。CSs表面包覆SiO_2后热稳定性提高。在实验基础上,提出了CSs-SiO_2核-壳结构和空心SiO_2球可能的形成机理—静电作用机理。阳离子表面活性剂CTAB改性的CSs表面带正电荷通过静电引力吸附实验pH下带负电荷的TEOS水解产物SiOH,沉积在CSs核表面的SiOH缩合形成结构致密的SiO_2包覆层,得到核壳结构复合物球。焙烧除去CSs核后,得到空心SiO_2球。
     (3)采用HNO_3/H2O2、HNO_3和HNO_3/H2SO4等多种氧化剂对CSs进行氧化改性,系统研究了氧化剂的配比、浓度和氧化时间对CSs结构形貌、引入的官能团的种类和数量的影响,并考察了不同氧化条件处理的CSs在水中的分散性能。以HNO_3/H2O2混合溶液为氧化剂时,氧化时间和体积比相同条件下,随HNO_3、H2O2浓度的增加,引入的-COOH、-C-OH和-C=O等含氧官能团的量增加;当浓度不变时,CSs表面-COOH、-C-OH和-C=O等含氧官能团的含量随HNO_3和H2O2体积比的变化而变化。采用体积比为1︰1的浓HNO_3/H2O2处理时,氧化改性的效果最好,引入的含氧官能团最多,氧化后的CSs表面-COOH、-C-OH、-C=O和含氧官能团的总量分别为0.2614mmol/g、1.105mmol/g、0.7976mmol/g和2.164mmol/g。以HNO_3为氧化剂时,随HNO_3浓度的增加和氧化时间的延长,引入的-COOH、-C-OH和-C=O等含氧官能团的含量增加,浓HNO_3处理1h的改性效果最好,引入的含氧官能团最多,-COOH、-C-OH、-C=O和含氧官能团的总量分别为0.8080mmol/g、3.021mmol/g、1.047mmol/g和4.876mmol/g。以混酸为氧化剂时,相同温度下,随处理时间的延长,-COOH、-C-OH和-C=O等含氧官能团的量增加。混酸处理1h的碳球表面-COOH、-C-OH和-C=O的含量分别为0.5080mmol/g、3.510mmol/g和0.3790mmol/g,含氧官能团的总量为4.379mmol/g。三种氧化体系相比较,混酸氧化改性的效率最高,接着依次是浓HNO_3和HNO_3/H2O2。氧化后CSs表面的亲水性和在水中的分散性明显改善,不同氧化条件下引入的官能团的种类和数量不同,因此可以通过改变氧化条件来控制CSs表面官能团的种类和数量。
     (4)利用氧化改性后CSs表面的-COOH、-C-OH与丙烯胺或丙烯酰氯反应均可在CSs表面引入乙烯基基团。将乙烯基功能化碳球直接加入甲基丙烯酸甲酯(MMA)单体,通过原位聚合法得到了CSs均匀分散、与聚合物相容性好的复合材料。将氧化改性的CSs用NaOH处理使其离子化后,与可聚合表面活性剂十八烷基二甲基苄基苯乙烯氯化铵(VODAC)一起加入MMA中,通过原位聚合法得到了CSs均匀分散的复合材料。将离子化CSs与VODAC一起加入水中分散均匀后,再加入MMA或苯乙烯(St)萃取,萃取结束后取出油相再原位聚合-萃取聚合法,结果表明在聚甲基丙烯酸甲酯基体中,碳球分散性和与基体的相容性均很好;在聚苯乙烯基体中碳球分散性很好,但与基体的相容性略差一些。
Photonic crystals are a periodical materials which are fabricated by periodically arranging two materials having different dielectric constants. Photonic bandgap is one of the basic characters of photonic crystals, which controls the propagation of light and thus casts the basis for optical devices and communication component. Non-close-packed structured photonic crystals possess a widened bandgap and are easy to form complete photonic bandgap, thus investigating the preparation of non-close-packed structured photonic crystals holds far-reaching meaning. Theoretical calculations showed that C_(60)/AlN, C_(60)/GaN, C_(70)/AlN, C_(60) films and carbon spheres coated by silica possess photonic bandgap in UV, visible and near-infrared region, which indicates the potential applications of onion-like fullerenes (OLFs) and carbon spheres (CSs) in the field of photonic crystals. Bases on this research background, this thesis has focused on the low-cost preparation, surface modification of onion-like fullerenes carbon materals and the dispersion of these materials in polymer matrix. The conclusions are listed as follows:
     (1) OLFs were synthesized at low-temperature (400℃) by chemical vapor deposition (CVD) using Fe/Al(OH)_3 and Fe/NaCl as catalysts. Firstly, the influences of reaction temperature were investigated, with respect to the structure and morphology of the product using Fe/Al(OH)_3. as catalyst The results show that low-temperature of 400℃was in favor of the growth of OLFs, the product are composed of OLFs encapsulating Fe_3C. OLFs with high-purity, high degree of graphitization and size of about 15-60nm were obtained after the heat treatment in vacuum. Secondly, the influences of Fe/NaCl with different Fe content were investigated, with respect to the structure and morphology of the product using Fe/NaCl as catalyst. The results show that low Fe content was in favor of the growth of OLFs. OLFs encapsulating Fe_3C with size in the range of 15-50nm were prepared using catalyst containing 0.3wt% Fe. OLFs with high-purity, high degree of graphitization and size of about 15-50nm were obtained after the heat treatment in vacuum. Because the support NaCl could be removed by water washing, high purity OLFs synthesis using Fe/NaCl as catalysts by CVD method is a low-cost efficient route. Based on the experimental results, the growth mechanism of OLFs encapsulating Fe_3C was suggested: gaseous carbon species derived from C2H2 are absorbed and decomposed on the surface of catalyst particles, carbon atom clusters diffuse between crystal lattice of catalyst, precipitate and recombine into graphitic layers. The incomplete precipitation of carbon atoms between crystal lattice of catalyst led to their reaction with Fe and formation of Fe_3C, Fe_3C were encapsulated by graphitic layers, finally OLFs encapsulating Fe3C with the low degree of graphitization were obtained.
