用户名: 密码: 验证码:
Arthrobacter sp.W1共代谢杂环芳烃及其强化处理焦化废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
咔唑(CA)、二苯并呋喃(DBF)和二苯并噻吩(DBT)是典型的杂环芳烃,广泛存在于焦化废水中,具有“三致”作用,一旦释放到自然界便会对人体及环境造成较大的危害。相对于其它技术而言,生物法被认为是最经济、最彻底的治理此类杂环芳烃污染的方法。本研究目的在于从环境微生物学角度探究Arthrobacter sp. W1以苯酚为基质共代谢CA、DBF和DBT的特性及途径机理,结合磁性Fe3O4-结冷胶固定化技术提高其实用性,并以其作为强化菌剂,建立活化沸石曝气生物滤池处理实际焦化废水。为实际的杂环芳烃污染治理提供理论基础和技术支持。
     研究以苯酚为基质对CA、DBF和DBT进行共代谢降解,并考察了菌株W1生长及休眠细胞共代谢CA、DBF和DBT的基本特性。Andrews抑制动力学分析表明,菌株W1生长细胞代谢苯酚、CA、DBF和DBT的qmax值分别为0.0471、0.0192、0.0184和0.0160h-1。菌株W1休眠细胞对不同浓度CA、DBF和DBT的代谢符合Michaelis-Menten方程,Vmax值分别为3.435,3.131和3.102mmol g cell-1h-1。在300min内,菌株W1休眠细胞耦合活化沸石可以将2mM苯酚、0.5mM萘、0.25mM CA、0.25mM DBF和0.25mM DBT均代谢至未检出,其出水IR值为20%,说明经处理后的焦化废水出水毒性显著降低。
     利用二维线性离子阱-静电场轨道阱傅里叶变换组合式高分辨质谱仪(LC/MS/MS)和核磁共振(NMR)等化学分析手段鉴定出苯酚羟化酶基因工程菌(PHIND)和菌株W1共代谢CA的一系列新的代谢中间产物如1,2-dihydroxycarbazole、3,4-dihydroxycarbazole、2-oxo-4-(3-oxoindolin-2-yl)but-3-enoic acid、3-(1h-indol-2-yl)acrylic acid、2-(1h-indol-2-yl)acetaldehyde、2-吲哚乙酸、靛红和2-氨基苯乙醛酸,完善了CA共代谢途径。同时,鉴定出工程菌PHIND和菌株W1共代谢DBF和DBT的一系列中间产物,发现DBF和DBT共代谢途径与经典的DBF和DBT共代谢途径一致。为CA、DBF和DBT的生物修复及高价值中间产物的绿色生物合成奠定基础。
     固定化细胞代谢CA、DBF和DBT的特性表明结冷胶最佳天然有机载体。磁性Fe3O4纳米载体的加入可以解决固定化细胞质子传递的限制,提高结冷胶固定化细胞对CA、DBF和DBT的代谢效率,且磁性Fe3O4最适浓度为80mg/L。磁性固定化细胞对不同浓度CA、DBF和DBT的代谢符合Michaelis-Menten方程,Vmax值分别为3.534,3.287和3.209mmol g cell-1h-1。相对于非磁性固定化细胞而言,磁性固定化细胞重复使用10次时,仍保持较高的苯酚、萘、CA、DBF和DBT代谢效率。在第10次使用时,磁性固定化细胞可以在240min内将焦化废水中2mM苯酚、0.5mM萘、0.25mM CA、0.25mM DBF和0.25mM DBT均代谢至未检出,且其出水IR值低于30%,说明经处理后的焦化废水毒性显著降低。
     将菌株W1游离细胞及磁固定化细胞分别投加到活化沸石曝气生物滤池中进行生物强化处理含高浓度苯酚、萘、CA、DBF、DBT和NH3-N的实际焦化废水,研究结果表明,磁固定化细胞强化体系(G3反应体系)对焦化废水中所有污染物的代谢效果最好。反应体系连续运行试验表明,相对于非强化体系(G2反应体系)及游离细胞强化体系(G1反应体系),G3反应体系耐冲击负荷能力最强,处理效果更稳定,反应体系运行后期,可以将600mg/L苯酚、200mg/L萘、60mg/L CA、90mg/L DBF、90mg/L DBT和30mg/L NH3-N均代谢至未检出。且经G3反应体系处理后的出水IR值为20%,说明经处理后焦化废水的毒性显著降低。同时,利用llumina MiSeq2000对各反应体系中微生物群落结构进行动态监测,进而揭示系统微观结构与宏观功能之间内在的联系。经生物强化的活性污泥体系,其微生物丰富度和多样性均有所增加,尤其是G3反应体系。G3反应体系中投加的Arthrobacter属为反应体系内的优势菌群,并且促进了反应体系中微生物群落的演替,推测出焦化废水中苯酚、萘、CA、DBF、DBT、COD和NH3-N等污染物高效去除取决于磁固定化细胞强化与土著微生物资源的共同作用。
Carbazole (CA), dibenzofuran (DBF) and dibenzothiophene (DBT) are recognized as the predominant nitrogen-, oxygen-, and sulfur-heterocyclic compound and have often been found in coking wastewater, which are known to possess toxic and mutagenic activities and can cause great harm to human health and the environment. Biological treatment is regarded as a feasible and cost-effective method for the removal of these refractory pollutants. The purposess of this study are to invesitigate the cometabolic degradation pathways of CA, DBF, and DBT by Arthrobacter sp. W1using phenol as the primary substrate, and the bioremediation of coking wastewater by bioaugmented zeolite-biological aerated filters (Z-BAFs) with mcrobial community dynamics.
     The phenol-utilizing bacterium, Arthrobacter sp. W1, was used to cometabolically degrade CA, DBF, and DBT for the first time. Both the growing and washed cells of strain W1were capable of degrading CA, DBF, and DBT. Andrews confirmed that the presence of CA, DBF and DBT in the growing system would inhibit the cells growth and biodegradability of strain W1, and the qmax of CA, DBF and DBT were0.0471,0.0192,0.0184and0.0160h-1, respectively. The relationship between specific degradation rate and CA, DBF and DBT concentration by phenol-grown W1could be described well by Michaelis-Menten kinetics and the Vmax were3.435,3.131and3.102mmol g cell-1h-1, respectively. Real coking wastewater containing high concentration of2mM phenol,0.5mM naphthalene,0.25mM CA,0.25mM DBF,0.25mM DBT and30mg/L NH3-N could be completely degraded by phenol-grown W1coupling with activation zeolite within300min. Toxicity assessment indicated the effluent showed much lower toxicity than the untreated wastewater.
