用户名: 密码: 验证码:
双室无介体微生物燃料电池产电及性能优化基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物燃料电池(Microbial fuel cell, MFC)作为一种通过胞外产电菌的生物催化作用降解有机化合物产生电能的装置受到了全世界的广泛关注。MFC按照电子由细菌阳极的传递过程分为两类:有介体MFC和无介体MFC。然而,由于外源介体的成本高、寿命短和对微生物的毒性,无介体MFC成为近年研究的重点。本论文以无介体MFC为研究对象,构建了以污水中混合菌接种的两类双室无介体MFC,系统地研究了无介体MFC的启动过程、产电性能及产电机理。同时以提高MFC系统的产电性能为目标,采用纳米二氧化铈(CeO2)修饰阳极及阳极加载磁场的方法强化MFC产电。
     以H型MFC为研究对象考察电池启动过程发现,MFC开路电压的变化要先于闭路电压。阳极电位在启动期间降低的幅度远大于阴极电位,电池启动过程电压的变化由阳极主导。启动过程中闭路电压的变化对应了电池内阻的变化。阳极电荷转移内阻随着启动过程的进行呈现不断下降的趋势。在MFC稳定产电阶段,H型MFC的最大功率密度达到0.70W/m2,低于圆柱型MFC的最大功率密度1.61W/m2。电化学阻抗谱(Electrochemical impedance spectroscopy, EIS)测试结果表明,圆柱型MFC的欧姆内阻和扩散内阻均小于H型MFC,而阳极电荷转移内阻则大于H型MFC。考察外电阻及进水基质浓度对库仑效率的影响发现,降低电池外阻,减小进水基质浓度可以提高电池的库仑效率。在H型MFC中利用实际废水成功实现产电及同步污水处理,MFC最大功率密度达到0.041W/m2。经过H型MFC处理后,污水COD明显下降,去除率为45.9%,pH和电导率也有一定程度的下降。
     利用扫描电镜观察MFC阳极发现,经过长时间的运行,MFC阳极表面覆盖有一定厚度的生物膜。通过循环伏安法(Cyclic Voltammetry, CV)对阳极出水混合液和阳极生物膜进行测试,确认所构建的无介体MFC的电子传递类型为直接电子传递,而不是依靠介体传递。对产电菌群落结构的分析可知,采用相同初沉池水样接种,均以乙酸钠为基质的H型MFC和圆柱型MFC其阳极生物膜富集的主要菌群是相同的。MFC阳极生物膜菌以变形菌Proteobacteriaa为主,存在典型的属于α-Proteobacteria纲的红假单胞菌(Rhodopseudomonas)属产电菌及ε-Proteobacteria纲的弓形菌(Arcobacter)属产电菌。此外,阳极上的优势菌群还包括厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)的菌种。
     在圆柱形MFC中,采用纳米CeO2修饰碳毡阳极强化MFC产电。利用溶胶凝胶法制备纳米CeO2颗粒并采用X-射线衍射(X-ray diffraction, XRD)和透射电子显微镜(Transmission electron microscopy, TEM)进行材料表征。结果显示合成产物为萤石结构的CeO2晶体,颗粒的平均粒径分布在30nm左右。通过溶胶浸渍法制备纳米CeO2修饰的碳毡电极。CV测试发现修饰阳极具有更大的比表面积,并且能够提高产电菌的生物电化学活性。相比对照MFC,应用纳米Ce02修饰阳极的MFC获得了更低的阳极电位,从而提高了电池的闭路电压。修饰阳极的MFC最大功率密度为2.94W/m2,内阻为77.1Ω。纳米Ce02修饰阳极促进了电池的产电性能。EIS结果表明碳毡阳极的电荷转移内阻显著下降。纳米Ce02作为催化剂可以有效改善无介体MFC的阳极性能。
     采用阳极加载磁场强化MFC产电。将MFC置于不同方向(与阳极垂直、平行)、不同强度(0mT,100mT,200mT,300mT)的稳恒磁场下,采用多种电化学手段考察稳恒磁场对MFC产电特性的影响。结果发现,一定强度的磁场能够强化MFC的产电,但不同磁场方向对MFC的影响有差异。当磁场方向与阳极垂直时,强化效果较好;垂直磁场-MFC的最大输出功率达到1.93W/m2。阳极加载磁场加速了MFC的启动,加载100mT磁场的MFC启动最快,闭路电压于第7天达到稳定,相比不加载磁场的MFC提前了4d。MFC在加载200mT磁场强度时,性能达到最佳,其最大功率密度为1.56W/m2。采用EIS分析磁场对全电池、阴极、阳极的电荷转移内阻的影响。拟合结果显示,阳极电荷转移内阻远高于阴极。在200mT磁场强度下,全电池和阳极的电荷转移内阻分别下降了56.6%和57.2%。结果也发现磁场强化MFC产电存在合适的强度范围。
Microbial fuel cell (MFC) as a device of degrading organic compounds to generate electricity by the biocatalysis of exoelectrogens attracts extensive attention of researchers worldwide. MFCs are classified into mediator-based and mediator-less MFC according to the electron transfer mode from the bacteria to the anode.However, the exogenous mediators are of high cost, short lifetime and toxicity to the microorganisms. Therefore, mediator-less MFCs have been extensively investigated in recent years. In this study, two types of mixed bacteria inoculated two-chamber MFCs were constructed. The start-up period, the performance and mechanism of electricity production were investigated systematically. In addition, nano-CeO2modified anode and static magnetic field were applied to improve the electricity generation of MFC.
