用户名: 密码: 验证码:
石墨烯纳米器件的设计与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯具有规整的几何构型和独特的电子结构令物理家为之着迷,而石墨烯优良的光电性能和极大的比表面积使其在超分子化学方面有着广阔的应用前景。本论文主要围绕石墨烯的电学性质调控与石墨烯器件的设计开展了系统的理论研究。首先研究了小分子与石墨烯相互作用的机制与影响因素,在此基础上设计石墨烯气体传感器。利用不同的有机给体和受体分子与石墨烯相互作用能够有效地调节石墨烯的能带结构。同时,通过引入金属离子不仅能增强石墨烯与有机分子之间的相互作用,还能够有效地调控石墨烯的磁性。最后我们构筑了碳纳米管以及新型芳香有机分子/碳纳米管复合体系,并将其应用于气体传感方面。主要内容如下:
     (1)系统研究了多种气体分子在不同石墨烯上的吸附,提出了通过引入缺陷和掺杂提高石墨烯气体传感性能的策略。四种分子在完整石墨烯上表现出弱的物理吸附,具有较低的吸附能和小的电荷转移,表明未修饰的石墨烯不是理想的气体传感材料。当在石墨烯表面引入掺杂剂和缺陷后,其与气体分子之间的相互作用被明显地增强。对石墨烯纳米器件的电子输运性质做了研究,发现硼掺杂石墨烯对二氧化氮气体的响应比完整石墨烯大两个数量级。
     (2)结合密度泛函和非平衡态格林函数,系统研究了有机给体TTF、受体DDQ和金属原子在石墨烯上的吸附,揭示了不同的非共价修饰对石墨烯的电子结构和电子输运性质的影响。DDQ和TTF的分子轨道能和石墨烯的价带杂化,使石墨烯由零带隙半导体转变为具有金属性。然而,Ⅰ-Ⅴ曲线的计算表明有机分子的吸附并不能对石墨烯的电子输运性质产生显著改变。我们发现引入金属原子能够明显增强分子/石墨烯的相互作用。该工作对设计石墨烯传感器和开关器件具有有指导意义。
     (3)研究了二氯苯分子吸附对石墨烯磁学性质与电子输运性能的调控。二氯苯在完整石墨烯上显示很弱的相互作用,因此有必要采用化学或物理方法对石墨烯表面修饰。金属原子掺杂石墨烯结构中能够明显增强二氯苯/石墨烯之间的相互作用,其吸附能远远高于完整石墨烯的。研究工作揭示了不同金属原子存在下有机分子的吸附对体系磁性的影响是不同的。该研究拓宽了石墨烯在磁性传感和开关器件方面的应用,同时也为设计石墨烯纳米器件提供了一种新的思路。
     (4)研究了CO分子在完整和缺陷硼氮纳米体系上的吸附,提出了通过引入缺陷和掺杂提高硼氮纳米体系化学活性的方法。理论计算发现CO分子在完整硼氮纳米体系上的吸附是比较弱的,具有比较小的吸附能和大的距离。而CO分子和缺陷的硼氮纳米体系之间的显示了强的相互作用。吸附能上的大大增强和电荷转移的增多能够很大程度上地改变硼氮纳米体系的电学性质。缺陷硼氮纳米体系在吸附CO分子后带隙也变窄了,并表现出磁性。该研究为改变硼氮纳米体系比较惰性的表面提供了指导,同时对设计新型的磁性器件提供了思路。
Since their discovery, graphene have attracted great scientific attention, owning to their unique structural, mechanical and electronic properties. Graphene are expected to have potential applications in many fields, such as nanocomposite materials, reinforced structures, nanoelectronic devices and field emission displays etc. This thesis focuses on understanding the interaction mechanism between small molecules and graphene, and to design novel graphene nanodevices based on these understandings. It was found that introduction of dopant and defect into the graphene surface could significantly modify the electronic properties of graphene. By using different organic donor and acceptor as absorbants, the band structure of graphene could be effectively tuned. Introducing metal atoms could strengthen the molecule/graphene interaction and tune the magnetic properties of the graphene. Nonconvalent modification of carbon nanotube sidewall using different polycyclic aromatic molecules helps to design new gas sensors.
     The main results of this thesis are listed blow.
     1. The adsorptions of four gas molecules on different graphenes were systemically investigated, which reveals that introduction of defects and dopants into graphene could improve the sensing properties of graphene. The four probe molecules show physisorption on the pristine graphene with low adsorption energies and little charge transfer, which suggests that the un-modified graphene is not an ideal material for gas sensing. After introducing dopant and defect into the graphene, the interaction between graphene and small molecules could be strengthened. The electron transport of graphene-based junctions illustrates that the sensitivity of B doped graphene to NO2 molecule could be two orders of magnitude higher than that of the prinstine graphene.