     (2) CSs-silica core-shell structured material was prepared using tetraethyl orthosilicate(TEOS) as precursor of silica by a sol-gel method. Carbon sphere (CSs) cores were prepared by the pyrolysis of acetylene. After CSs cores were removed by calcinations, hollow silica spheres were obtained. Firstly, the influences of the coating medium were investigated. CSs were easy to be coated with silica in basic medium, which produced the compositie spheres with smooth surface and uniform shell thickness. The coating thickness, which is also the shell thickness of the hollow spheres, could be controlled by changing the volumes of TEOS and reaction time. The thermal stability of CSs was improved after silica coating on the surface of CSs. The formation of the core-shell structure was suggested to follow electrostatic interation mechanisam. The surfaces of CSs modified by cationic surfactant cetyltrimethylammonium bromide(CTAB) were characterized by positive charges, and absorbed negatively charged silicon hydroxide species originated from the hydrolysis of TEOS via electrostatic interaction, which provided nucleation sites of silicon hydroxide species on the surface of carbon spheres. And the core-shell structure was formed. The hollow silica spheres were obtained when carbon spheres were removed by calcinating in air.
     (3) HNO_3/H2O2, HNO_3 and HNO_3/H2SO4 were used as oxidant to modify the carbon spheres surface. The influences of the proportion, concentration and treatment time of the oxidant on the morphology of CSs, the type and amount of the functional groups introduced on the surface of CSs were studied. The dispersion of the oxidized CSs in water was analyzed. When HNO_3/H2O2 was used as oxidant, as HNO_3 and H_2O_2 solution concentration increased, the amount of carboxyl, hydroxyl, carbonyl,and total oxygen-containing functional groups(TOFGs) increased. The amount of carboxyl, hydroxyl, carbonyl, and TOFGs changed with the changing the volume ratio of HNO_3 and H_2O_2. The modification effect was best when CSs were treated by the volume ratio 1:1 of HNO_3 and H2O2, which introduced 0.2614 mmol/g of carboxyl, 1.105mmol/g of hydroxyl, 0.7976mmol/g carbonyl and 2.164 mmol/g of TOFGs onto the surface of CSs. When HNO_3 was used as oxidant, the amount of carboxyl, carbonyl, hydroxyl and TOFGs increased with increasing HNO_3 solution concentration and treatment time, the treatment by concentrated nitric acid for 1h introduced 0.808 mmol/g, 3.021mmol/g of hydroxyl, 1.047mmol/g carboxyl and 4.876mmol/g of TOFGs onto the surface of CSs, which were the maximum value. When HNO_3/H2SO4 was used as oxidant, the amount of the functional groups increased with prolonging treatment time. The treatment by HNO_3/H2SO4 for 1h introduced 0.508mmol/g of carboxyl, 3.51mmol/g of hydroxyl, 0.379mmol/g of carbonyl and 4.379mmol/g of TOFGs onto the surface of CSs. Among the three oxidation systems, the oxidation efficiency of HNO_3/H2SO4 was the highest, followed by HNO_3 and HNO_3/H2O2. The hydrophilicity and dispersion in water of oxidized CSs were improved distinctly. The type and amount of the functional groups introduced on the surface of the carbon spheres were different after different treatment. So the type and amount of the functional groups on the surface of CSs could be controlled by changing oxidation condition.
     (4) Vinyl groups were introduced on the surface of CSs by carboxyl, hydroxyl functional groups reacting with allylamine or chloromethylstyrene. Vinyl-functional CSs were added directly into methyl methacrylate(MMA) monomer, composite materials containing CSs dispersed uniformly in polymethylmethacrylate(PMMA) matix with good compatibility with polymer were obtained via in-situ polymerization. The oxidized CSs were ionized after the treatment by NaOH. Ionized CSs and polymerizable surfactants octadecyl-p-vinylbenzyl-dimethylammonium chloride (VODAC) were added into MMA. Composite materials containing CSs dispersed uniformly in PMMA matix were obtained. Ionized CSs and VODAC were added into water and dispersed uniformly. And then MMA or styrene(St) was added into the above suspension. Oil phase was taken out after extraction and polymerized. Field emission scanning electron microscopy observation shows that CSs were well dispersed in PMMA matix and had good compatibility with polymer; CSs were well dispersed in polystyrene matix, but the compatibility with polymer was not as good as PMMA.
引文
[1] Iijima S, Direct observation of the tetrahedral bonding in graphitized carbon black by high-resolution electronmicroscopy[J]. J Cryst. Growth., 1980, 50(3): 675-683.
    [2] Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation[J]. Nature, 1992, 359(6397): 707-709.
    [3] Ruoff R S, Lorents D C, Chan B, et al. Single-crystal metals encapsulated in carbon nanoparticles[J]. Science, 1993, 259(5093): 346-348.
    [4] Xu B S, Tanaka S I, Pt cluster bonding and fullerene formation in HRTEM[C], Proc Int Conf 6th BCEIA, on Electron Microscopy. Beijing,1995: A33.
    [5] Xu B S, Han P D, Liang J, et al. Theoretical investigatng. of the reflectivity of fullerene(C60, C70)/AlN multilayers in UV region[J]. Solid State Commun., 2005, 133(6) : 353-357.
    [6]符冬菊,杜爱兵,刘旭光等.由不同碳源合成洋葱状富勒烯[J].煤炭转化,2005, 28(3): 87-92.
    [7]王晓敏,纳米洋葱状富勒烯的大量制备和性能研究(D).太原,太原理工大学,2005.
    [8]章海霞,王晓敏,王海英等.电弧法制备洋葱状富勒烯的工艺研究[J].新型炭材料, 2004, 19(1): 61-64.
    [9]王晓敏,王海英,章海霞等.煤制备洋葱状富勒烯的HREM分析[J].电子显微学报,2004, 223(1224): 159-162.
    [10]王海英,王晓敏,章海霞等.电弧放电制备内包金属纳米洋葱状富勒烯的研究[J].材料热处理学报,2003, 24(4): 41-43.
    [11] Sano,N, Wang,H, Chhowalla M, et al. Synthesis of carbon‘onions’in water[J]. Nature,2001, 414(6863): 506-507.
    [12] Cui, s, Scharff P, Siegmund C, et al. Preparation of multiwalled carbon nanotubes by DC arc discharge under a nitrogen atmosphere[J]. Carbon, 2003, 41(8): 1648-1651.
    [13] Qiu J S, Li Y F, Wang Y P, et al. Preparation of carbon-coated magnetic iron nanoparticles fromcomposite rods made from coal and iron powders[J]. Fuel Process. Technol., 2004, 86(3): 267-274.