     The study on the start-up period was conducted in H type MFC. The results showed that the open circuit voltage started to change before the closed circuit voltage. Anodic and cathodic potential reduced during the start-up, and the changes of MFC voltage dominated by the anode. The changes of output voltage revealed the decrease of the internal resistance. Anode charge transfer resistance (Rct) reduced during the start-up period. After the reactor start-up, the electricity production of two types of MFCs was examined. The maximum power density of H-type MFC was0.70W/m2, lower than1.61W/m2of cylindrical MFC. The results of electrochemical impedance spectroscopy (EIS) implied that the ohmic and diffusion resistances of cylindrical MFC were lower than that of H-type MFC, while the anode charge transfer resistance was higher. The external resistance and substrate concentration of influent would influence the coulombic efficiency. Reducing the external resistance and substrate concentration can improve the coulombic efficiency of MFC. The H-type MFC successfully recovered elelctricity from actual wastewater while treating the wastewater at the same time. The maximum power density achieved0.041W/m2. The COD of effluent declined considerably, with COD removal efficiency of45.9%. The pH and conductivity of anodic effluent also declined.
     The anode surface was observed by scanning electron microscope (SEM). It was found that the anode surface was covered by a certain thickness of the biofilm after long-time operation of MFC. And based on the results of cyclic voltammetry (CV) for anodic mixed effluent and anodic bioflm, it was confirmed that the main mechanism of power production for the exoelectrogens was through direct transfer of electrons to the electrode by bacteria and not by bacteria-produced mediators. The analysis of microbial diversity showed that the main bacteria were the same on the anodes of two-types of MFCs. And the MFCs anode biofilm were dominated by bacteria which were phylogenetically very closely related to Proteobacteriua. Rhodopseudomonus-like and Arcobucler-like species as the representative electrochemically active bacteria were found to be integral members of bacterial community in the two-types of MFCs. Additionally, bacterial community also contained Firmicutes-Uke and Bacteroidetes-like species.
     Nano ceria was used to modify the carbon felt anode in cylindrical mediator-less MFC. Ceria nanoparticles were prepared by sol-gel method and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Morphology characterization showed that the synthesized product is fluorite structure CeO2crystal and the average particle size is around30nm. The modified carbon felt electrode was prepared by sol-dipping method. CV results implied that the modified anode had the larger specific surface area and the bioelectrochemical activity of direct electron transfer based exoelectrogens were promoted by nano-CeO2. The MFC with the modified anode obtained the higher closed circuit voltage resulting from the lower anode potential, the higher maximum power density (2.94W/m), and the lower internal resistance (77.1Ω). EIS results revealed that the anodic charge transfer resistance of the MFC was lower with the modified anode. All the results demonstrate that the nano-CeO2can be an effective anodic catalyst for enhancing the power generation of mediator-less MFC.
     MFCs were exposed to static magnetic field (MF) of different directions (vertical and parallel to the anode) and field strengths (0mT,100mT,200mT, and300mT), and the electricity production of the MFCs under the influence of the magnetic field was investigated using electrochemical methods.The results showed that a certain intensity of magnetic field improved the MFC electricity production, but there was a difference for MFCs when different MF directions were applied. When the magnetic field direction was vertical to the anode, the MFC obtained the higher maximum power density of1.93W/m2. In the study on the influence of different magnetic field intensity, the results showed that the start-up periods of MFCs in MF were shorter than that without MF. The MFC with a100-mT MF needed the shortest time (7days) to obtain a stable voltage output,4days earlier than the MFC without magnetic field. The maximum power density of1.56W/m2was for the field strength of200mT, which was the best among the MFCs with different field strengths. The impact of the MF on the charge transfer resistances of the anode, cathode, and whole MFC were analyzed by EIS. The simulated results showed that anode Rct values were much higher compared with that at the cathode. The whole cell and anode Rc, values were reduced by56.6%and57.2%, respectively, for the200-mT MF. It was also found that there was an optimal intensity MF range for enhancing the electricity production of MFC.