     A series of newly intermediate metabolites such as1,2-dihydroxycarbazole,3,4-dihydroxycarbazole,2-oxo-4-(3-oxoindolin-2-yl)but-3-enoic acid,3-(1h-indol-2-yl)acrylic acid,2-(1h-indol-2-yl)acetaldehyde, indole-2-acetic acid, isatin, and2-aminophenyl glyoxylic acid derived from CA cometabolic degradation were identified by LC/MS/MS, LC/MS TOF accurate mass and NMR. The structures of these metabolites indicated that a novel cometabolic degradation pathway of CA was possessed by strain W1. Meanwhile, examination of metabolites by LC/MS TOF accurate mass suggested that strain W1was capable of degrading DBF and DBT via a successive hydroxylation and meta-cleavage pathway. These findings provide new insights into the cometabolic degradation process of CA, DBF and DBT and have potential applications in biotechnology and bioremediation.
     The cometabolic degradation of CA, DBF and DBT by immobilized strain W1was also tested. Gellan gum and magnetic Fe3O4nanoparticle were selected as the optimal immobilization support and most suitable nanoparticle for immobilization, respcectively. The optimal concentration of magnetic Fe3O4nanoparticle was80mg/L. The relationship between specific degradation rate and the initial concentration of CA, DBF and DBT was described well by Michaelis-Menten kinetics and the Vmax were3.534,3.287and3.209mmol g cell-1h-1. The recycling experiments demonstrated that the magnetically immobilized cells coupling with activation zeolite showed highly bioremediation activity on the coking wastewater containing high concentration of phenol, naphthalene, CA, DBF and DBT during ten recycles. In the tenth cycle, magnetically immobilized cells coupling with activation zeolite could completely degrade coking wastewater after240min. Toxicity assessment indicated the treatment of the coking wastewater by magnetically immobilized cells with activation zeolite led to less toxicity than untreated wastewater.
     Finally, coking wastewater was treated using Z-BAFs bioaugmented by adding free or magnetically immobilized Arthrobacter sp. W1. All treatments were carried out for a period of100days and the data indicated that G3(bioaugmented Z-BAF with magnetically immobilizedstrain W1) was the most efficient for treating coking wastewaters. Coking wastewater containing600mg/L phenol,200mg/L naphthalene,60mg/L CA,90mg/L DBF,90mg/L DBT and30mg/L NH3-N could be completely degraded G3. Illumina sequencing data revealed that the bacterial richness and diversity was recovered by both bioaugmented Z-BAF treatments and that the biodiversity was especially high after phenol, naphthalene, CA, DBF, DBT, and COD loading shocks. Notably, treatment with magnetically immobilized cells showed the highest biodiversity. Furthermore, both bioaugmentation treatments accelerated the shift of the bacterial community structure such that there was a more distinct difference from the structure of the starting bacterial community. Magnetically immobilized cells of strain W1was14%of the total bacterial population in G3on100thday. Thus, the data indicate that both the introduced strain W1and the indigenous degrading bacteria played a significant role in the treatments. These findings were also consistent with the treatment data of G3.
引文
[1]朱小彪,焦化废水强化处理工艺特性和机理及排水生物毒性研究[D].北京:清华大学博士论文,2009.
    [2] Chao YM, Tseng IC, Chang JS. Mechanism for sludge acidificationin aerobictreatment of coking wastewater[J]. Journal of Hazardous Materials,2006,137(3):1781-1787.
    [3] Zhou FR, Li XJ, Zeng ZR. Determination of phenolic compounds in wastewatersamples using a novel fiber by solid-phase microextraction coupled to gaschromatography[J]. Analytica Chimica Acta,2005,538(1-2):63-70.
    [4]Vázquez I, Rodríguez J, Mara ón E. Simultaneous removal of phenol, ammoniumand thiocyanate from coke wastewater by aerobic biodegradation[J]. Journal ofHazardous Materials,2006,137(3):1773-1780.
    [5] Qi R, Yang K, Yu ZX. Treatment of coke plant wastewater by SND fixed biofilmhybrid system[J]. Journal of Environmental Sciences,2007,19(2):153-159.
    [6] Foster JW. Rupture of bacteria by explosive decompression[J]. Journal ofBacteriology.1962,83:330-334.
    [7] Landa AS, Sipkema EM, Weijma J, et al. Cometabolic degradation oftrichloroethylene by Pseudomonas cepacia G4in a chemostat with toluene as theprimary substrate[J]. Applied and Environmental Microbiology,1994,60:3368-3374.
    [8] Ensign SA, Hyman MR, Arp DJ. Cometabolic degradation of chlorinated alkenes byalkene monooxygenase in a propylene-grown Xanthobacter strain[J]. Applied andEnvironmental Microbiology,1992,58:3038-3046.
    [9] Zhang S, Yin L, Liu Y, et al. Cometabolic biotransformation of fenpropathrin byClostridium species strain ZP3[J]. Biodegradation,2011,22:869-875.
    [10] Dawas-Massalha A, Gur-Reznik S, Lerman S, et al. Co-metabolic oxidation ofpharmaceutical compounds by a nitrifying bacterial enrichment[J]. BioresourceTechnology,2014,167:336-342.
    [11] Reij MW, Kieboom J, de Bont JA, et al. Continuous degradation oftrichloroethylene by Xanthobacter sp. strain Py2during growth on propene.Applied and Environmental Microbiology,1995,61:2936-2942.
    [12] Hadibarata T, Kristanti RA. Fate and cometabolic degradation of benzo[a]pyreneby white-rot fungus Armillaria sp. F022. Bioresource Technology,2012,107:314-318.
    [13]赖鹏,赵华章,王超,等.铁炭微电解深度处理焦化废水的研究[J].环境工程学报,2007,3:15-20.