    [14] Saito Y, Yoshikawa T, Inagaki M. Growth and structure of graphitic tubules and polyhedral particles in arc-discharge[J]. Chem Phys Lett., 1993, 204(3- 4): 277-282.
    [15]许并社,闫小琴,王晓敏等.电弧放电中纳米洋葱状富勒烯生成机理的研究[J].材料热处理学报,2001, 22(4): 9-12.
    [16] Xu B S, Tanaka S I. Formation of giant onion-like fullerenes under Al nanoparticles by electron irradiation[J]. Acta Mater., 1998, 46(15): 5249-5257.
    [17] Xu B S , Tanaka S I. Pt cluster bonding and fullerene formation in HRTEM[J]. Nanostruct Mater., 1995, 6: 727.
    [18] Xu B S, Tanaka S I. Multiple-nuclei onion-like fullerenes cultivated by electron beam irradiation[C]. Proc. Int. Conf. ICSE. Cambridge; 1997: 355
    [19] Ugarte D. Formation mechanism of quasi-spherical carbon particles induced by electron bombardment[J]. Chem Phys Lett., 1993, 207(4, 5, 6): 473-479.
    [20]李天保,许并社,韩培德等.洋葱状富勒烯的CCVD法制备及其形貌特征[J].新型炭材料,2005(1): 23-27.
    [21]李天保,刘光焕,刘旭光等.内包铁洋葱状富勒烯的合成和表征[J].材料热处理学报,2005, 26(3): 28-30.
    [22] Sano N, Akazawa H, Kikuchi T, et al. Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen[J]. Carbon, 2003, 41(11): 2159-2162.
    [23] He C N, Zhao N Q, Du X W, et al. Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum[J]. Scripta Mater., 2006, 54(4): 689-693.
    [24] Li H P, Zhao N Q, He C N, et al. Catalytic synthesis of carbon nanostructures using Fe(OH)3/Al as catalyst precursors[J]. J. Alloys Compd., 2009, 468(1-2): 64–68.
    [25]杨永珍.重油残渣定向转化新型碳功能材料的研究(D).太原,太原理工大学,2007.
    [26] He C N, Shi C S, Du X W,et al. TEM investigation on the initial stage growth of carbon onions synthesized by CVD[J]. J. Alloys Compd., 2008, 452(2): 258-262.
    [27] Kuznetsov V L, Chuvilin A L, Bytenko Y V, et al. Onion-like carbon from ultra-disperse diamond[J]. Chem Phys Lett., 1994, 222(4): 343-348.
    [28] Ugarte D, Heerde W A. Carbon onions produced by heat treatment of carbon soot and their relation to the 217. 5 nm interstellar absorption feature[J]. Chem Phys Lett., 1993, 207(4, 5, 6): 480-486.
    [29]张艳,赵兴国,许并社.热处理制备碳纳米洋葱状富勒烯的研究[J].太原理工大学学报, 2004, 35(3): 276-278.
    [30]郁军,许并社,杨永珍等.热处理脱油沥青制备内包金属纳米碳洋葱[J].材料热处理学报,2007, 28(Z1): 296-298.
    [31]杨修春,张孝彬,张泽等.一种制备巴基葱的新方法[J].物理学报,1998, 47(6): 1052-1056.
    [32]刘超,成国祥.模板法制备介孔材料的研究进展[J].离子交换与吸附,2003, 19(4): 374-384.
    [33] Xu B S, Fan Y T, Liu G H, et al. Controlled growth of endohedral-metal carbon onions by pre-molding synthesis[J]. Carbon, 2006, 44(9): 1851-1853.
    [34] Liu X G, Du A B, Fu D J, et al. Coal-derived onion-like fullerenes by radio frequency plasma[J]. Carbon, 2005, Korea, 101-102.
    [35]杜爱兵,刘旭光,许并社.煤基纳米洋葱状富勒烯制备及其结构表征[J].无机材料学报, 2005, 20(4): 779-784.
    [36]符冬菊,刘旭光,杜爱兵等.微波等离子体法合成洋葱状富勒烯的研究[J].无机材料学报, 2006, 21(3): 576-582.
    [37]蔺娴,刘旭光,符冬菊等.等离子体条件下煤基富勒烯的制备及生成机理[J].煤炭转化, 2006, 29(4): 1-4.
    [38]刘旭光,蔺娴,符冬菊等.一种新颖结构的煤基定向碳薄膜的制备与表征[J].化工学报, 2006, 57(8): 1992-1996.
    [39] Du A B, Liu X G, Fu D J, et al. Onion-like fullerenes synthesis from coal[J]. Fuel, 2007, 86(1-2): 294-298.
    [40]刘旭光,杜爱兵,符冬菊等.由中国煤制备洋葱状富勒烯的研究[J].材料热处理学报,2005, 26(3): 31-34.
    [41]杨杭生,张孝彬,陈抗生等.一种生长巴基洋葱的方法-射频CVD法[J].化学物理学报,1999, 12(6): 646-650.
    [42] Li B Y, Wei B Q, Liang J, et al. Transformation of carbon nanotubes to nanoparticles by ball milling process[J]. Carbon, 1999, 37(3): 493-497.
    [43] Cabioc’h T, Thune E, Jaouen M. Carbon-onion thin-film synthesis onto silica substrates[J]. Chem. Phys. Lett., 2000, 320(1-2): 202-205.
    [44] Thune E, Cabioc’h T, Gue′rin Ph, et al. Nucleation and growth of carbon onions synthesized by ion-implantation: a transmission electron microscopy study[J]. Mater. Lett., 2002, 54(2-3): 222-228.
    [45] Rosemary M J, MacLaren I, Pradeep T. Carbon onions within silica nanoshells[J], Carbon, 2004, 42(11): 2352-2356.
    [46] Chhowalla M, Wang H, Sano N, et al. Carbon onions: Carriers of the 217.5nm interstellar absorption feature[J], Phys. Rev. Lett., 2003, 90(15): 155504.
    [47] Cabioc’h T, Thune E, Riviere J P, et al. Structure and properties of carbon onion layers deposited onto various substrates[J]. J. Appl. Phys., 2002, 91(3): 1560-1567.
    [48] Street K W, Marchetti M, Vandar Wal R L, et al. Evaluation of the tribological behavior of nano-onions in Krytox 143AB[J]. Tribol. Lett., 2004, 16(1-2): 143-149.