引文
[1]James L, Andrew D. Fuel cell systems explained[M]. USA:John Wiley & Sons, Ltd., 2003.
    [2]Logan B E. Microbial fuel cells[M]. New Jersey:John Wiley & Sons, Inc.,2008.
    [3]Potter M C. Electrical effects accompanying the decomposition of organic compounds[J]. Proceedings of the Royal Society of London. Series B,1911,84(571):260-276.
    [4]Kim B H, Park D H, Shin P K, et al. Mediator-less biofuel cell. U.S. Patent:5976719, 1999.
    [5]Kim H J, Hyun M S, Chang I S, et al. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens[J]. Journal of Microbiology and Biotechnology,1999,9(3):365-367.
    [6]Logan B E, Regan J M. Microbial fuel cells challenges and applications [J]. Environmental Science & Technology,2006,40(17):5172-5180.
    [7]Rosenbaum M, Schroder U, Scholz F. In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides[J]. Environmental Science & Technology,2005,39(16):6328-6333.
    [8]何辉,冯雅丽,李浩然,等.利用小球藻构建微生物燃料电池[J].过程工程学报,2009,9(1):133-137.
    [9]祝学远,冯雅丽,李少华,等.单室直接微生物燃料电池的阴极制作及构建[J].过程工程学报,2007,7(3):594-597.
    [10]连静,祝学远,李浩然,等.直接微生物燃料电池的研究现状及应用前景[J].科学技术与工程,2005,5(22):1747-1752.
    [11]Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells:methodology and technology [J]. Environmental Science & Technology,2006,40(17):5181-5192.
    [12]Aelterman P, Rabaey K, Pham H T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environmental Science & Technology,2006,40(10):3388-3394.
    [13]Newman D K, Kolter R. A role for excreted quinones in extracellular electron transfer[J]. Nature,2000,405(6782):94-97.
    [14]McKinlay J B, Zeikus J G. Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli.[J]. Applied and Environmental Microbiology,2004, 70(6):3467-3474.
    [15]Nevin K P, Lovley D R. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(Ⅲ) reduction by Geothrix fermentans[J]. Applied and Environmental Microbiology,2002,68(5):2294-2299.
    [16]Roller S D, Bennetto H P, Delaney G M, et al. Electron-transfer coupling in microbial fuel cells:1.Comparison of redox-mediator reduction rates and respiratory rates of bacteria[J]. Journal of Chemical Technology and Biotechnology,1984,34(1):3-12.
    [17]Choi Y, Kim N, Kim S, et al. Dynamic behaviors of redox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation[J]. Bulletin of the Korean Chemical Society,2003,24(4):437-440.
    [18]赵磊,冯泽胜,张钧,等.微生物燃料电池性能的影响因素研究[J].中国农学通报,2008,24(11):97-102.
    [19]Prasad D, Arun S, Murugesan M, et al. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell[J]. Biosensors and Bioelectronics,2007, 22(11):2604-2610.
    [20]Katz E, Shipway A N, Willner I. Chapter 21:Biochemical fuel cells. Handbook of fuel cells-fundamentals, technology and applications. Volume 1:Fundamentals and survey of systems[M]. New Jersey:John Wiley & Sons, Ltd.,2003.
    [21]Pham C A, Jung S J, Phung N T, et al. A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell[J]. FEMS Microbiology Letters,2003,223(1):129-134.
    [22]Bond D R, Holmes D E, Tender L M, et al. Electrode reducing microorganisms that harvest energy from marine sediments[J]. Science,2002,295(5554):483-485.
    [23]Chaudhuri S K, Lovley D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nature Biotechnology,2003,21(10):1229-1232.
    [24]Habermann W, Pommer E H. Biological fuel cells with sulphide storage capacity [J]. Applied Microbiology and Biotechnology,1991,35(1):128-133.
    [25]Rabaey K, Boon N, Hofte M. Microbial phenazine production enhances electron transfer in biofuel cells [J]. Environmental Science & Technology,2005,39(9):3401-3408.
    [26]李少华,杜竹玮,祝学远,等.Rhodoferax ferrireducens微生物燃料电池中钒化合物的催化性能[J].过程工程学报,2007,7(3):589-593.
    [27]Bond D R, Lovley D R. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Applied and Environmental Microbiology,2003,69(3):1548-1555.