    [14]吴克明,陈新丽,陆艳. Fenton混凝沉淀法处理高浓度焦化废水的研究[J].电力环境保护,2005,5:41-43.
    [15]和莹,孙少龙,张雁秋.臭氧氧化-SBR工艺联用处理焦化废水的研究[J].中国科技论文在线,2013,6:30-32.
    [16] Dunyamin G, Nazan S, Serkan S, et al. Advanced treatment of coking wastewaterby conventional and modified fenton processes[J]. Environmental Progress&Sustainable Energy,2013,176(2):176-180.
    [17] Lai Peng, Zhao HZ, Wang C, et al. Advanced treatment of coking wastewater bycoagulation and zero-valent iron processes[J]. Journal of Hazardous Materials,2007,147:232-239.
    [18] Tan C, Xiang B, Li YJ, et al. Preparation and characteristics of a nano-PbO2anodefor organic wastewater treatment[J]. Chemical Engineering Journal,2011,116:15-21.
    [19] Ma XL, Wang RP, Guo WQ, et al. Electrochemical Removal of Ammonia inCoking Wastewater Using Ti/SnO2+Sb/PbO2Anode[J]. International Journal ofElectrochemical Science,2012,7:6012-6024.
    [20] Leeuwen van, Badri B, Steven V, et al. Investigation into Ozonation of CoalCoking Processing Wastewater for Cyanide, Thiocyanate and Organic Removal[J].The Journal of the International Ozone Association,2010,24:273-283.
    [21] Zhang M, Tay JH, Qian, Y. et al. Coke plant wastewater treatment by fixed biofilmsystem for COD and NH3-N removal[J]. Water Research,1998,32,519-527.
    [22] Wang F, Hu Y, Guo C, et al. Enhanced phenol degradation in coking wastewaterby immobilized laccase on magnetic mesoporous silica nanoparticles in amagnetically stabilized fluidized bed[J]. Bioresource Technology,2012,110:120-124.
    [23] Cao J, Lai Q, Li G, et al. Pseudopedobacter beijingensis gen. nov. sp. nov.,isolated from coking wastewater activated sludge, and reclassification ofPedobacter saltans as Pseudopedobacter saltans com. nov[J]. Int J Syst EvolMicrobiol Bioresource Technology,2014, doi:10.1099/ijs.0.053991-0.
    [24] Wang Y, Ye T, Bin H, et al. Biodegradation of phenol by free and immobilizedAcinetobacter sp. strain PD12[J]. Journal of Environmental Sciences,2007,19:222-225.
    [25] Yan J, Wen JP, Li HM, et al. The biodegradation of phenol at high initialconcentration by the yeast Candida tropicalis[J]. Biochemical Engineering Journal,2005,24:243-247.
    [26] Maria T, Gallego V, Ventosa A, et al. Thalassobacillus devorans gen. nov., sp.nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium[J].International Journal of Systematic and Evolutionary Microbiology,2005,55:1789-1795.
    [27] Yang N, Ren B, Liu ZH, et al. Salinibacillus xinjiangensis sp. nov., a halophilicbacterium from a hypersaline lake[J]. International Journal of Systematic andEvolutionary Microbiology,2014,64:27-32.
    [28] Tanasupawat S, Namwong S, Kudo T, et al. Piscibacillus salipiscarius gen. nov.,sp. nov., a moderately halophilic bacterium from fermented fish (pla-ra) inThailand[J]. International Journal of Systematic and Evolutionary Microbiology,2007,57:1413-1417.
    [29] Erich RR, Maria LA, et al. Texcoconibacillus texcoconensis gen. nov., sp. nov.,alkalophilic and halotolerant bacteria isolated from soil of the former lake Texcoco(Mexico)[J]. International Journal of Systematic and Evolutionary Microbiology,2013,63:3336-3341.
    [30] Carrasco IJ, Marquez MC, Xue Y, et al. Sediminibacillus halophilus gen. nov., sp.nov., a moderately halophilic, Gram-positive bacterium from a hypersaline lake[J].International Journal of Systematic and Evolutionary Microbiology,2008,58:1961-1967.
    [31] Leitao AL, Duarte MP, Oliveira SJ. Degradation of phenol by a halotolerant strainof Penicillium chrysosporium[J]. International Biodeterioration andBiodegradation,2007,59:220-225.
    [32] Bastos AER, Moon DH, Rossi A, et al. Salt-tolerant phenol-degradingmicroorganisms isolated from Amazonian soil samples[J]. Archives ofMicrobiology,2000,174:346-352.
    [33] Saravanan P, Pakshirajan K, Sala P, et al. Growth kinetics of an indigenous mixedmicrobial consortium during phenol degradation in a batch reactor[J]. BioresourceTechnology,2008,99:205-209.
    [34] Ghanem KM, Al-Garni SM, Al-Shehri AN, et al. Statistical optimization of culturalconditions by response surface methodology for phenol degradation by a novelAspergillus flavus isolate[J]. African Journal of Biotechnology,2009.
    [35] Chakrabory S, Bhattacharya T, Patel TN, et al. Biodegradation of phenol by nativemicroorganisms isolated from coke processing wastewater[J]. Journal ofEnvironment Biology,2010,31:293-296.
    [36]杰勋,熊小超,李望良,等. Klebsiella sp.LSSE-H2的咔唑代谢[J].过程工程学报,2007,7:113-117.
    [37] Ouchiyama N, Zhang Y, Omori T, Kodama T. Biodegradation of carbazole byPseudomonas spp. CA06and CA10[J]. Bioscience, Biotechnology andBiochemistry,1993,57(3):455-460.
    [38] Gieg LM, Otter A, Fedorak PM. Carbazole degradation by Pseudomonas sp. LD2:metabolic characteristics and the identification of some metabolites[J].Environmental Science&Technology,1996,30(2):575-585.
    [39] Kirimura K, Nakagawa H, TSuji K, et al. Selective and continuous degradation ofcarbazole contained in petroleum oi1by resting cells of Sphingomonas sp. CDH-7[J]. Bioscience, Biotechnology and Biochemistry,1999,63:1563-1568.