    [49] Ohmae N, Matsumoto N, Superlow Friction of Onionlike Carbon Synthesized from Diamond Nanoparticles[C]. Biarritz, France, The International Carbon Conference, June14-19, 2009, 75.
    [50] Lee G H, Huh S H, Jeong J W, et al. Excellent magnetic properties of fullerene encapsulated ferromagnetic nanoclusters[J]. J Magn. Magn. Mater., 2002, 246(3): 404-411.
    [51]雷中兴,刘静,李轩科等. CVD法制备的碳包裹(Fe, Co)纳米粒子的结构及电磁特性[J].磁性材料及其器件, 2003, 34: 4-6.
    [52]邱介山,孙玉峰,周颖等.淀粉基碳包覆铁纳米胶囊的合成及其磁学性能[J].新型炭材料,2006, 21(3): 202-205.
    [53]葛爱英,许并社,王晓敏等.洋葱状富勒烯电磁特性的研究[J],物理化学学报, 2006, 22(2): 203-208.
    [54]许并社,杨永珍,张竹霞等.洋葱状富勒烯的研究进展[J].材料导报,2009, 23(6): 1-7.
    [55] Xu B S, Yang X W, Wang X M, et al. A novel catalyst support for DMFC: Onion-like fullerenes[J]. J Power Sources, 2006, 162(1): 160-164.
    [56] Butenko Yu V, Chakraborty Amit K, Peltekis N, et al. Potassium intercalation of carbon onions‘opened’by carbon dioxide treatment[J]. Carbon, 2008, 46(8): 1133-1140.
    [57]程立强,刘应亮,张静娴等.球形碳材料的研究进展[J].化学进展,2006, 18(10): 1298-1304.
    [58] Miao J Y, Hwang D W, Chang C C, et al. Uniform carbon spheres of high purity prepared on kaolin by CCVD[J]. Diamond Relat. Mater., 2003, 12(8): 1368-1372.
    [59] Miao J Y, Hwang D W, Narasimhulu K V, et al. Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts[J]. Carbon, 2004, 42(4): 813-822.
    [60] Qian H S, Han F M, Zhang B, et al. Non-catalytic CVD preparation of carbon spheres with a specific size[J]. Carbon, 2004, 42(4): 761-766.
    [61] Jin Y Z, Gao C, Hsu W K, et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons[J]. Carbon, 2005, 43(9): 1944-1953.
    [62] Pol V G, Pol S V, Calderon Moreno J M, et al. High yield one-step synthesis of carbon spheres produced by dissociating individual hydrocarbons at their autogenic pressure at low temperatures[J]. Carbon, 2006, 44(15): 3285-3292.
    [63] Wang Q, Li H, Chen L Q, et al. Novel spherical microporous carbon as anode material for Li-ion batteries[J]. Solid State Ionics, 2002 ,152-153: 43-50.
    [64] Lee K T, Jung Y S, Oh S M. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries[J]. J. Am. Chem. Soc., 2003, 125(19): 5652-5653.
    [65] Jin Y Z, Kim Y J, Gao C, et al. High temperature annealing effects on carbon spheres and their applications as anode materials in Li-ion secondary battery[J]. Carbon, 2006, 44(4): 724-729.
    [66] Kang Z C, Wang Z L. Chemical activities of graphitic carbon spheres[J]. J. Mol. Catal. A: Chem., 1997, 118(2): 215-222.
    [67] Xu B S, Guo J J, Jia H S, et al. Hard carbon spherules derived from deoiled asphalt as a catalyst support for direct methanol fuel cell, 19th Canadian Symposium on Catalysis, May 14-16, 2006, Saskatoon, Saskatchewan, 31.
    [68] Morawski A W, Kalenczuk R, Inagaki M. Adsorption of trihalmethanes(THMs) onto carbon spheres[J]. Desalination, 2000, 130(2): 107-112.
    [69] Tanaike O, Fukuoka M, Inagaki M. Adsorption properties of air-oxidized carbon sphere derived from phenol resin[J]. Synth. Met., 2002, 125(2): 255-257.
    [70] Yuan D S, Chen J X, Zeng J H, et al. Preparation of monodisperse carbon nanospheres for electrochemical capacitors[J]. Electrochem. Commun., 2008, 10(7) : 1067–1070.
    [71] Jia H S, Guo M C, Yang Y Z, et al. Surface modification of carbon microspheres by KMnO4[C]. Biarritz, France, The International Carbon Conference, June14-19, 2009, 31.
    [72]郭明聪,杨永珍,吉卫云等.碳微球负载二氧化铈的研究[C].第七届海峡两岸新型炭材料学术研讨会论文集,185-188.
    [73]罗秋苹,杨永珍,金琳等.纳米银颗粒修饰碳微球[C].第七届海峡两岸新型炭材料学术研讨会论文集,64-67.
    [74]张春一.脱油沥青基气相生长碳微球的制备、改性及吸附性能研究(D),太原,太原理工大学,2008.
    [75] Tsang S C, Chen Y K, Green L H, et al. A simple chemical method of opening and filling carbon nanotubes[J]. Nature, 1994, 372: 159-162.
    [76]苑伟康,吴洪,姜忠义等.碳纳米管的共价修饰[J],有机化学,2006, 26(11): 1508-1517.
    [77]邱军,王国建,屈泽华等.氧化处理方法与多壁碳纳米管表面羧基含量的关系[J].新型炭材料,2006, 21(3): 269-272.
    [78]王敏炜,查少华,姚彦红. H2O2氧化作用对碳纳米管表面疏水性的影响[J].南昌大学学报·工科版,2007, 29(2): 103-105.
    [79]周爱林,王红娟,傅小波等.酸氧化处理对多壁碳纳米管表面基团的影响[J].化工新型材料,2007, 35(7): 37-39.
    [80] Datsyuk V, Kalyva M, Papagelis K, et al. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008, 46(6): 833-840.
    [81]唐玉生,顾军渭,孔杰.多壁碳纳米管(MWCNTs)表面纯化改性研究[J].西安石油大学学报(自然科学版),2009, 24(1): 67-70.
    [82]尤玉静,瞿美臻,周固民等.液相氧化碳纳米管的氧化剂选择[J].合成化学,2006, 14(5): 446-449.
    [83] Puziy A M, Barkauskas J, Poddubnaya O I, et al. Functionalization of carbon nanotubes using phosphoric acid[C]. Biarritz, France, The International Carbon Conference, June14-19, 2009, 216.