     2. Using density functional theory and nonequilibrium Green's function (NEGF) formalism, we have theoretically investigated the binding of organic donor, acceptor and metal atoms on graphene sheets, and revealed the effects of the different noncovalent functionalizations on the electronic structure and transport properties of graphene. The adsorptions of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and tetrathiafulvalene (TTF) induce hybridization between the molecular levels and the graphene valence bands, and transform the zero-gap semiconducting graphene into metallic one. However, the current versus voltage (I-V) simulation indicates that the noncovalent modifications by organic molecules are not sufficient to significantly alter the transport property of the graphene for sensing applications. We found that the molecule/graphene interaction could be dramatically enhanced by introducing metal atoms to construct molecule/metal/graphene sandwich structures. The results of this work could help to design novel graphene-based sensing or switching devices.
     3. The magnetic and electron transport properties of graphene could be tuned by adsorbing dichlorobenzene (DCB). Pristine graphene shows weak interaction with DCB molecule, hence chemically or physically modified graphene sheets are required for achieving more effective adsorption. Metal atom doped graphene structures are shown to be promising to enhance the DCB/graphene interaction. The Fe/graphene shows stronger interaction with DCB molecule and higher sensitivity to DCB compared with the pristine graphene. The magnetic properties of graphene could be affected by the adsorbed organic molecule and different metal atoms. This finding shall widen the potential applications of graphene in the fields of magnetic sensors or switching devices. It is also hoped that the finding of this work will stimulate the organometallic chemists to develop new chemistry to fabricate the proposed graphene based nanostructures.
     4. The adsorptions of CO molecule on the pristine and defective graphene like BN sheets (g-BN) were investigated, which revealed that introducing defects and dopants into g-BN are effective methods for improving the chemical activity of g-BN. CO shows weak interaction with pristine g-BN, but shows much stronger interactions with vacancy g-BN (V-g-BN). The significantly increased binding energies and charge transfers of CO on the modified g-BN could induce significant changes in the electrical conductivity of g-BN, and therefore are promising for electronic applications. The V-g-BN shows spontaneous magnetization and reduced band gap upon CO adsorption, which may be used in novel magnetic devices. It is expected that the findings of this work will help the current mission of finding appropriate chemical methods for modifying the originally inert g-BN sheet surface to enable their applications in electronic and magnetic devices.
引文
[1]S.Iijima, Nature 354 (1991) 56.
    [2]P.M. Ajayan, Chem. Rev.99 (1999) 1787.
    [3]P. Avouris, Acc. Chem. Res.35 (2002) 1026.
    [4]E.T. Thostenson, Z.F. Ren, T.W. Chou, Composites Science and Technology 61 (2001) 1889.
    [5]Y. Chen, R.C. Haddon, S. Fang, A.M. Rao, W.H. Lee, E.C. Dickey, E.A. Grulke, J.C. Pendergrass, A. Chavan, B.E. Haley, R.E. Smalley, J. Mater. Res.13 (1998) 2423.
    [6]T.W. Ebbesen, P.M. Ajayan, Nature 368 (1992) 220.
    [7]D.S. Bethune, C.H. Klang, M.S.d. Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363 (1993) 605.
    [8]S. Iijima, T. Ichihashi, Nature 363 (1993) 603.
    [9]A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Science 273 (1996) 483.
    [10]S.J. Tans, M.H. Devoret, H.J. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature 386 (1997) 474.
    [11]J.W.G Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature 391 (1998)59.
    [12]C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. delaChapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer, Nature 388 (1997) 756.
    [13]H.J. B, C.C. L, L.J. H., Sensor. Actuat. B 99 (2004) 1.
    [14]朱林,何晓英,董军,(2005)667.
    [15]蔡称心,陈静,陆天虹,中国科学B 33(2003)511.
    [16]P.C. Collins, M.S. Arnold, P. Avouris, Science 292 (2001) 706.
    [17]R. Krupke, F. Hennrich, H.v. Lohneysen, M.M. Kappes, Science 301 (2003) 344.
    [18]GY. Zhang, P.F. Qi, X.R. Wang, Y.R. Lu, X.L. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H.J. Dai, Science 314 (2006) 974.
    [19]K.H. An, J.S. Park, C.-M. Yang, S.Y Jeong, S.C. Lim, C. Kang, J.-H. Son, M.S. Jeong, Y.H. Lee, J. Am. Chem. Soc.127 (2005) 5196.
    [20]M. Zheng, A. Jagota, M.S. Strano, E.D. Semke, M. Usrey, D.J. Walls, Science 302(2003)1545.
    [21]H.P. Li, B. Zhou, Y. Lin, L.R. Gu, W. Wang, K.A.S. Fernando, S. Kumar, L.F. Allard, Y.P. Sun, J. Am. Chem. Soc.126 (2004) 1014.