    [40] Kilbane II, A.Daram JJ, Abbasian J. Isolation and characterization ofSphingomonas sp. GTINll capable of carbazole metabolite in petroleum[J].Biochemical and Biophysical Research Communications,2002,297:242-248.
    [41] Fortnagel P, Harm H, Wittich RM, et al. Metabolite of dibenzofuran byPseudomonas sp. strain HH69and the mixed culture HH27[J]. Applied andEnvironmental Microbiology,1990,56:1148-1156.
    [42] Wilkes H, Wittich R, Timmis KN, et al. Degradation of chlorinated dibenzofuransand dibenzo-pdioxins by Sphingomonas sp. strain RW1[J]. Applied andEnvironmental Microbiology,1996,62:367-371
    [43] Schmid A, Rothe B, Altenbuchner J, et al. Characterization of three distinctextradiol dioxygenases involved in mineralization of dibenzofuran by Terrabactersp. strain DPO360[J]. Journal of Bacteriology,1997,179:53-62.
    [44] Aly HA, Huu NB, Wray V, et al. Two angular dioxygenases contribute to themetabolic versatility of dibenzofuran-degrading Rhodococcus sp. strain HA01[J].Applied and Environmental Microbiology,2008,74:3812-3822.
    [45] Frassinetti S, Setti L, Coti A, et al. Biodegradation of dibenzothiophene by anodulating isolate of Rhizobium meliloti[J]. Canadian Journal of Microbiology,1998,44:289–297.
    [46] Gregorio SD, Zocca C, Sidler S, et al. Identification of two new sets of genes fordibenzothiophene transformation in Burkholderia sp. DBT1[J]. Biodegradation,2004,15:111-123.
    [47] Santos SCC, Alviano DS, Alviano CS, et al. Characterization of Gordonia sp.strain F.5.25.8capable of dibenzothiophene desulfurization and carbazoleutilization[J]. Applied Microbiology Biotechnology,2006,71:355-362.
    [48] Gai Z, Yu B, Li L, Wang Y, Ma C, Feng J, Deng Z, Xu P. Cometabolicdegradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain[J]. Applied and Environmental Microbiology,2007,73:2832-2838.
    [48]朱涛,欧阳荟,金士威,等. Janibacter sp.对活性污泥反应器中二苯并呋喃代谢的强化作用及其遗传学分析[J].水生生物学报,2007,31:499-502.
    [49]李凌凌,吕早生,吴敏,等.二苯并噻吩代谢菌的筛选鉴定及煤脱硫的研究[J].环境工程学报,2010,4:2391-2396.
    [50]李杰.难代谢有机物的生物处理技术进展[J].环境科学与技术,2005,28,187-189.
    [51] Li QG, Wang XY, Yin GB, Gai ZH, Tang HZ, Ma CQ, Deng ZX, Xu P. Newmetabolites in dibenzofuran cometabolic degradation by a biphenyl-cultivatedPseudomonas putida strain B6-2[J]. Environmental Science&Technology,2009,43:8635-8642.
    [52] L'Abbée JB, Barriault D, Sylvestre M. Metabolite of dibenzofuran and dibenzo-p-dioxin by the biphenyl dioxygenase of Burkholderia xenovorans LB400andComamonas testosteroni B-356[J]. Applied Microbiology Biotechnology,2005,67:506-514
    [53] Becher D, Specht M, Hammer E, Francke W, Schauer F. Cometabolic degradationof dibenzofuran by biphenyl-cultivated Ralstonia sp. strain SBUG290[J]. Appliedand Environmental Microbiology,2000,66,4528-4531.
    [54] Seo JS, Keum YS, Cho IK, Li QX. Degradation of dibenzothiophene and carbazoleby Arthrobacter sp. P1-1[J]. International Biodeterioration and Biodegradation,2006,58(1):36-43.
    [55] Stope MB, Becher D, Hammer E, et al. Cometabolic ring fission of dibenzofuranby Gram-negative and Gram-positive biphenyl-utilizing bacteria [J]. Applied andEnvironmental Microbiology,2002,59,62-67.
    [56] Shi SN, Qu YY, Ma F. Cometabolic degradation of dibenzofuran by Comamonassp. MQ [J]. Process Biochemistry,2009,48,(10):1553-1558.
    [57] Resnick SM, Gibson DT. Regio-and stereospecific oxidation of fluorene,dibenzofuran, and dibenzothiophene by naphthalene dioxygenase fromPseudomonas sp. strain NCIB9816-4[J]. Applied and EnvironmentalMicrobiology,1996,62(11):4073-4080.
    [58] van Afferden M, Schacht S, Klein J, et al. Degradation of dibenzothiophene byBrevibacterium sp. DO[J]. Archives of Microbiology,1990,153:324-328.
    [59] Sato SI, Ouchiyama N, Kimura T. Cloning of genes involved in carbazoledegradation of Pseudomonas resinovorans CA10: nucleotide sequences of genesand characterization of meta-cleavage enzymes and hydrolase[J]. Journal ofBacteriology,1997,179:4841-4839.
    [60] Kodama K, Nakatani S, Umehara K. Microbial conversion of petro-sulfurcompounds Part III. Isolation and identification of products fromdibenzothiphene[J]. Agricultural and Biological Chemistry,1970,34:1320-1324.
    [61] Kodama K, Umehara K, Shimizu K. Identification of products fromdibenzothiphene and its proposed oxidation pathway[J]. Agricultural andBiological Chemistry,1973,37:45-50.
    [62] Laborde A, Gibson DT. Metabolite of dibenzothiphene by Beijerinckia species[J].Applied and Environmental Microbiology,1977,34:783-790.
    [63] Goud RK, Sarkar O, Chiranjeevi P, et al. Bioaugmentation of potent acidogenicisolates: A strategy for enhancing biohydrogen production at elevated organicload[J]. Bioresource Technology,2014, doi:10.1016/j.biortech.2014.03.049.
    [64] Krüger US, Johnsen AR, Burm lle M, et al. The potential for bioaugmentation ofsand filter materials from waterworks using bacterial cultures degrading4-chloro-2-methylphenoxyacetic acid[J]. Pest Manag Science,2014, doi:10.1002/ps.3796.