    [28]Kim B H, Ikeda T, Park H S, et al. Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1 in the presence of alternative electron acceptors[J]. Biotechnology Techniques,1999,13(7):475-478.
    [29]Gil G C. Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors and Bioelectronics,2003,18(4):327-334.
    [30]Rabaey K, Boon N, Siciliano S D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and Environmental Microbiology,2004,70(9): 5373-5382.
    [31]Lee J Y, Phung N T, Chang I S, et al. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses[J]. FEMS Microbiology Letters.,2003, 223(2):185-191.
    [32]Phung N T, Lee J, Kang K H, et al. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences[J]. FEMS Microbiology Letters,2004,233(1): 77-82.
    [33]Milliken C E, May H D. Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2[J]. Applied Microbiology and Biotechnology,2007,73(5):1180-1189.
    [34]Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology,2004,38(14):4040-4046.
    [35]Min B, Logan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environmental Science & Technology, 2004,38(21):5809-5814.
    [36]Torres C I, Krajmalnik-Brown R, Parameswaran P, et al. Selecting anode-respiring bacteria based on anode potential:phylogenetic, electrochemical, and microscopic characterization[J]. Environmental Science & Technology,2009,43 (24):9519-9524.
    [37]王慧勇,良鹏,黄霞,王晓昌.微生物燃料电池中产电微生物电子传递研究进展[J].环境保护科学,2009,35(1):17-21.
    [38]Schroder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency[J]. Physical Chemistry Chemical Physics,2007,9(21):2619-2629.
    [39]Cheng S, Liu H, Logan B E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells[J]. Environmental Science & Technology,2006,40(1):364-369.
    [40]Logan B, Cheng S, Watson V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology,2007, 41(9):3341-3346.
    [41]Rhoads A, Beyenal H, Lewandowski Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant[J]. Environmental Science & Technology,2005,39(12):4666-4671.
    [42]Tender L, Gray S, Groveman E, et al. The first demonstration of a microbial fuel cell as a viable power supply:Powering a meteorological buoy[J]. Journal of Power Sources,2008, 179(2),571-575.
    [43]Tender L M, Reimers C E, Stecher H A, et al. Harnessing microbially generated power on the seafloor[J]. Nature Biotechnology 2002,20(8),821-825.
    [44]Reimers C E, Tender L M, Fertig S, et al. Harvesting energy from the marine sediment-water interface[J]. Environmental Science & Technology,2001,35(1),192-195.
    [45]Behera M, Jana P S, Ghangrekar M M. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode[J]. Bioresource Technology,2010,101(4),1183-1189.
    [46]王广建,柳荣展,常俊石.新型催化剂-碳化钼和碳化钨的现状和展望[J].青岛大学学报,2001,16(3):51-53.
    [47]马淳安,周运鸿,查全性.碳化钨催化剂电化学稳定性的研究[J].应用化学,1990,7(2):74-76.
    [48]朱龙章,陈宇飞,张庆元.(Ni-Co)-WC复合电极的析氢催化性能[J].应用化学,1999,16(4):52-54.
    [49]Rosenbaum M, Zhao F, Quaas M, et al. Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells[J]. Applied Catalysis B:Environmental,2007, 74(3-4):261-269.
    [50]Maksimov Y M, Podlovchenko B I, Azarchenko T L. Preparation and electrocatalytic properties of platinum microparticles incorporated into polyvinylpyridine and Nafion films[J]. Electrochimica Acta,1998,43(9):1053-1059.
    [51]Gloaguen F, Leger J M, Lamy C, et al. Platinum electrodeposition on graphite: Electrochemical study and STM imaging[J]. Electrochimica Acta,1999,44(11):1805-1816.
    [52]李旭光,邢巍,杨辉,等.活性炭载体对聚合物电解质燃料电池中炭载铂催化剂性能的影响[J].分析化学,2002,30(7):788-791.
    [53]Lowy D A, Tender L M, Zeikus J G, et al. Harvesting energy from the marine sediment-water interface Ⅱ:Kinetic activity of anode materials [J]. Biosensors and Bioelectronics,2006,21(11):2058-2063.
    [54]Park D H, Zeikus J G. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefucians[J]. Applied Microbiology and Biotechnology,2002,59(1):58-61.
    [55]Schroder U, NieBen J, Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude[J]. Angewandte Chemie International Edition, 2003,42(25):2880-2883.
    [56]Ter Heijne A, Hamelers H V M, Saakes M, et al. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells[J]. Electrochimica Acta,2008,53(18): 5697-5703.