    [22]Y. Maeda, S. Kimura, M. Kanda, Y Hirashima, T. Hasegawa, T. Wakahara, Y.F. Lian, T. Nakahodo, T. Tsuchiya, T. Akasaka, J. Lu, X.W. Zhang, Z.X. Gao, Y.P. Yu, S. Nagase, S. Kazaoui, N. Minami, T. Shimizu, H. Tokumoto, R. Saito, J. Am. Chem. Soc.127 (2005) 10287.
    [23]A. Nish, J.-Y. Hwang, J. Doig, R.J. Nicholas, Nat. Nanotechnol.2 (2007) 640.
    [24]M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Nat. Nanotechnol.1 (2006) 60.
    [25]J. Lu, S. Nagase, X. Zhang, D. Wang, M. Ni, Y. Maeda, T. Wakahara, T. Nakahodo, T. Tsuchiya, T. Akasaka, Z. Gao, D. Yu, H. Ye, W.N. Mei, Y. Zhou, J. Am. Chem. Soc.128 (2006) 5114.
    [26]W.A. Deheer, A. Chatelain, D. Ugarte, Science 270 (1995) 1179.
    [27]H. Xu, D. Li, B.S. Han, F.W. Wang, S.S. Fan, Q.Q. Li, W.J. Liang, H.Y Dang, J. Appl. Phys.85 (1999) 5507.
    [28]A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science 269 (1995) 1550.
    [29]J.M. Bonard, J.P. Salvetat, T. Stockli, W.A.d. Heer, L. Forro, A. Chatelain, Appl. Phys. Lett.73(1998)918.
    [30]M. Jie, S. Li, K. Hua, C.Y Wang, X.T. Guo, H.Y. Xu, S.S. Xie, New Carbon Mater.19(2004)166.
    [31]S.R.P. Silva, J.D. Carey, G.Y Chen, D.C. Cox, R.D. Forrest, C.H.P. Poa, R.C. Smith, Y.F. Tang, J.M. Shannon, IEE Proc.-Circuit Device Syst.151 (2004) 489.
    [32]刘晓艳,徐鹏,新材料产业2(2004)14.
    [33]J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287 (2000) 622.
    [34]S. Peng, K. Cho, Nano Lett.3 (2003) 513.
    [35]S.B. Fagan, A.G.S. Filho, J.O.G Lima, J.M. Filho, O.P. Ferreira, I.O. Mazali, O.L. Alves, M.S. Dresselhaus, Nano Lett.4 (2004) 1285.
    [36]R. Wang, D. Zhang, W. Sun, Z. Han, C. Liu, Journal of Molecular Structure: THEOCHEM 806 (2007) 93.
    [37]S.B. Fagan, E.J.G. Santos, A.GS. Filho, J.M. Filho, A. Fazzio, Chem. Phys. Lett. 437 (2007) 79.
    [38]S.B. Fagan, R. Mota, R.J. Baierle, A.J.R.d. Silva, A. Fazzioc, Diamond and Related Materials 12 (2003) 861.
    [39]F. Tournus, J.-C. Charlier, Phys. Rev. B 71 (2005) 165421.
    [40]L.B.d. Silva, S.B. Fagan, R. Mota, Nano Lett.4 (2004) 65.
    [41]H. Chang, J.D. Lee, S.M. Leeb, Y.H. Lee, Appl. Phys. Lett.79 (2001) 3863.
    [42]S. Peng, K. Cho, Nanotechnology 11 (2000) 57.
    [43]X. Wu, W. An, X.C. Zeng, J. Am. Chem. Soc.128 (2006) 12001.
    [44]W.-L. Yim, X.G Gong, Z.-F. Liu, J. Phys. Chem. B 107 (2003) 9363.
    [45]L. Bai, Z. Zhou, Carbon 45 (2007) 2105.
    [46]S. Guerini, A.GS. Filho, J.M. Filho, O.L. Alves, S.B. Fagan, Phys. Rev. B 72 (2005)233401.
    [47]F. Tournus, S. Latil, M.I. Heggie, J.-C. Charlier, Phys. Rev. B 72 (2005) 075431.
    [48]Y. Zhang, D. Zhang, C. Liu, J. Phys. Chem. B 110 (2006) 4671.
    [49]H.S. Kang, J. Am. Chem. Soc.127 (2005) 9839.
    [50]M. Breza, Journal of Molecular Structure:THEOCHEM 767 (2006) 159.
    [51]R.H. Miwa, T.B. Martins, A. Fazzio, Nanotechnology 19 (2008) 155708.
    [52]S. Peng, K. Cho, P. Qi, H. Dai, Chem. Phys. Lett.387 (2004) 271.
    [53]B. Akdim, T. Kar, X. Duan, R. Pachter, Chem. Phys. Lett.445 (2007) 281.
    [54]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666.