    [84]李娟.碳纳米管/尼龙6复合材料的结构与性能研究[D].杭州,浙江大学,2006.
    [85] Shen J F, Huang W S, Wu L P, et al. Study on amino-functionalized multiwalled carbon nanotubes[J]. Mater. Sci. Eng., A, 2007, 464(1-2): 151-156.
    [86]王国建,董玥,邱军等.聚苯乙烯修饰碳纳米管表面的研究[J].高等学校化学学报,2006, 27(6): 1157-1161.
    [87] Kong H, Gao C, Yan D Y. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products[J]. Macromolecules, 2004, 37, 4022-4030.
    [88] Kong H, Gao C, Yan D Y. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization[J]. J. Am. Chem. Soc. 2004, 126(2): 412-413.
    [89]王平华,王贺宜,张斌等.碳纳米管表面的RAFT接枝共聚物[J].高分子材料科学与工程,2008, 24(6): 72-78.
    [90]王平华,李凤妍,唐龙祥等. RAFT聚合方法在碳纳米管表面接枝嵌段共聚物[J].高分子材料科学与工程,2007, 23(6): 36-42.
    [91]孙昱飞,吴飞,邓小勇等.化学修饰方法对聚乙二醇功能化碳纳米管的影响[J].无机化学学报,2008, 24(1): 98-104.
    [92]李博,廉永福,顾镇南等.单层碳纳米管的化学修饰[J].高等学校化学学报,2000, 21(11): 1633-1635.
    [93] Chen J, Hamon M A, Haddon R C, et al. Solution properties of single - walled carbon nanotubes[J]. Science, 1998, 282(5386): 95-98.
    [94]王国建,屈泽华.化学法修饰碳纳米管[J].化学进展,2006, 18(10): 1305-1312.
    [95]陈宪宏,丰涛,王建锋等.酯化法制备苯乙烯基功能化多壁碳纳米管的研究[J].功能材料,2008, 39(5): 870-873.
    [96]王红娟,彭峰,邝志敏等.羧基化碳纳米管的酯化与酰氯化修饰研究[J].炭素技术,2004, 23(6): 10-12.
    [97]苏小红,熊传溪,郭虹等.硅烷偶联剂对单壁碳纳米管的化学修饰[J].化工新型材料,2007, 35(3): 40-42.
    [98] Hong C Y, You Y Z, Pan C Y. A new approach to functionalize multi-walled carbon nanotubes by the use of functional polymers[J]. Polymer, 2006, 47: 4300-4309.
    [99]陈小华,陈传盛,孙磊等.碳纳米管的表面修饰及其在水中的分散性能研究[J].湖南大学学报(自然科学版),2004, 31(5): 18-21.
    [100]罗天勇,李辰砂,梁彤详等.碳纳米管承载氧化锆纳米粒子的研究[J].金属材料与工程,2004, 33(8): 885-888.
    [101] Wei H F, Hsiue G H, Liu C Y. Surface modification of multi-walled carbon nanotubes by a sol–gel reaction to increase their compatibility with PMMA resin[J]. Compos. Sci. Technol., 2007, 67(6): 1018-1026.
    [102] Wang G C, Ding Y L, Wang F, et al. Poly(aniline-2-sulfonic acid) modified multiwalled carbon nanotubes with good aqueous dispersibility[J]. J. Colloid Interface Sci., 2008, 317(1): 199-205.
    [103]邱军,王国建,尚婧.聚乙烯基吡咯烷酮修饰多壁碳纳米管的研究[J].高分子学报,2007, 4: 327-331.
    [104] Laura Rodriguez Perez, Emmanuelle Teuma, Andrea Falqui, et al. Functionalization of Multiwalled Carbon Nanotubes with Ionic Liquid for catalytic applications[C]. Biarritz, France, The International Carbon Conference, June14-19, 2009, 326.
    [105] Vesali Naseh M, Mortazavi Y, Khodadadi A, et al. Functionalization of single wall carbon nanotubes by oxygen containing groups using dielectric barrier discharge plasma and nitric acid[C]. Biarritz,France, The International Carbon Conference, June14-19, 2009, 438.
    [106] Boehm H P, Diehl E, Heck W, et al. Surface oxides of carbon[J]. Angew Chem Int Ed, 1964, 3(10): 669-677.
    [107] Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994, 32(5): 759-769.
    [108]李晓峰,王芳,张斌.多壁碳纳米管表面修饰化学官能团的定量分析[J].山东大学学报(理学版),2009, 44(1): 17-23.
    [109] Li Y H, Zhu Y Q, Zhao Y M, et al. Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution[J]. Diamond Relat. Mater., 2006, 15(1): 90-94.
    [110] Han P D, Xu B S, Liang J, et al. Band gaps of two-dimensional photonic crystal structure using fullerene films, Physica E, 2004, 25(1): 29.
    [111] Yethiraj A, Van Blaaderen A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar[J]. Nature, 2003, 421(6922): 513-517.
    [112]朱永政,曹艳玲,李志慧等. SiO2微球非密堆积FCC结构光子晶体的制备与表征[J].吉林大学学报(理学版),2007, 45(1): 82-84.
    [113]常伟.反欧泊结构InP三维光子晶体的制备及研究[J].安徽建筑工业学院学报(自然科学版),2009, 17(1): 49-54.
    [114] Kathyayini H, Willems I, Fonseca A, et al. Catalytic materials based on aluminium hydroxide, for the large scale production of bundles of multi-walled (MWNT) carbon nanotubes[J]. Catal. Commun., 2006, 7(3): 140-147.
    [115] Sazbo A, Mehn A, Konya Z, et al.“Wash and go”: sodium chloride as an easily removable catalyst support for the synthesis of carbon nanotubes[J]. Phys. Chem. Commun., 2003, 6: 40-41.
    [116] Geng J, Kinloch I A, Singh C, et al. Production of carbon nanofibers in high yields using a sodium chloride support[J]. J Phys. Chem. B, 2005, 109(35): 16665-16670.
    [117] Ali E, Parvaneh J, Fathollah M. High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition[J], Carbon, 2006, 44(7): 1343-1345.
    [118] Liu B H, Ding J, Zhong Z Y, et al. Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method[J]. Chem. Phys. Lett., 2002, 358(1-2): 96-102.