    [57]Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers:Halogen derivatives of polyacetylene,(CH)x[J]. Journal of the Chemical Society-Chemical Communications,1977, (16):578-580.
    [58]薄爱丽,林祥钦.循环伏安和现场红外光谱电化学研究镉在普鲁士蓝/铂修饰电极上的反应[J].分析化学,1999,27(4):392-397.
    [59]Park D H, Kim S K. Electricity production in biofuel cell using modified graphite electrode with Neutral Red[J]. Biotechnology Letters,2000,22(16):1301-1304.
    [60]Park D H, Zeikus J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation[J]. Biotechnology and Bioengineering,2003,81(3):348-355.
    [61]Qiao Y, Li C M, Bao S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J]. Journal of Power Sources,2007,170(1):79-84.
    [62]Zou Y, Xiang C, Yang L, et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material [J]. International Journal of Hydrogen Energy,2008,33(18):4856-4862.
    [63]Cheng S, Logan B E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J]. Electrochemistry Communications,2007,9(3):492-496.
    [64]Feng Y, Yang Q, Wang X, et al. Treatment of graphite fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J]. Journal of Power Sources,2010, 195(7):1841-1844.
    [65]Oh S E, Logan B E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells [J]. Applied Microbiology and Biotechnology,2006,70(2):162-169.
    [66]Morris J M, Jin S, Wang J Q. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells [J]. Electrochemistry Communications,2007,9(7):1730-1734.
    [67]Deng Q, Li X, Zuo J, et al. Power generation using an activated carbon fiber felt (ACFF) cathode in an upflow microbial fuel cell[J]. Journal of Power Sources,2010,195(4): 1130-1135.
    [68]Zhang F, Cheng S, Logan B E. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell[J]. Electrochemistry Communications,2009,11(11): 2177-2179.
    [69]He Z, Shao H, Angenent L T. Increased power production from a sediment microbial fuel cell with a rotating cathode[J]. Biosensors and Bioelectronics,2007,22(12):3252-3255.
    [70]Oh S, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environmental Science & Technology,2004,38(18):4900-4904.
    [71]Clauwaert P, Van der Ha D, Boon N, et al. Open air biocathode enables effective electricity generation with microbial fuel cells [J]. Environmental Science & Technology, 2007,41(21):7564-7569.
    [72]王刚,黄丽萍,张翼峰.微生物燃料电池中生物阴极的研究与应用现状[J].环境科学与技术,2008,31(12):101-103.
    [73]Clauwaert P, Rabaey K, Aelterman P. Biological denitrification in microbial fuel cells [J]. Environmental Science & Technology,2007,41(9):3354-3360.
    [74]Chen G W, Choi S J, Lee T H, et al. Application of biocathode in microbial fuel cells: cell performance and microbial community [J]. Applied Microbiology and Biotechnology, 2008,79(3):379-388.
    [75]Ieropoulos L, Greenman J, Melhuish C, et al. Energy accumulation and improved performance in microbial fuel cells[J]. Journal of Power Sources,2005,145(2):253-256.
    [76]Menicucci J, Beyenal H, Marsili E, et al. Procedure for determining maximum sustainable power generated by microbial fuel cells[J]. Environmental Science & Technology, 2006,40(3):1062-1068.
    [77]孔晓黄,孙永明,李连华.阳极材料对微生物燃料电池性能影响的研究[J].太阳能学报,2011,32(5):746-749.
    [78]曹效鑫.微生物燃料电池中产电菌对电极作用机制及其应用[D].北京:清华大学,2009.
    [79]Zhao F, Slade R C T, Varcoe J R. Techniques for the study and development of microbial fuel cells:an electrochemical perspective[J]. Chemical Society Reviews,2009,38(7): 1926-1939.
    [80]Ramasamy R P, Gadhamshetty V, Nadeau L J, et al. Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells[J]. Biotechnology and Bioengineering,2009,104(5):882-891.
    [81]Jung S, Mench M M, Regan J M. Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH[J]. Environmental Science & Technology,2011,45(20):9069-9074.
    [82]Aaron D, Tsouris C, Hamilton C Y, et al. Assessment of the effects of flow rate and ionic strength on the performance of an air-cathode microbial fuel cell using electrochemical impedance spectroscopy [J]. Energies,2010,3(4):592-606.
    [83]Borole A P, Aaron D, Hamilton C Y, et al. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy [J]. Environmental Science & Technology,2010,44(7):2740-2745.
    [84]He Z, Wagner N, Minteer S D, et al. An upflow microbial fuel cell with an interior cathode:assessment of the internal resistance by impedance spectroscopy. Environmental Science & Technology,2006,40(17):5212-5217.