    [65] Cheng Z, Meng X, Wang H, et al. Isolation and characterization of broad spectrumcoaggregating bacteria from different water systems for potential use inbioaugmentation[J]. PLoS One,2014, doi:10.1371/journal.pone.0094220.
    [66] Pérez-de-Mora A, Zila A, McMaster ML, et al. Bioremediation of chlorinatedethenes in fractured bedrock and associated changes in dechlorinating andnondechlorinating microbial populations[J]. Environmental Science&Technology,2014,48:5770-5779.
    [67] Zou S, Yao S, Ni J, et al. High-efficient nitrogen removal by coupling enrichedautotrophic-nitrification and aerobic-denitrification consortiums at coldtemperature[J]. Bioresource Technology,2014,161:288-296.
    [68] Yu D, Yang J, Teng F, et al. Bioaugmentation treatment of mature landfill leachateby new isolated ammonia nitrogen and humic acid resistant microorganism[J].Journal of Microbiology and Biotechnology,2014.
    [69] Kuráň P, Tr gl J, Nováková J, et al. Biodegradation of spilled diesel fuel inagricultural soil: effect of humates, zeolite, and bioaugmentation[J]. ScientificWorld Journal,2014,8:642427.
    [70] Wang MZ, He HZ, Zheng X, et al. Effect of Pseudomonas sp. HF-1inoculum onconstruction of a bioaugmented system for tobacco wastewater treatment: analysisfrom quorum sensing[J]. Environmental Science and Pollution Research,2014.
    [71] Chen S, Chang C, Deng Y, et al. Fenpropathrin biodegradation pathway in Bacillussp. DG-02and its potential for bioremediation of pyrethroid-contaminated soils[J].Journal of Agricultural and Food Chemistry,2014,62:2147-2157.
    [72] Schultz-Jensen N, Knudsen BE, Frkova Z, et al. Large-scale bioreactor productionof the herbicide-degrading Aminobacter sp. strain MSH1[J]. Applied Microbiologyand Biotechnology,2014,98:2335-2344.
    [73] Menashe O, Kurzbaum E. Small-bioreactor platform technology as a municipalwastewater additive treatment [J]. Water Science and Technology,2014,69:504-510.
    [74] Seshan H, Goyal MK, Falk MW. Support vector regression model of wastewaterbioreactor performance using microbial community diversity indices: effect ofstress and bioaugmentation[J]. Water Research,2014,15:282-296
    [75] Djelal H, Amrane A. Biodegradation by bioaugmentation of dairy wastewater byfungal consortium on a bioreactor lab-scale and on a pilot-scale. J Environ Sci [J],2013,25:1906-1912.
    [76] Queissada DD, da Silva FT, Penido JS, et al. Epicoccum nigrum and Cladosporiumsp. for the treatment of oily effluent in an air-lift reactor[J]. Brazilian Journal ofMicrobiology,2013,44:607-612.
    [77]王艳芬,王海磊,刘国生,等.序批式反应器生物强化处理苯酚废水的研究[J].环境污染与防治,2008,30:42-45.
    [78] Rodríguez-Rodríguez CE, Lucas D, Barón E, et al. Re-inoculation strategiesenhance the degradation of emerging pollutants in fungal bioaugmentation ofsewage sludge[J]. Bioresource Technology,2014, doi:10.1016/j.biortech.2014.01.124.
    [79] Baneshi MM, Rezaei Kalantary R, Jonidi Jafari A, et al. Effect of bioaugmentationto enhance phytoremediation for removal of phenanthrene and pyrene from soilwith Sorghum and Onobrychis sativa[J]. Journal of Environmental Health Science&Engineering,2014,12:24. doi:10.1186/2052-336X-12-24.
    [80]姚秀清,徐军祥,张全.复合菌剂生物强化SBR代谢芳香烃及其衍生物的研究[J].化学与生物工程,2007,24:59-62.
    [81] Justicia-Leon SD, Higgins S, Mack EE, et al. Bioaugmentation with distinctDehalobacter strains achieves chloroform detoxification in microcosms[J].Environmental Science&Technology,2014,48:1851-1858.
    [82] Hassanshahian M, Emtiazi G, Caruso G, et al. Bioremediation(bioaugmentation/biostimulation) trials of oil polluted seawater: a mesocosmsimulation study[J]. Marine Environmental Research,2013,95:28-38.
    [83] B lum J, Scheutz C, Chambon JC, et al. The impact of bioaugmentation ondechlorination kinetics and on microbial dechlorinating communities in subsurfaceclay till[J]. Environmental Pollution,2014,186:149-157.
    [84] Peng X, B rner RA, Nges IA, et al. Impact of bioaugmentation on biochemicalmethane potential for wheat straw with addition of Clostridium cellulolyticum[J].Bioresource Technology,2014,152:567-5571.
    [85] Szulc A, Ambro ewicz D, Sydow M. The influence of bioaugmentation andbiosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil:feasibility during field studies[J]. Journal of Environmental Management,2014,132:121-128.
    [86] Sivasubramanian S, Namasivayam SK. Optimization of parameters for phenoldegradation using immobilized Candida tropicalis SSK01in batch reactor[J].Journal of Environmental Biology,2014,35(3):531-536.
    [87] Kathiravan MN, Praveen SA, Gim GH et al. Biodegradation of Methyl Orange byalginate-immobilized Aeromonas sp. in a packed bed reactor: external masstransfer modeling[J]. Bioprocess and Biosystems Engineering,2014.
    [88] Guzik U, Hupert-Kocurek K, Krysiak M, et al. Degradation potential ofprotocatechuate3,4-dioxygenase from crude extract of Stenotrophomonasmaltophilia strain KB2immobilized in calcium alginate hydrogels and on glyoxylagarose[J]. BioMed Research International,2014, doi:10.1155/2014/138768.
    [89] Nu al SN, Santander-DE Leon SM, Bacolod E. Bioremediation of heavily oil-polluted seawater by a bacterial consortium immobilized in cocopeat and rice hullpowder[J]. Biocontrol Science and Technology,2014,19(1):11-22.
    [90] Prasad SS, Aikat K. Study of bio-degradation and bio-decolourization of azo dyeby Enterobacter sp. SXCR. Environ Technol.[J],2014,35:956-965.