    [1]章海霞,王晓敏,王海英等.电弧法制备洋葱状富勒烯的工艺研究[J].新型炭材料,2004, 19(1): 61-63.
    [2]王海英,王晓敏,章海霞等.电弧放电制备内包金属纳米洋葱状富勒烯[J].材料热处理学报,2003, 24(4): 41-42.
    [3] Xu B S, Tanaka S I. Multiple-nulei onion-like fullerenes cultivated by electron beam irradiation[C]. Proc. Int. Conf. ICSE, Cambridge, 1997, 355 - 360.
    [4] Terrons H, Terrones M. The transformation of polyhedral particles into graphitic onions[J]. J. Phys. Chem. Solids, 1997, 58(11): 1789-1796.
    [5] Stephan O, Bando Y, Dussarrat C, et al. Onion-like structures and small nested fullerenes formation under electron irradiation of turbostratic BC2N[J]. Appl. Phys. Lett., 1997, 70(18): 2383-2385.
    [6] Banhart F, Fuller T, Redlich P H, et al. The formation, annealing and self-compression of carbon onions under electron irradiation[J]. Chem. Phys. Lett., 1997, 269(3-4): 349-355.
    [7] Golberg D, Bando Y, Kurashima K, et al. Fullerene and onion formation under electron irradiation of boron-doped graphite[J]. Carbon, 1999, 37(2): 293-299.
    [8]杜爱兵,刘旭光,许并社.煤基纳米洋葱状富勒烯制备及其结构表征[J].无机材料学报,2005, 20(4): 779-784.
    [9]符冬菊,刘旭光,杜爱兵等.微波等离子体法合成洋葱状富勒烯的研究[J].无机材料学报,2006, 21(3): 576-582.
    [10]蔺娴,刘旭光,符冬菊等.等离子体条件下煤基富勒烯的制备及生成机理[J].煤炭转化,2006, 29(4): 1-4.
    [11] He C N, Zhao N Q, Shi C S, et al. Carbon onion growth enhanced by nitrogen incorporation[J]. Scripta Mater., 2006, 54(10): 1739-1743.
    [12] He C N, Zhao N Q, Du X W, et al. Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum[J]. Scripta Mater., 2006, 54(4): 689-693.
    [13] He C N, Shi C S, Du X W,et al. TEM investigation on the initial stage growth of carbon onions synthesized by CVD[J]. J. Alloys Compd., 2008, 452(2): 258-262.
    [14] Li H P, Zhao N Q, He C N, et al. Catalytic synthesis of carbon nanostructures using Fe(OH)3/Al as catalyst precursors[J]. J. Alloys Compd., 2009, 468 (1-2): 64-68.
    [15] Xu B S, Li T B, Han P D, et al. Several features of the iron-included onion-like fullerenes[J]. Mater. Lett., 2006, 60(16): 2042-2045.
    [16] Gulino G, Vieira R, Amadou J, et al. C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapour deposition[J]. Appl. Catal. A, 2005, 279(1-2): 89-97.
    [17] Kathyayini H, Nagaraju N, Fonseca A, et al. Catalytic activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the synthesis of carbon nanotubes[J]. J. Mol. Catal. A: Chem., 2004, 223(1-2): 129-136.
    [18] Schmitt T C, Biris A S, Miller D W, et al. Analysis of effluent gases during the CCVD growth of multi-walled carbon nanotubes from acetylene[J]. Carbon, 2006, 44(10): 2032-2038.
    [19] Sinha A K, Hwang D W, Hwang L P. A novel approach to bulk synthesis of carbon nanotubes with metal by a catalytic chemical vapor deposition method[J]. Chem. Phys. Lett., 2000, 332(5-6): 455-460.
    [20] Kathyayini H, Willems I, Fonseca A, et al. Catalytic materials based on aluminium hydroxide for the large scale production of bundles of multi-walled (MWNT) carbon nanotubes[J]. Catal. Commun., 2006, 7(3): 140-147.
    [21] Sazbo A, Mehn A, Konya Z, et al.“Wash and go”: sodium chloride as an easily removable catalyst support for the synthesis of carbon nanotubes[J]. Phys. Chem. Commun., 2003, 6: 40-41.
    [22] Geng, J, Kinloch I A, Singh C, et al. Production of carbon nanofibers in high yields using a sodium chloride support[J]. J Phys. Chem. B, 2005, 109(35): 16665-16670.
    [23] Ali E, Parvaneh J, Fathollah M. High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition[J]. Carbon, 2006, 44(7): 1343-1345.
    [24] Liu B H, Ding J, Zhong Z Y, et al. Large-scale preparation of carbon-encapsulated cobaltnanoparticles by the catalytic method[J]. Chem. Phys. Lett., 2002, 358(1-2): 96-102.
    [25] Ding F, Rosén A, Campbell E B, et al. Graphitic encapsulation of catalyst particles in carbon nanotube production[J]. J. Phys. Chem. B, 2006, 110(15): 7666-7670.
    [26] Sano N, Akazawa H, Kikuchi T, et al. Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen[J]. Carbon, 2003, 41(11): 2159-2162.
    [27] Nolan P E, Lynch D C, Cutler A H. Graphite encapsulation of catalytic metal nano- particles[J]. Carbon, 1996, 34(6): 817-819.
    [28]Stig H, Carlos L C, Jens S, et al. Atomic-scale imaging of carbon nanofibre growth[J]. Nature, 2004, 427, 426-429.
    [1] Fleming M S, Mandal T K, Walt D R. Nanosphere-microsphere Assembly: methods for core-shell materials preparation[J]. Chem. Mater., 2001, 13(6): 2210-2216.
    [2]张艳萍,褚莹.模板法合成核壳功能材料[J].化学进展,2007, 19(1): 35-41.
    [3] Brooks J D, Taylor G H. The formation of graphitizing carbons from the liquid phase[J]. Carbon, 1965, 3(2): 185-186.
    [4] Serp Ph, Feurer R, Kalck Ph, et al. A chemical vapour deposition process for the production of carbon nanospheres[J]. Carbon, 2001, 39(4): 621-626.
    [5] Xu B S, Guo J J, Jia H S, et al. Hard carbon spherules derived from deoiled asphalt as a catalyst support for direct methanol fuel cell, 19th Canadian Symposium on Catalysis, May 14-16, 2006, Saskatoon, Saskatchewan, 31.