    [85]He Z, Mansfeld F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies[J]. Energy Environmental & Science,2009,2(2):215-219.
    [86]夏雪.克雷伯氏菌在微生物燃料电池中的产电特性研究[D].北京:清华大学,2009.
    [87]Kim B H, Kim H J, Hyun M S, et al. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens[J]. Journal of Microbiology and Biotechnology,1999,9 (2):127-131.
    [88]Zhang L X, Zhou S G, Zhuang L, et al. Microbial fuel cell based on Klebsiella pneumoniae biofilm[J]. Electrochemistry Communications,2008,10 (10):1641-1643.
    [89]Su Y, Zhu Y, Yang X, et al. A highly efficient catalyst toward oxygen reduction reaction in neutral media for microbial fuel cell[J]. Industrial & Engineering Chemistry Research, 2013,52(18):6076-6082.
    [90]Liu J, Qiao Y, Guo C X, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells[J]. Bioresource Technology,2012,114(1):275-280.
    [91]Cao X, Huang X, Boon N, et al. Electricity generation by an enriched phototrophic consortium in a microbial fuel cell[J]. Electrochemistry Communications,2008,10(9): 1392-1395.
    [92]中国标准出版社第二编辑室.水质分析方法国家标准汇编[M].北京:中国标准出 版社,1996.
    [93]Zhu H, Qu F, Zhu L H. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride [J]. Nucleic Acids Research,1993,21(22):5279-5280.
    [94]Ferris M J, Muyzer G, Ward D M. Denaturing gradient gel electrophoresis profiles of 16S rRNA defined populations inhabiting a hot spring microbial mat community[J]. Applied and Environmental Microbiology,1996,62(2):340-346.
    [95]Hemant J P, Kapley A, Moharikar A A, et al. A novel approach for extraction of PCR-compatible DNA from activated sludge samples collected fromdifferent biological effluent treatment plants[J]. Journal of Microbiological Methods,2003,52(3):315-323.
    [96]Sambrook J, Fritsch E F, Maniatis T. Molecular cloning:a laboratory manual,3rd ed. Beijing:Science Press,2002.
    [97]Yu Z, Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerpring of microbial communities by PCR-denaturing gradient gel electrophoresis[J]. Applied and Environmental Microbiology,2004,70(8):4800-4806.
    [98]Park H S, Kim B H, Kim H S, et al. A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Clostridium butyricum, isolated from a microbial fuel cell [J]. Anaerobe,2001,7(6):297-306.
    [99]Kim H J, Park H S, Hyun M S, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology,2002,30(2): 145-152.
    [100]Rabaey K, Lissens G, Siciliano S D, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency[J]. Biotechnology Letters,2003,25(18): 1531-1535.
    [101]Liu H, Ramnarayanan R, Logan B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environmental Science & Technology, 2004,38(7):2281-2285.
    [102]Rabaey K, Ossieur W, Verhaege M, et al. Continuous microbial fuel cells convert carbohydrates to electricity[J]. Water Science and Technology,2005,52(1-2):515-523.
    [103]Min B, Kim J R, Oh S E, et al. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Research,2005,39(20):4961-4968.
    [104]Oh S E, Logan B E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies[J]. Water Research,2005, 39(19):4673-4682.
    [105]Heilmann J, Logan B E. Production of electricity from proteins using a microbial fuel cell[J]. Water Environment Research,2006,78(5):531-537.
    [106]Huang L, Logan B E. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell[J]. Applied Microbiology and Biotechnology,2008, 80(2):349-355.
    [107]Borole A P, Hamilton C Y, Vishnivetskaya T, et al. Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems[J]. Biochemical Engineering Journal,2009,48(1):71-80.
    [108]周良,刘志丹,连静,等.利用微生物燃料电池研究Geobacter metallireducens异化还原铁氧化物[J].化工学报,2005,56(12):2398-2403.
    [109]连静,冯雅丽,李浩然,等.直接微生物燃料电池的构建及初步研究[J].过程工程学报,2006,6(3):408-411.
    [110]崔龙涛,左剑恶,范明志.处理城市污水同时生产电能的微生物燃料电池[J].中国沼气,2006,24(4):3-5,16.
    [111]左剑恶,崔龙涛,范明志,等.以模拟有机废水为基质的单池微生物燃料电池的产电性能[J].太阳能学报,2007,28(3):320-323.
    [112]黄霞,范明志,梁鹏,等.微生物燃料电池阳极特性对产电性能的影响[J].中国给水排水,2007,23(3):8-13.