    [55]N. Tsuyoshi, M. Yoshiaki, Carbon 32 (1994) 469.
    [56]A.K. Geim, K.S. Novoselov, Nat. Mater.6 (2007) 183.
    [57]K.S. Novoselov, D.J. iang, F. Schedin, PNAS 102 (2005) 10451.
    [58]P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotech.2 (2007) 605.
    [59]C.L. Kane, Nature 438 (2005) 168.
    [60]S. Pisana, M. Lazzeri, C. Casiraghi, Nat. Mater.6 (2007) 198.
    [61]K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Science 315 (2007) 1379.
    [62]X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, Science 324 (2009) 768.
    [63]O. Leenaerts, B. Partoens, F.M. Peeters, Phys. Rev. B 77 (2008) 125416.
    [64]Z.M. Ao, J. Yang, S. Li, Q. Jiang, Chem. Phys. Lett.461 (2008) 276.
    [65]G. Forte, A. Grassi, G.M. Lombardoa, A.L. Magna, G.GN. Angilella, R. Pucci, R. Vilardi, Physics Letters A 372 (2008) 6168.
    [66]A. Ghosh, K.S. Subrahmanyam, K.S. Krishna, S. Datta, A. Govindaraj, S.K. Pati, C.N.R. Rao, J. Phys. Chem. C 112 (2008) 15704.
    [67]R. Moradian, Y. Mohammadi, N. Ghobadi, J. Phys.:Condens. Matter 20 (2008) 425211.
    [68]J. Antony, S. Grimme, Phys. Chem. Chem. Phys.10 (2008) 2722.
    [69]F.J. Owensa, J. Chem. Phys.128 (2008) 194701.
    [70]I. Zanella, S.B. Fagan, R. Mota, A. Fazzio, J. Phys. Chem. C 112 (2008) 9163.
    [71]S. Gowtham, R.H. Scheicher, R. Ahuja, R. Pandey, S.P. Karna, Phys. Rev. B 76 (2007)033401.
    [72]P. Cabrera-Sanfelix, GR. Darling, J. Phys. Chem. C 111 (2007) 18258.
    [73]S.C. Xu, S. Irle, D.G. Musaev, M.C. Lin, J. Phys. Chem. C 111 (2007) 1355.
    [74]F. OuYang, B. Huang, Z. Li, J. Xiao, H. Wang, H. Xu, J. Phys. Chem. C 112 (2008) 12003.
    [75]S.S. Yu, W.T. Zheng, Q.B. Wen, Q. Jiang, Carbon 46 (2008) 537.
    [76]YG Zhou, X.T. Zu, F. Gao, J.L. Nie, H.Y. Xiao, J. Appl. Phys.105 (2009) 014309.
    [77]Y Zhao, Y.-H. Kim, L.J. Simpson, A.C. Dillon, S.-H. Wei, M.J. Heben, Phys. Rev. B 78(2008)144102.
    [78]N. Varghese, U. Mogera, A. Govindaraj, A. Das, P.K. Maiti, A.K. Sood, C.N.R. Rao, ChemPhysChem 10 (2009) 206.
    [79]S.J. Sque, R. Jones, P.R. Briddon, phys. stat. sol. (a) 204 (2007) 3078.
    [80]R.B. Pontes, A. Fazzio, G.M. Dalpian, Phys. Rev. B 79 (2009) 033412.
    [81]B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, W. Duan, J. Phys. Chem. C 112(2008) 13442.
    [82]L. Rosalesa, P. Orellanab, Z. Barticevica, M. Pachecoa, Microelectronics Journal 39 (2008) 537.
    [83]Q. Liang, J. Dong, Nanotechnology 19 (2008) 355706.
    [84]K. Wakabayashi, Y. Takanea, M. Yamamotoa, M. Sigristc, Carbon 47 (2009) 124.
    [85]M. Topsakal, E. Akturk, H. Sevincli, S. Ciraci, Phys. Rev. B 78 (2008) 235435.
    [86]V.A. Rigo, T.B. Martins, A.J.R.d. Silva, A. Fazzio, R.H. Miwa, Phys. Rev. B 79 (2009) 075435.
    [1]H. Thomas, Proc. Camb. Phil. Soc.23 (1927) 542.
    [2]E. Fermi, Accad. Naz. Lincei.6 (1927) 602.
    [3]R.G. Parr, W. Yang, Density-functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).
    [4]W. Kohn, L.J. Sham, Phys. Rev.140 (1965) 1133.
    [5]F. Sim, A. St-Aman, I. Papsi, J. Am. Chem. Soc.46 (1992) 13599.
    [6]A.D. Becke, J. Chem. Phys.98 (1993) 1372.
    [7]A.D. Becke, J. Chem. Phys.98 (1993) 5648.
    [8]M. Imada, A.Fujimori, Y. Tokur, Rev. Mod Phy.70 (1998) 1039.