    [6] Alcántara R, Fernández Madrigal F J, Lavela P, et al. Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells[J]. Carbon, 2000, 38(7): 1031-1041.
    [7]潘振华,程志鹏,杨毅等.包覆型复合材料制备的新进展[J].实用技术,2007, 4(1): 52-55.
    [8]裴爱华,杨桂生,沈征武.模板法制备无机氧化物中空微球的研究进展[J].高分子通报,2005, (2): 1-6.
    [9] Chen J F, Ding H M, Wang J X, et al. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application[J]. Biomaterials, 2004, 25(4): 723-727.
    [10] Li Z Z, Wen L X, Shao L, et al. Fabrication of porous hollow silica nanoparticles and their applications in drug release control[J]. J. Controlled Release, 2004, 98(2): 245-254.
    [11]吴文华,杨坤涛.羰基铁/SiO2磁性核壳复合粒子研究[J].磁性材料及器件,2006, 37(2): 31-33.
    [12] Caruso F. Hollow capsule processing through colloidal templating and self-assembly[J]. Chem. Eur. J., 2000, 6(3): 413-419.
    [13] Kim S W, Kim M, Lee W Y, et al. Fabrication of hollow palladium spheres and their successfulapplication to the recyclable heterogeneous catalyst for Suzuki coupling reactions[J]. J. Am. Chem. Soc. (Communication), 2002, 124(26): 7642-7643.
    [14] Liang H P, Zhang H M, Hu J S, et al. Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts[J]. Angew. Chem. Int Ed., 2004, 43(12): 1540-1543.
    [15]宋彩霞,王德宝,古国华等.无机空心球材料的乳胶粒模板法制备及应用[J].材料导报, 2003,17(7): 32-34.
    [16]孙瑞雪,李木森,吕宇鹏.空心微球型材料的制备及应用进展[J].材料导报,2005, 19(10): 19-22.
    [17] Hentze H P, Raghavan S R, McKelvey C A, et al. Silica hollow spheres by templating of catanionic vesicles[J]. Langmuir, 2003, 19(4): 1069-1074.
    [18] Naik S P, Chiang A S T, Thompson R W, et al. Formation of silicalite-1 hollow spheres by the self-assembly of nanocrystals[J]. Chem. Mater., 2003, 15(3): 787-792.
    [19] Sun Q Y, Kooyman P J, Grossmann J G, et al. The formation of well-defined hollow silica spheres with multiamellar shell structure[J]. Adv. Mater., 2003, 15(13): 1097-1100.
    [20] Yin J L, Chen H J, Li Z K, et al. Preparation of PS/TiO2 core-shell microspheres and TiO2 hollow shells[J]. J. Mater. Sci., 2003, 38(24): 4911-4916.
    [21]丁建芳,姜继森.核壳结构二氧化硅/磁性纳米粒子的制备及应用[J].材料导报,2006, 20(专辑Ⅶ): 201-205.
    [22]刘冰,王德平,黄文旵等.核壳结构磁性复合纳米粒的制备及研究进展[J].材料导报,2007,21(专辑Ⅷ): 185-188.
    [23] Isabelle Tissot, Christian Novat, Frédéric Lefebvre, et al. Hybird latex particles coated with silica[J]. Macromolecules, 2001, 34(17): 5737-5739.
    [24]谢建良,陆传林,邓龙江. SiO2包覆对片状金属磁粉微波介电常数的影响[J].材料导报,2007, 21(专辑Ⅷ): 193-197.
    [25] Chou K S, Chen C C. Fabrication and characterization of silver core and porous silica shell nanocomposite particles[J]. Microporous. Mesoporous. Mater., 2007, 98(1-3): 208-213.
    [26] Zheng M B, Cao J M, Chang X, et al. Preparation of oxide hollow spheres by colloidal carbon spheres[J]. Mater. Lett., 2006, 60(24): 2991-2993.
    [27] Tissot I, Reymond J, Lefebvre F, et al. SiOH-functionalized polystyrene latexes. a Step toward the synthesis of hollow silica nanoparticles[J]. Chem. Mater., 2002, 14(3): 1325-1331.
    [28]韩春蕊,吕伟丽,吴秀勇等.以PSA-A乳胶粒为模板批量制备TiO2空心球[J].无机材料学报,2005,20(6): 1409-1416.
    [29] Jin Y Z, Gao C, Hsu W K, et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons[J]. Carbon, 2005, 43(9): 1944-1953.
    [30] Zhang X F, Dong X L, Huang H, et al. Synthesis, structure and magnetic properties of SiO2-coated Fe nanocapsules[J]. Mater. Sci. Eng., A, 2007, 454-455: 211-215.
    [31] Lu Y, Mclellan J, Xia Y N. Synthesis and crystallization of hybird spherical colloids composed of polystyrene cores and silica shells[J]. Langmuir, 2004, 20(8): 3464-3470.
    [32]童国秀,王维,官建国等. SiO2纳米壳的厚度对羰基铁/SiO2核壳复合粒子的性能影响[J].无机材料学报,2006, 21(6): 1461-1466.
    [33] Yang M, Wang G, Yang Z Z. Synthesis of hollow spheres with mesoporous silica nanoparticles shell [J]. Mater. Chem. Phys., 2008, 111(1): 5-8.
    [34] Zhao L, Yu J G, Cheng B. Preparation and characterization of SiO2/TiO2 composite microspheres with microporous SiO2 core/mesoporous TiO2 shell[J]. J. Solid State Chem., 2005, 178 (6): 1818-1824.
    [35]娄敏毅,王德平,黄文旵等.单分散核壳结构SiO2磁性微球的制备及性能[J].硅酸盐学报,2006, 34(3): 277-283.
    [36]余锡宾,吴虹.正硅酸乙酯的水解、缩合过程研究[J].无机材料学报,1996, 11(4): 703-707.
    [1] Datsyuk V, Kalyva M, Papagelis K, et al. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008, 46(6): 833-840.
    [2] Rosca I D, Watari F, Uo M, et al. Oxidation of multiwalled carbon nanotubes by nitric acid[J]. Carbon, 2005, 43(15): 3124-3131.
    [3] Qin Y J , Shi J H, Wu W, et al. Concise route to functionalized carbon nanotubes[J]. J. Phys. Chem. B, 2003, 107(47): 12899-12901.