    [113]Liu Z D, Li H R. Effects of bio-and abio-factors on electricity production in a mediatorless microbial fuel cell[J]. Biochemical Engineering Journal,2007,36(3):209-214.
    [114]Feng Y, Wang X, Logan BE, et al. Brewery wastewater treatment using air-cathode microbial fuel cells[J]. Applied Microbiology and Biotechnology,2008,78(5):873-880.
    [115]徐源,宋天顺,叶晔捷,等.直接微生物燃料电池阴极的制备及优化[J].过程工程学报,2008,8(5):998-1002.
    [116]詹亚力,张佩佩,闫光绪,等.无中间体无膜微生物燃料电池的构建与运行[J].高校化学工程学报,2008,22(1):177-181.
    [117]李浩然,连静,冯雅丽,等.无介体微生物燃料电池性能研究[J].高校化学工程学报,2008,22(4):672-678.
    [118]李登兰,许玫英,孙国萍.微生物燃料电池中脱色希瓦氏菌S12的产电特性研究[J].微生物学通报,2008,35(5):777-781.
    [119]王万成,陶冠红.微生物燃料电池运行条件的优化[J].环境化学,2008,27(4):527-530.
    [120]詹亚力,王琴,张佩佩,等.微生物燃料电池影响因素及作用机理探讨[J].高等学 校化学学报,2008,29(1):144-148.
    [121]梁鹏,范明志,曹效鑫,等.填料型微生物燃料电池产电特性的研究[J].环境科学,2008,29(2):512-517.
    [122]李毅,胡翔,王程远,等.微生物燃料电池在废水处理中的应用[J].工业水处理,2008,28(9):59-62.
    [123]Lu N, Zhou S, Zhuang L, et al. Electricity generation from starch processing wastewater using microbial fuel cell technology[J]. Biochemical Engineering Journal,2009,43 (3): 246-251.
    [124]Wang X, Feng Y, Ren N, et al. Accelerated start-up of two-chambered microbial fuel cells:effect of anodic positive poised potential[J]. Electrochimica Acta,2009,54(3): 1109-1114.
    [125]You S, Zhao Q, Zhang J, et al. A microbial fuel cell using permanganate as the cathodic electron acceptor[J]. Journal of Power Sources,2006,162(2):1409-1415.
    [126]Fan Y, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells[J]. Environmental Science & Technology,2008,42(21):8101-8107.
    [127]史海风,李冬梅,刘勇弟,等.微生物燃料电池启动过程中的电阻及电容.华东理工大学学报(自然科学版),2012,38(2):186-190.
    [128]Ramasamy R P, Ren Z, Mench M M, et al. Impact of initial biofilm growth on the anode impedance of microbial fuel cells[J]. Biotechnology and Bioengineering,2008,101(1): 101-108.
    [129]Bard A J, Faulkner L R. Electrochemical methods:fundamentals and applications,2nd ed.[M]. New York:John Wiley & Sons,2001.
    [130]梁鹏,范明志,黄霞.微生物燃料电池表观内阻的构成与测量[J].环境科学,2007,28(8):1894-1898.
    [131]叶哗捷,宋天顺,徐源,等.微生物燃料电池产电的影响因素[J].过程工程学报,2009,9(3):526-530.
    [132]曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究[J].环境科学学报,2006,26(8):1252-1257.
    [133]Hutchinson A J, Tokash J C, Logan B E. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells[J]. Journal of Power Sources,2011, 196(22):9213-9219.
    [134]詹亚力,王琴,王靖,等.微生物燃料电池的基础研究[J].现代化工,2008,28(6):40-44.
    [135]张培远,刘中良,熊亚选,等.产电对微生物燃料电池参数的影响[J].工程热物理学报,2011,32(4):671-674.
    [136]卢娜,周奔,邓丽芳,等.Mn02为阴极催化剂的微生物燃料电池处理淀粉废水研究[J].应用基础与工程科学学报,2009,17(s1):65-73.
    [137]Kumar G S, Raja M, Parthasarathy S. High Performance electrodes with very low platinum loading for polymer electrolyte fuel cells[J]. Electrochimica Acta,1995,40(3): 285-290.
    [138]Kim J, Jung S, Regan J, et al. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells[J]. Bioresource Technology,2007,98(13),2568-2577.
    [139]Liu L H., Tsyganova O, Lee D J, et al. Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures [J]. International Journal of Hydrogen Energy, 2012,37 (20):15792-15800.
    [140]Xing D, Cheng S, Regan J M, et al. Change in microbial communities in acetate-and glucose-fed microbial fuel cells in the presence of light[J]. Biosensors and Bioelectronics, 2009,25(1):105-111.