    [9]H. Stoll, C.M.E. Pavlidou, H. Preus, Theor. Chim. Acta.49 (1978) 143.
    [10]J.P. Perdew, A. Zunger, Phys. Rev. B 23 (1981) 5048.
    [11]V.I. AnisimoV, F. Aryasetiawan, A.I. Liehtenstein, J.Phys.:Condensed Matter 9 (1997) 767.
    [1]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666.
    [2]S. Stankovich, D.A. Dikin, GH.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282.
    [3]S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, GH.B. Dommett, G Evmenenko, S.E. Wu, S.F. Chen, C.P. Liu, S.T. Nguyen, R.S. Ruoff, Nano Lett.7 (2007) 1888.
    [4]F. Schedin, A.K. Geim, S.V. Moeozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater.6 (2007) 652.
    [5]I.I. Barbolina, K.S. Novoselov, S.V. Morozov, S.V. Dubonos, M. Missous, A.O. Volkov, D.A. Christian, I.V. Grigorieva, A.K. Geim, Appl. Phys. Lett.88 (2006)013901.
    [6]N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J.v. Wees, Nature 448 (2007)571.
    [7]C.-a. Di, D. Wei, G Yu, Y Liu, Y. Guo, D. Zhu, Adv. Mater.20 (2008) 3289.
    [8]X. Wang, L. Zhi, K. Mullen, Nano Lett.8 (2007) 323.
    [9]H.A. Becerill, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2 (2008)463.
    [10]A.K. Geim, K.S. Novoselov, Nat. Mater 6 (2007) 183.
    [11]J. Kong, N.R. Franklin, C. Zhou, M.G Chapline, S. Peng, K. Cho, H. Dai, Science 287 (2000) 622.
    [12]S. Peng, K. Cho, Nano Lett.3 (2003) 513.
    [13]W.L. Yim, X.G Gong, Z.F. Liu, J. Phys. Chem. B 107 (2003) 9363.
    [14]K. Seo, K.A. Park, C. Kim, S. Han, B. Kim, Y.H. Lee, J. Am. Chem. Soc.127 (2005) 15724.
    [15]L. Bai, Z. Zhou, Carbon 45 (2007) 2105.
    [16]O. Leenaerts, B. Partoens, F.M. Peeters, Phys. Rev. B 77 (2008) 125416.
    [17]Z.M. Ao, J. Yang, S. Li, Q. Jiang, Chem. Phys. Lett.461 (2008) 276.
    [18]H.S. Kang, J. Am. Chem. Soc.127 (2005) 9839.
    [19]S.B. Fagan, A.GS. Filho, J.O.G Lima, J.M. Filho, O.P. Ferreira, I.O. Mazali, O.L. Alves, M.S. Dresselhaus, Nano Lett.4 (2004) 1285.
    [20]Y. Zhang, D. Zhang, C. Liu, J. Phys. Chem. B 110 (2006) 4671.
    [21]H. Chang, J.D. Lee, S.M. Leeb, Y.H. Lee, Appl. Phys. Lett.79 (2001) 3863.
    [22]J. Charles W. Bauschlicher, A. Ricca, Phys. Rev. B 70 (2004) 115409.
    [23]S. Peng, K. Cho, Nanotechnology 11 (2000) 57.
    [24]J. Zhao, A. Buldum, J. Han, J. Lu, Nanotechnology 13 (2002) 195.
    [25]V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, J. Quantum Chem.77 (2000) 895.
    [26]Q. Zhao, M.B. Nardelli, W. Lu, J. Bernholc, Nano Lett.5 (2005) 847.
    [27]F. Tournus, J.-C. Charlier, Phys. Rev. B 71 (2005) 165421.
    [28]J. Lu, S. Nagase, X. Zhang, D. Wang, M. Ni, Y. Maeda, T. Wakahara, T. Nakahodo, T. Tsuchiya, T. Akasaka, Z. Gao, D. Yu, H. Ye, W.N. Mei, Y. Zhou, J. Am. Chem. Soc.128 (2006) 5114.
    [29]J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63 (2001) 245407.
    [30]M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65 (2002)165401.
    [31]J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.:Condens. Matter 14 (2002) 2745.
    [32]M. Brandbyge, N. Kobayashi, M. Tsukada, Phys. Rev. B 60 (1999) 17064.
    [33]R. Wang, D. Zhang, W. Sun, Z. Han, C. Liu, Journal of Molecular Structure: THEOCHEM 806 (2007) 93.
    [34]S. Peng, K. Cho, P. Qi, H. Dai, Chem. Phys. Lett.387 (2004) 271.
    [35]P. Sjovall, S.K. So, B. Kasemo, R. Franchy, W. Ho, Chem. Phys. Lett.172 (1990) 125.