    [91] Laocharoen S, Plangklang P, Reungsang A. Selection of support materials forimmobilization of Burkholderia cepacia PCL3in treatment of carbofuran-contaminated water[J]. Environmental Technology,2013,34:2587-2597.
    [92]李青云,周茂钟,刘幽燕,等.固定化铜绿假单胞菌GF31对氯氰菊酯代谢的强化作用[J].化工学报,2013,6:2219-2226.
    [93] Qiu L, Chen W, Zhong L. Formaldehyde biodegradation by immobilizedMethylobacterium sp. XJLW cells in a three-phase fluidized bed reactor.Bioprocess Biosyst Eng.[J],2013.
    [94] Dubelman S, Fischer J, Zapata F, et al. Environmental fate of double-strandedRNA in agricultural soils[J]. PLoS One,2014,9: e93155.
    [95] Sathyanarayanan N, Nagendra HG. Genome wide survey and molecular modelingof hypothetical proteins containing2Fe-2S and FMN binding domains suggestsRieske Dioxygenase Activity highlighting their potential roles in bioremediation[J].Bioinformation,2014,10(2):68-75.
    [96] Majumder A, Ghosh S, Saha N, et al. Arsenic accumulating bacteria isolated fromsoil for possible application in bioremediation[J]. Journal of EnvironmentalBiology,2013,34:841-846.
    [97] Dave BP, Ghevariya CM, Bhatt JK, et al. Enhanced biodegradation of totalpolycyclic aromatic hydrocarbons (TPAHs) by marine halotolerant Achromobacterxylosoxidans using Triton X-100and β-cyclodextrin--a microcosm approach[J].Marine Pollution Bulletin,2014,79:123-129.
    [98] Iyer R, Iken B, Damania A. A comparison of organophosphate degradation genesand bioremediation applications[J]. Environmental microbiology reports,2013,5:787-798.
    [99] Qian F, Sun X, Liu Y, et al. Removal and transformation of effluent organic matter(EfOM) in biotreated textile wastewater by GAC/O3pre-oxidation and enhancedcoagulation[J]. Environmental Technology,2013,34:1513-1520.
    [100] Liang Y, Van Nostrand JD, N'guessan LA, et al. Microbial functional genediversity with a shift of subsurface redox conditions during In Situ uraniumreduction[J]. Applied and Environmental Microbiology,2012,78:2966-2972.
    [101] Mari N, Reetta P, Merja I, et al. A targeted Real-Time PCR assay for studyingnaphthalene degradation in the environment. Microbial Ecology [J],2006,52:533-543.
    [102] Xu M, Wu WM, Wu L, et al. Responses of microbial community functionalstructures to pilot-scale uranium in situ bioremediation. ISME Journal [J],2010,4:1060-1070.
    [103] Van Nostrand JD, Wu L, Wu WM, et al. Dynamics of microbial communitycomposition and function during in situ bioremediation of a uranium-contaminatedaquifer[J]. Applied and Environmental Microbiology,2011,77:3860-3869.
    [104] Van Nostrand JD, Wu L, Wu WM, et al. GeoChip-based analysis of functionalmicrobial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. Environ Microbiology [J],2009,11:2611-2626.
    [105] Akob DM, Mills HJ, Gihring TM, et al. Functional diversity and electron donordependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments[J]. Applied and Environmental Microbiology,2008,74:3159-3170.
    [106] Hwang C, Wu W, Gentry TJ, et al. Bacterial community succession during in situuranium bioremediation: spatial similarities along controlled flow paths[J]. ISMEJournal,2009,3:47-64.
    [107] Cardenas E, Wu WM, Leigh MB, et al. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by acombined massively parallel sequencing-indicator species approach[J]. Appliedand Environmental Microbiology,2010,76:6778-6786.
    [108] Dickerson TL, Williams HN. Functional diversity of bacterioplankton in threeNorth Florida freshwater lakes over an annual cycle[J]. Microbial Ecology,2014,67:34-44.
    [109] Liu W, Ren P, He S, et al. Comparison of adhesive gut bacteria composition,immunity, and disease resistance in juvenile hybrid tilapia fed two differentLactobacillus strains[J]. Fish and Shellfish Immunology,2013,35:54-62.
    [110] Wang Y, Sheng HF, He Y, et al. Comparison of the levels of bacterial diversity infreshwater, intertidal wetland, and marine sediments by using millions of illuminatags[J]. Applied and Environmental Microbiology,2012,78:8264-8271.
    [111] Feng BW, Li XR, Wang JH, et al. Bacterial diversity of water and sediment in theChangjiang estuary and coastal area of the East China Sea[J]. FEMS MicrobiologyEcology,2009,70:80-92.
    [112] Pires AC, Cleary DF, Almeida A, et al. Denaturing gradient gel electrophoresisand barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrovesediment and rhizosphere samples[J]. Applied and Environmental Microbiology,2012,78:5520-5528.
    [113] Hartmann M, Widmer F. Reliability for detecting composition and changes ofmicrobial communities by T-RFLP genetic profiling[J]. FEMS MicrobiologyEcology,2008,63(2):249-260.
    [114] Marzorati M, Maignien L, Verhelst A, et al. Barcoded pyrosequencing analysis ofthe microbial community in a simulator of the human gastrointestinal tract showeda colon region-specific microbiota modulation for two plant-derivedpolysaccharide blends[J]. Antonie Van Leeuwenhoek,2013,103:409-420.
    [115] Cleary DF, Smalla K, Mendon a-Hagler LC, et al. Assessment of variation inbacterial composition among microhabitats in a mangrove environment usingDGGE fingerprints and barcoded pyrosequencing[J]. PLoS One,2014,9: e29380.
    [116] Ling Z, Kong J, Jia P, et al. Analysis of oral microbiota in children with dentalcaries by PCR-DGGE and barcoded pyrosequencing[J]. Microbiology Ecology,2010,60:677-690.
    [117] Jiang W, Jiang Y, Li C, et al. Investigation of supragingival plaque microbiota indifferent caries status of Chinese preschool children by denaturing gradient gelelectrophoresis[J]. Microbiology Ecology,2011,61:342-352.