    [4] Hung T C, Chen C F, Chen M, et al. Quantitative limitation of active site and characteristics of chemical oxidized well-aligned carbon nanotubes[J]. The Solid Films, 2008, 516(16): 5236-5240.
    [5] Xiao Q, He S J, Liu L W, et al. Coating of multiwalled carbon nanotubes with crosslinked silicon-containing polymer[J]. Compos. Sci. Technol., 2008, 68(1): 321-328.
    [6] Wang G C, Ding Y L, Wang F, et al. Poly(aniline-2-sulfonic acid) modified multiwalled carbon nanotubes with good aqueous dispersibility[J]. J. Colloid Interface Sci., 2008, 317(1): 199-205.
    [7] Chun K Y, Choi S K, Kang H J, et al. Highly dispersed multi-walled carbon nanotubes in ethanol using potassium doping[J]. Carbon, 2006, 44(8): 1491-1495.
    [8] Li C C, Lin J L, Huang S J, et al. A new and acid-exclusive method for dispersing carbon multi-wallednanotubes in aqueous suspensions[J]. Colloids Surf., A: Physicochem. Eng. Aspects., 2007, 297(1-3): 275-281.
    [9] Zhang D S, Shi L Y, Fang J H, et al. Preparation and modification of carbon nanotubes[J]. Mater. Lett., 2005, 59(29-30): 4044-4047.
    [10]邱军,王国建,屈泽华等.氧化处理方法与多壁碳纳米管表面羧基含量的关系[J].新型炭材料,2006, 21(3): 269-272.
    [11]尤玉静,瞿美臻,周固民等.液相氧化碳纳米管的氧化剂选择[J].合成化学,2006, 14(5): 446-449.
    [12] Liu J, Rinzler A G, Dai H J, et al. Fullerene Pipes[J]. Science, 1998, 280(5367): 1253-1256.
    [13]王敏炜,查少华,姚彦红. H2O2氧化作用对碳纳米管表面疏水性的影响[J].南昌大学学报·工科版,2007, 29(2): 103-105.
    [14] Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes[J]. Science, 1998, 282(1): 95-98.
    [15] Hu H, Bhowmik P, Zhao B, et al. Determination of the acidic sites of purified single-walled carbon nanotubes by acid-base titration[J]. Chem. Phys. Lett., 2001, 345(1-2): 25-28.
    [16] Boehm H.P. Surface oxides on carbon and their analysis: a critical assessment[J]. Carbon, 2002, 40(2): 145-159.
    [17] Jin Y Z, Gao C, Hsu W K, et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons[J]. Carbon 2005, 43(9): 1944-1953.
    [18] Kukovecz A, Kramberger C, Holzinger M., et al. On the stacking behavior of functionalized Single-wall carbon nanotubes[J]. Phy. Chem. B, 2002, 106(25): 6374-6380.
    [19] Kovtyukhova Nina I, Mallouk Thomas E, Pan L, et al. Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes[J]. J. Am. Chem. Soc., 2003, 125(32): 9761-9769.
    [20]董军,何晓英.多壁碳纳米管的羧基修饰[J].海南师范学院学报(自然科学版),2006, 19(4): 342-345.
    [1] Xu B S, Han P D, Liang J, et al. Theoretical investigation of the reflectivity of fullerene -(C60,C70)/AlN multilayers in UV region[J], Solid State Commun., 2005, 133(6): 353-356.
    [2] Han P D, Xu B S, Liang J, et al. Band gaps of two-dimensional photonic crystal structure using fullerene films[J]. Physica E, 2004, 25(1): 29-34.
    [3]王振领,林君.蛋白石及反蛋白石结构光子晶体[J].化学通报,2004, (12): 876-882.
    [4]韩喻,谢凯.三维光子晶体及其制备技术研究进展[J].材料导报,2007, 21(5): 4-9.
    [5] Yethiraj A , Van Blaaderen A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar[J]. Nature, 2003, 421(6922): 513-517.
    [6]朱永政,尹计秋,邱明辉.非密堆积TiO2空心微球光子晶体的制备与能带分析[J].物理学报, 2008, 57(12): 7725-7728.
    [7]常伟.反欧泊结构InP三维光子晶体的制备及研究[J].安徽建筑工业学院学报(自然科学版),2009, 17(1): 49-54.
    [8] Pyun J, Kowalewski T, Matyjaszewski K. Synthesis of polymer brushes using atom transfer radical polymerization[J]. Macromol. Rapid. Commun., 2003, 24(18): 1043-1059.
    [9] Chen X Y, Armes S P, Greaves J, et al. Synthesis of hydrophilic polymer-grafted ultrafine inorganic oxide particles in protic media at ambient temperature via atom transfer radical polymerization: use of an electrostatically adsorbed polyelectrolytic macroinitiator[J]. Langmuir, 2004, 20, 587-595.
    [10]王平华,王贺宜,张斌等.碳纳米管表面的RAFT接枝共聚物[J].高分子材料科学与工程,2008, 24(6): 72-78.
    [11]王平华,李凤妍,唐龙祥等. RAFT聚合方法在碳纳米管表面接枝嵌段共聚物[J].高分子材料科学与工程,2007, 23(6): 36-42.
    [12]王国建,董玥,邱军等.聚苯乙烯修饰碳纳米管表面的研究[J].高等学校化学学报,2006, 27(6): 1157-1161.
    [13]张皓.碲化镉纳米晶的制备及其与聚合物的复合(D).长春,吉林大学,2004.
    [14]孙昱飞,吴飞,邓小勇等.化学修饰方法对聚乙二醇功能化碳纳米管的影响[J].无机化学学报,2008, 24(1): 98-104.
    [15] Yang Y K, Xie X L, Wu J A, et al. Synthesis and self-assembly of polystyrene-grafted multiwalled carbon nanotubes with a hairy-rod nanostructure[J]. J. Polym. Sci: Part A: Polym. Chem., 2006, 44(12): 3869-3881.
    [16]东北师范大学,华南师范大学,上海师范大学,苏州大学,广西师范大学合编,有机化学,北京,高等教育出版社,1-74.
    [17] Kang X, Ma W, Zhang H L, et al. Vinyl-carbon nanotubes for composite polymer materials[J]. J. Appl. Polym. Sci., 2008, 110(4): 1915-1920.
    [18]陈宪宏,丰涛,王建锋等.酯化法制备苯乙烯基功能化多壁碳纳米管的研究[J].功能材料,2008, 39(5): 870-873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700