    [36]D.A. Dixon, M. Gutowski, J. Phys. Chem. A 109 (2005) 5129.
    [37]R. Chen, N. Franklin, J. Kong, J. Cao, T. Tombler, Y. Zhang, H. Dai, Appl. Phys. Lett.79(2001)2258.
    [38]M.P. Hyman, J.W. Medlin, J. Phys. Chem. B 109 (2005) 6304.
    [1]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666.
    [2]S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282.
    [3]F. Schedin, A.K. Geim, S.V. Moeozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater.6 (2007) 652.
    [4]I.I. Barbolina, K.S. Novoselov, S.V. Morozov, S.V. Dubonos, M. Missous, A.O. Volkov, D.A. Christian, I.V. Grigorieva, A.K. Geim, Appl. Phys. Lett.88 (2006)013901.
    [5]C. Di, D. Wei, G Yu, Y. Liu, Y. Guo, D. Zhu, Adv. Mater.20 (2008) 3289.
    [6]O. Leenaerts, B. Partoens, F.M. Peeters, Phys. Rev. B 77 (2008) 125416.
    [7]S. Peng, K. Cho, Nanotechnology 11 (2000) 57.
    [8]J. Zhao, A. Buldum, J. Han, J. Lu, Nanotechnology 13 (2002) 195.
    [9]Z.M. Ao, J. Yang, S. Li, Q. Jiang, Chem. Phys. Lett.461 (2008) 276.
    [10]Y.H. Zhang, Y.B. Chen, K.G. Zhou, C.H. Liu, J. Zeng, H.L. Zhang, Y. Peng, Nanotechnology 20 (2009) 185504.
    [11]W. Chen, S. Chen, D.C. Qi, X.Y. Gao, A.T.S. Wee, J. Am. Chem. Soc 129 (2007) 10418.
    [12]Y.H. Lu, W. Chen, Y.P. Feng, P.M. He, J. Phys. Chem. B 113 (2009) 2.
    [13]A.K. Manna, S.K. Pati, Chem. Asian J.4 (2009) 855.
    [14]S. Gowtham, R.H. Scheicher, R. Ahuja, R. Pandey, S.P. Karna, Phys. Rev B 76 (2007)033401.
    [15]B. Huang, Z. Li, Z. Liu, G Zhou, S. Hao, J. Wu, B. Gu, W. Duan, J. Phys. Chem. C 112(2008) 13442.
    [16]V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, J. Quantum Chem.77 (2000) 895.
    [17]J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63 (2001) 245407.
    [18]R. Wang, D. Zhang, W. Sun, Z. Han, C. Liu, Journal of Molecular Structure: THEOCHEM 806 (2007) 93.
    [19]W.L. Yim, X.G. Gong, Z.F. Liu, J. Phys. Chem. B 107 (2003) 9363.
    [20]P. Sjovall, S.K. So, B. Kasemo, R. Franchy, W. Ho, Chem. Phys. Lett.172 (1990) 125.
    [21]F. Tournus, J.C. Charlier, Phys. Rev. B 71 (2005) 165421.
    [22]L.M. Woods, S.C. Badescu, T.L. Reinecke, Phys. Rev. B 75 (2007) 155415.
    [23]H. Pinto, R. Jones, J.P. Goss, P.R. Briddon, J. Phys.:Condens. Matter 21 (2009) 402001.
    [24]H.S. Kang, J. Am. Chem. Soc.127 (2005) 9839.
    [1]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666.
    [2]F. Schedin, A.K. Geim, S.V. Moeozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater.6 (2007) 652.
    [3]I.I. Barbolina, K.S. Novoselov, S.V. Morozov, S.V. Dubonos, M. Missous, A.O. Volkov, D.A. Christian, I.V. Grigorieva, A.K. Geim, Appl. Phys. Lett.88 (2006)013901.
    [4]N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J.v. Wees, Nature 448 (2007)571.
    [5]S. Stankovich, D.A. Dikin, GH.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282.
    [6]S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, GH.B. Dommett, G Evmenenko, S.E. Wu, S.F. Chen, C.P. Liu, S.T. Nguyen, R.S. Ruoff, Nano Lett.7 (2007) 1888.
    [7]C. Di, D. Wei, G Yu, Y. Liu, Y. Guo, D. Zhu, Adv. Mater.20 (2008) 3289.
    [8]X. Wang, L. Zhi, K. Mullen, Nano Lett.8 (2007) 323.
    [9]H.A. Becerill, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2 (2008)463.
    [10]O. Leenaerts, B. Partoens, F.M. Peeters, Phys. Rev. B 77 (2008) 125416.
    [11]B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. Gu, W. Duan, J. Phys. Chem. C 112 (2008) 13442.
    [12]Z.M. Ao, J. Yang, S. Li, Q. Jiang, Chem. Phys. Lett.461 (2008) 276.