    [118] Roh SW, Kim KH, Nam YD, et al. Investigation of archaeal and bacterialdiversity in fermented seafood using barcoded pyrosequencing. ISME Journal [J],2010,4:1-16.
    [119] Yang S, Wen X, Zhao L, et al. Crude Oil Treatment Leads to Shift of BacterialCommunities in Soils from the Deep Active Layer and Upper Permafrost along theChina-Russia Crude Oil Pipeline Route. PLoS One [J],2014,9: e96552.
    [120] Yang S, Wen X, Jin H, et al. Pyrosequencing investigation into the bacterialcommunity in permafrost soils along the China-Russia Crude Oil Pipeline(CRCOP)[J]. PLoS One,2012,7: e52730.
    [121] Ma JX, Wang ZW, Yang Y, et al. Correlating microbial community structure andcomposition with aeration intensity in submerged membrane bioreactors by454high-throughput pyrosequencing[J]. Water Research,2013,47:859-869.
    [122] Tan L, Qu YY, Zhou JT, et al. Dynamics of microbial community for X-3Bwastewater decolorization coping with high-salt and metal ions conditions[J].Bioresource Technology,2009,100:3003-3009.
    [123] Zhao LJ, Jia YH, Zhou JT, et al. Dynamics of augmented soil system containingbiphenyl with Dyella ginsengisoli LA-4[J]. Journal of Hazardous Materials,2010,179:729-734.
    [124] Bai YH, Sun QH, Sun RH, et al. Bioaugmentation and adsorption treatment ofcoking wastewater containing pyridine and quinoline using zeolite-biologicalaerated filters[J]. Environmental Science&Technology,2011,45:1940-1948.
    [125] Lin Y, Ming-Fei S, Tong Z, et al. Analysis of the bacterial community in alaboratory-scale nitrification reactor and a wastewater treatment plant by454-pyrosequencing[J]. Water Research.,2011,45:4390-4398.
    [126] Tong Z, Ming-Fei S, Lin Y.454Pyrosequencing reveals bacterial diversity ofactivated sludge from14sewage treatment plants[J]. The ISME Journal,2012,6:1137-1147.
    [127]萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T,(金冬雁,黎孟枫,侯云德译).分子克隆实验指南(第2版)[M].北京:科学出版社,1998,327-908.
    [128] Li A, Qu YY, Pi WQ, et al. Metabolic characterization and genes for theconversion of biphenyl in Dyella ginsengisoli LA-4[J]. Biotechnology andBioengineering,2012,109:609-613.
    [129] Zelenetz AD. Guidelines for NHL: Updates to the Management of Diffuse LargeB-Cell Lymphoma and New Guidelines for Primary Cutaneous CD30+T-CellLymphoproliferative Disorders and T-Cell Large Granular LymphocyticLeukemia[J]. Journal of the National Comprehensive Cancer Network,2014,12:797-800.
    [130] Haldane, J.B.S.,1930. Enzymes. London: Longmans Green.
    [131]蒋宇红,黄霞.几种固定化细胞载体的比较[J].环境科学,1993,14:11-15.
    [132] Wang X, Gai Z, Yu B, Feng J, Xu C, Yuan Y, Lin Z, Xu P. Degradation ofcarbazole by microbial cells immobilized in magnetic gellan gum gel beads[J].Applied and Environmental Microbiology,2007,73:6421-6428.
    [133] Lo′pez A, La′zaro N, Mosbach AM. The interphase technique: a simple methodof cell immobilization in gel-beads[J]. Journal of Microbiological Methods,1997,30:231-234.
    [134] Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diversecomposition[J]. Applied and Environmental Microbiology,1996,62(2):316-322.
    [135] Purkhold U, Pommerening-R ser A, Juretschko S, et al. Phylogeny of allrecognized species of ammonia oxidizers based on comparative16S rRNA andamoA sequence analysis: implications for molecular diversity surveys[J]. Appliedand Environmental Microbiology,2000,66(12):5368-5382.
    [136] Yamamuro A, Kouzuma A, Abe T, et al. Metagenomic analyses reveal theinvolvement of syntrophic consortia in methanol/electricity conversion inmicrobial fuel cells[J]. PLoS One,2014,22: e98425.
    [137] Kouzuma A, Kasai T, Nakagawa G, et al. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells[J]. PLoSOne,2013,8: e77443.
    [138] Fernández AB, Vera-Gargallo B, Sánchez-Porro C, et al. Comparison ofprokaryotic community structure from Mediterranean and Atlantic salternconcentrator ponds by a metagenomic approach[J]. Front Microbiology,2014,5:196.
    [139] Dillon JG, Carlin M, Gutierrez A, et al. Patterns of microbial diversity along asalinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico[J].Front Microbiology,2013,4:399.
    [140] Liu J, Xu T, Zhu W, et al. High-grain feeding alters caecal bacterial microbiotacomposition and fermentation and results in caecal mucosal injury in goats[J].British Journal of Nutrition,2014,20:1-12.
    [141] Thomas L, Kendrick G, Kennington W, et al. Exploring Symbiodinium diversityand host specificity in Acropora corals from geographical extremes of WesternAustralia with454amplicon pyrosequencing[J]. Molecular Ecology,2014, doi:10.1111/mec.12801.
    [142] Cruaud P, Vigneron A, Lucchetti-Miganeh C, et al. Influence of DNA extractionmethods,16S rRNA targeted hypervariable regions and sample origins on themicrobial diversity detected by454pyrosequencing in marine chemosyntheticecosystems[J]. Applied and Environmental Microbiology,2014, pii: AEM.00592-14.
    [143] Jung SP, Kang H. Assessment of microbial diversity bias associated with soilheterogeneity and sequencing resolution in pyrosequencing analyses. J Microbiol.[J],2014.
    [144] Hardoim CC, Costa R. Temporal dynamics of prokaryotic communities in themarine sponge Sarcotragus spinosulus[J]. Molecular Ecology,2014, doi:10.1111/mec.12789.
    [145] Laporte M, Shao Z, Berrebi P, et al. Isolation of12microsatellite markersfollowing a pyrosequencing procedure and cross-priming in two invasive crypticspecies, Alexandrium catenella (group IV) and A. tamarense (group III)(Dinophyceae)[J]. Marine Pollution Bulletin,2014, doi:10.1016/j.marpolbul.2014.04.017.