    [13]YH. Zhang, Y.B. Chen, K.G Zhou, C.H. Liu, J. Zeng, H.L. Zhang, Y. Peng, Nanotechnology 20 (2009) 185504.
    [14]F. Roberge, M.J. Gravel, L. Deschenes, C. Guy, R. Samson, Water Sci. Technol 44(2001)287.
    [15]GA. Hill, M.E. Tomusiak, B. Quail, K.M.V. Cleave, Environ. Prog.10 (1991) 147.
    [16]X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, Z. Jia, Chem. Phys. Lett.376 (2003) 154.
    [17]V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, J. Quantum Chem.77 (2000) 895.
    [18]J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63 (2001) 245407.
    [19]R. Wang, D. Zhang, W. Sun, Z. Han, C. Liu, Journal of Molecular Structure: THEOCHEM 806 (2007) 93.
    [20]W.L. Yim, X.G. Gong, Z.F. Liu, J. Phys. Chem. B 107 (2003) 9363.
    [21]P. Sjovall, S.K. So, B. Kasemo, R. Franchy, W. Ho, Chem. Phys. Lett.172 (1990) 125.
    [22]S.B. Fagan, A.G.S. Filho, J.O.G. Lima, J.M. Filho, O.P. Ferreira, I.O. Mazali, O.L. Alves, M.S. Dresselhaus, Nano Lett.4 (2004) 1285.
    [23]H.L. Schlafer, G Gliemann, Wiley Interscience:New York (1969).
    [24]GL. Miessler, D.A. Tarr, Pearson/Prentice Hall 2004.
    [25]E. KONIG, S. KREMER, Theoret. chim. Acta (Berl.) 23 (1971) 12-20.
    [26]H.S. Kang, J. Am. Chem. Soc.127 (2005) 9839.
    [1]R.J. Chen, H.C. Choi, S. Bangsaruntip, E. Yenilmez, X. Tang, Q. Wang, Y.-L. Chang, H. Dai, J. Am. Chem. Soc.126 (2004) 1563.
    [2]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666.
    [3]M. Terrones, J.M. Romo-Herrera, E. Cruz-Silva, F. Lopez-Urias, E. Munoz-Sandoval, J.J. Velazquez-Salazar, H. Terrones, Y. Bando, D. Golberg, Mater Today 10(2007)30.
    [4]M. Bockrath, W.J. Liang, D. Bozovic, J.H. Hafner, C.M. Lieber, M. Tinkham, H. Park, Science 391 (2001) 283.
    [5]M.T. Woodside, P.L. McEuen, Science 296 (2002) 1098.
    [6]M. Ouyang, J.L. Huang, C.L. Cheung, C.M. Lieber, Science 291 (2001) 97.
    [7]V. Meunier, J. Kephart, C Roland, J. Bernholc, Phys. Rev. Lett.88 (2002) 075506.
    [8]Y.H. Lee, S.G. Kim, D. Tomanek, Phys. Rev. Lett.78 (1997) 2393.
    [9]J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287 (2000) 622.
    [10]E. Bekyarova, M. Davis, T. Burch, M.E. Itkis, B. Zhao, S. Sunshine, R.C. Haddon, J. Phys. Chem. B 108 (2004) 19717.
    [11]X. Feng, S. Irle, H. Witek, K. Morokuma, R. Vidic, E. Borguet, J. Am. Chem. Soc.127(2005)10533.
    [12]J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Nano Lett.3 (2003) 929.
    [13]C. Wei, L. Dai, A. Roy, T.B. Tolle, J. Am. Chem. Soc.128 (2006) 1412.
    [14]S. Agnihotri, J.P.B. Mota, M. Rostam-Abadi, M.J. Rood, J. Phys. Chem. B 110 (2006) 7640.
    [15]R.J. Chen, Y. Zhang, D. Wang, H. Dai, J. Am. Chem. Soc.123 (2001) 3838.
    [16]N.W.S. Kam, H. Dai, J. Am. Chem. Soc.127 (2005) 6021.
    [17]S. Peng, K. Cho, Nano Lett.3 (2003) 513.
    [18]S.B. Fagan, A.G.S. Filho, J.O.G. Lima, J.M. Filho, O.P. Ferreira, I.O. Mazali, O.L. Alves, M.S. Dresselhaus, Nano Lett.4 (2004) 1285.
    [19]Y. Zhang, D. Zhang, C. Liu, J. Phys. Chem. B 110 (2006) 4671.
    [20]R. Wang, D. Zhang, Y. Zhang, C. Liu, J. Phys. Chem. B 110 (2006) 18267.
    [21]F. Schedin, A.K. Geim, S.V. Moeozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater.6 (2007) 652.
    [22]B. Huang, Z. Li, Z. Liu, G Zhou, S. Hao, J. Wu, B.-L. Gu, W. Duan, J. Phys. Chem. C 112 (2008) 13442.
    [23]O. Leenaerts, B. Partoens, F.M. Peeters, Phys. Rev. B 77 (2008) 125416.
    [24]Z.M. Ao, J. Yang, S. Li, Q. Jiang, Chem. Phys. Lett.461 (2008) 276.
    [25]Y.H. Zhang, Y.B. Chen, K.G Zhou, C.H. Liu, J. Zeng, H.L. Zhang, Y. Peng, Nanotechnology 20 (2009) 185504.
    [26]M. Chi, Y.P. Zhao, Comp. Mater. Sci.46 (2009) 1085.
    [27]A.B. Preobrajenski, M.A. Nesterov, M.L. Ng, A.S. Vinogradov, N. Martensson, Chem. Phys. Lett.446 (2007) 119.
    [28]V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Int. J. Quantum Chem.77 (2000) 895.
    [29]J. Lu, S. Nagase, X. Zhang, D. Wang, M. Ni, Y. Maeda, T. Wakahara, T. Nakahodo, T. Tsuchiya, T. Akasaka, Z. Gao, D. Yu, H. Ye, W.N. Mei, Y. Zhou, J. Am. Chem. Soc.128 (2006) 5114.
    [30]F. Tournus, J.-C. Charlier, Phys. Rev. B 71 (2005) 165421.
    [31]R. Wang, D. Zhang, W. Sun, Z. Han, C. Liu, J. Mol. Struc-THEOCHEM 806 (2007) 93.
    [32]R.J. Baierlea, T.M. Schmidtb, A. Fazzioc, Solid State Commun.142 (2007) 49.
    [33]Q. Zhao, M.B. Nardelli, W. Lu, J. Bernholc, Nano Lett.5 (2005) 847.
    [34]L. Bai, Z. Zhou, Carbon 45 (2007) 2105.
    [35]L.B.d. Silva, S.B. Fagan, R. Mota, Nano Lett.4 (2004) 65.
    [36]M.S. Si, D.S. Xue, Phys. Rev. B 75 (2007) 193409.
    [1]S. Iijima, Nature 354 (1991) 56.
    [2]J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287 (2000) 622.
    [3]P.G Collins, K. Bradley, M. Ishigami, A. Zettl, Science 287 (2000) 1801.
    [4]J.J. Zhao, A. Buldum, J. Han, J.P. Lu, Nanotechnology 13 (2002) 195.
    [5]O.K. Varghese, P.D. Kichambre, D. Gong, K.G Ong, E.C. Dickey, C.A. Grimes, Sensors and Actuators B 81 (2001) 32.
    [6]H.-L. Zhang, S.D. Evans, J.R. Henderson, R.E. Miles, T.-H. Shen, Nanotechnology 13 (2002) 439.
    [7]T.B. Tolle, A. Roy, J. Am. Chem. Soc.128 (2006) 1412.
    [8]M. Majumder, N. Chopra, B.J. Hinds, J. Am. Chem. Soc.127 (2005) 9062.
    [9]J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.:Condens. Matter.14 (2002) 2745.
    [10]D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem.65 (1997)453.
    [11]P. Ordejon, E. Artacho, J.M. Soler, Phys. Rev. B 53 (1996) 10441.
    [12]J.P. Perdew, A. Zunger, Phys. Rev. B 23 (1981) 5048.
    [13]N. Troullier, J.L. Martins, Phys. Rev. B 43 (1991) 1993.
    [14]J. Lu, S. Nagase, X. Zhang, D. Wang, M. Ni, Y. Maeda, T. Wakahara, T. Nakahodo, T. Tsuchiya, T. Akasaka, Z. Gao, D. Yu, H. Ye, W.N. Mei, Y. Zhou, J. Am. Chem. Soc.128 (2006) 5114.
    [15]F. Tournus, S. Latil, M.I. Heggie, J.C. Charlier, Phys. Rev. B 72 (2005) 075431.
    [16]F. Tournus, J.C. Charlier, Phys. Rev. B 71 (2005) 165421.
    [17]K. Yoshizawa, T. Yumura, T. Yamabe, S. Bandow, J. Am. Chem. Soc.122 (2000) 11871.
    [18]J.J. Zhao, J.P. Lu, J. Han, C.K. Yang, Appl. Phys. Lett.82 (2003) 3746.
    [19]Z. Liu, Z. Shen, T. Zhu, S. Hou, L. Ying, Z. Shi, Z. Gu, Langmuir 16 (2000) 3569.
    [20]南小林,张锦,刘忠范,顾镇南,物理化学学报 17(2001)393.
    [21]J. Bao, C. Tie, Z. Xu, Z. Suo, Q. Zhou, J. Hong, Adv. Mater.14 (2002) 1483.
    [22]H. Dai, Surface Science 500 (2002) 218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700