    [146] Xia Y, Wang X, Wen X, et al. Overall functional gene diversity of microbialcommunities in three full-scale activated sludge bioreactors[J]. AppliedMicrobiology and Biotechnology,2014.
    [147] Xu JQ, Jia JP, Wang JW. Ultrasonic decomposition of ammonia-nitrogen andorganic compounds in coke plant wastewater[J]. Journal of the Chinese ChemicalSociety,2005,52(1):59-65.
    [148] Zhu SN, Ni JR. Treatment of coking wastewater by a UBF-BAF combinedprocess[J]. Journal of Chemical Technology and Biotechnology,2008,83(3):317-324.
    [149] Singh G, Prasad B. Removal of ammonia from coke-plant wastewater by usingsynthetic zeolite[J]. Water Environment Research,1997,69(2):157-161.
    [150] Sun WL, Qu YZ, Yu Q, et al. Adsorption of organic pollutants from coking andpapermaking wastewaters by bottom ash[J]. Journal of Hazardous Materials,2008,154(1-3):595-601.
    [151] Ma F, Shi SN, Sun TH, Li A, Zhou JT, Qu, YY. Biotransformation of benzeneand toluene to catechols by phenol hydroxylase from Arthrobacter sp. W1[J].Applied Microbiology and Biotechnology,2013,97(11):5097-5103.
    [152] Ouchiyama N, Zhang Y, Omori T, Kodama T. Biodegradation of carbazole byPseudomonas spp. CA06and CA10[J]. Bioscience, Biotechnology, andBiochemistry,1993,57(3):455-460.
    [153] Schneider J, Grosser RJ, Jayasimhulu K, et al. Biodegradation of carbazole byRalstonia sp. RJGII.123isolated from a hydrocarbon contaminated soil[J].Canadian Journal of Microbiology,2000,46(3):269-277.
    [154] Li L, Xu P, Blankespoor HD. Degradation of carbazole in the presence of non-aqueous phase liquids by Pseudomonas sp[J]. Biotechnology Letters,2004,26(7):581-584.
    [155] Li L, Li Q, Li F, et al. Degradation of carbazole and its derivatives by aPseudomonas sp[J]. Applied Microbiology and Biotechnology,2006,73(4):941-948.
    [156] Grifoll M, Selifonov SA, Gatlin CV, et al. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds[J]. Applied andEnvironmental Microbiology,1995,61(10):3711-3723.
    [157] Seo JS, Keum YS, Cho IK, et al. Degradation of dibenzothiophene and carbazoleby Arthrobacter sp. P1-1[J]. Int. Biodeter. Biodegr.,2006,58(1):36-43.
    [158] Waldau D, Methling K, Mikolasch A, et al. Characterization of new oxidationproducts of9H-carbazole and structure related compounds by biphenyl-utilizingbacteria[J]. Applied Microbiology and Biotechnology,2009,81(6):1023-1031.
    [159] Arai H, Akahira S, Ohishi T, et al. Adaptation of Comamonas testosteroni TA441to utilization of phenol by spontaneous mutation of the gene for a trans-actingfactor [J]. Molecular Microbiology,1999,33:1132-1140.
    [160] Bressler DC, Fedorak PM. Identification of disulfides from the biodegradation ofdibenzothiophene[J]. Applied and Environmental Microbiology,2001,67:5084-5093.
    [161] Cho O, Choi KY, Zylstra GJ, et al. Catabolic role of a three-component salicylateoxygenase from Sphingomonas yanoikuyae B1in polycyclic aromatic hydrocarbondegradation [J]. Biochemical and Biophysical Research Communications,2005,327:656-662.
    [162] Li MZ, Squires CH, Monticello DJ, et al. Genetic analysis of the dsz promoterand associated regulatory regions of Rhodococcus erythropolis IGTS8[J]. Journalof Bacteriology,1996,178:6409-6418.
    [163] Monna L, Omori T, Kodama T. Microbial degradation of dibenzofuran, fluorene,and dibenzo-p-dioxin by Staphylococcus auriculans DBF63[J]. Applied andEnvironmental Microbiology,1993,59:285-289.
    [164] Cafaro V, Notomista E, Capasso P, et al. Regiospecificity of two multicomponentmonooxygenases from Pseudomonas stutzeri OX1: molecular basis for catabolicadaptation of this microorganism to methylated aromatic compounds[J]. Appliedand Environmental Microbiology,2005,71:4736-4743
    [165] Bai YH, Pak SC, Lee SH et al. Assessment of a bioactive compound for itspotential antiinflammatory property by tight junction permeability[J]. PhytotherapyResearch,2005,19:1009-1012.
    [166] Bai YH, Sun QH, Zhao C, et al. Simultaneous biodegradation of pyridine andquinoline by two mixed bacterial strains[J]. Applied Microbiology andBiotechnology,2009,82,963-973.
    [167] Bai YH, Sun QH, Xing R, et al. Removal of pyridine and quinoline by bio-zeolitecomposed of mixed degrading bacteria and modified zeolite. Journal of HazardousMaterials [J],2010,181:916-922.
    [168] Guazzaroni ME, Herbst FA, Lores I, et al. Metaproteogenomic insights beyondbacterial response to naphthalene exposure and bio-stimulation[J]. ISME Journal.,2013,7(1),122-136.
    [169] Kim YM, Cho HU, Lee DS, et al. Influence of operational parameters on nitrogenremoval efficiency and microbial communities in a full-scale activated sludgeprocess[J]. Water Research,2011,45(17):5785-5795.
    [170] Zhu X, Tian J, Liu C, et al. Composition and dynamics of microbial community ina zeolite biofilter-membrane bioreactor treating coking wastewater[J]. AppliedMicrobiology and Biotechnology,2013,97(19):8767-8775.
    [171]Leys NM, Ryngaert A, Bastiaens L, et al. Occurrence and phylogenetic diversityof Sphingomonas strains in soils contaminated with polycyclic aromatichydrocarbons[J]. Applied and Environmental Microbiology,2004,70(4):1944-1955.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700