    [141]Xing D, Zuo Y, Cheng S, et al. Electricity Generation by Rhodopseudomonas palustris DX-1[J]. Environmental Science & Technology,2008,42(11):4146-4151.
    [142]Gorby Y A, Yanina S, McLean J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103 (30): 11358-11363.
    [143]Toh H, Sharma V K, Oshima K, et al. Complete genome sequences of Arcobacter butzleri ED-1 and Arcobacter sp. strain L, both isolated from a microbial fuel cell[J]. Journal of Bacteriology,2011,193(22):6411-6412.
    [144]Fedorovich V, Knighton M C, Pagaling E, et al. Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell[J]. Applied and Environmental Microbiology,2009,75(23):7326-7334.
    [145]Holmes D E, Bond D R, O'neil R A, et al. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments[J]. Microbial Ecology, 2004,48(2):178-190.
    [146]孙寓姣,左剑恶,崔龙涛,等.不同废水基质条件下微生物燃料电池中细菌群落解析[J].中国环境科学,2008,28(12):1068-1073.
    [147]谢丽,马玉龙.微生物燃料电池中产电微生物的研究进展[J].宁夏农林科技,2011, 52(7):104-107.
    [148]Call D F, Wagner R C, Logan B E. Hydrogen production by Geobacter species and a mixed consortium in a microbial electrolysis cell[J]. Applied and Environmental Microbiology,2009,75(24):7579-7587.
    [149]Niessen J, Schroder U, Scholz F. Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch[J]. Electrochemistry Communications,2004,6(9):955-958.
    [150]Enright A M, Collins G, O'Flaherty V. Temporal microbial diversity changes in solvent-degrading anaerobic granular sludge from low-temperature (15 ℃) wastewater treatment bioreactors[J]. Systematic and Applied Microbiology,2007,30(6):471-482.
    [151]付洁,戚天胜,蔡小波,等.微生物燃料电池产电研究及微生物多样性分析[J].应用与环境生物学报,2009,15(4):568-573.
    [152]布坎南R E,吉本斯N E,等.伯杰细菌鉴定手册,第8版[M]. Beijing:Science Press,1984.
    [153]Di Lorenzo M, Scott K, Curtis T P, et al. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell[J]. Chemical Engineering Journal,2010, 156(1):40-48.
    [154]Lv Z, Xie D, Yue X, et al. Ruthenium oxide-coated carbon felt electrode:A highly active anode for microbial fuel cell applications[J]. Journal of Power Sources,2012,210(1): 26-31.
    [155]Rabaey K, Verstraete W. Microbial fuel cells:novel biotechnology for energy generation[J]. Trends in Biotechnology,2005,23(6):291-298.
    [156]Samiee S, Goharshadi E K. Effects of different precursors on size and optical properties of ceria nanoparticles prepared by microwave-assisted method[J]. Materials Research Bulletin, 2012,47(4):1089-1095.
    [157]Wei Y, Wang G, Li M, et al. Determination of rutin using a CeO2 nanoparticle-modified electrode[J]. Microchimica Acta,2007,158(3-4):269-274.
    [158]Xiao X, Luan Q, Yao X, et al. Single-crystal CeO2 nanocubes used for the direct electron transfer and electrocatalysis of horseradish peroxidase[J]. Biosensors and Bioelectronics,2009,24(8):2447-2451.
    [159]宋晓岚,杨振华,邱冠周,等.纳米氧化铈在高新技术领域中的应用及其制备研究进展[J].材料导报,2003,17(2):36-39.
    [160]董相廷,曲晓刚.CeO2纳米晶的制备及其在电化学上的应用[J].科学通报,1996, 41(009):847-850.
    [161]Qu X, Dong X, Cheng Z, et al. The direct electrochemistry of cytochrome c at the nanometer-sized rare earth element oxide particle-modified gold electrodes[J]. Journal of Molecular Catalysis A:Chemical,1996,106(1-2):1-5.
    [162]Qiao Y, Bao S J, Li C M, et al. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells[J]. ACS Nano,2008,2(1):113-119.
    [163]Zhang Y, Sun J, Hou B, et al. Performance improvement of air-cathode single-chamber microbial fuel cell using a mesoporous carbon modified anode[J]. Journal of Power Sources, 2011,196(18):7458-7464.
    [164]Sun M, Mu Z X, Sheng G P, et al. Effects of a transient external voltage application on the bioanode performance of microbial fuel cells[J]. Electrochimica Acta,2010,55(9): 3048-3054.
    [165]Franks A E, Nevin K P. Microbial fuel cells, a current review[J]. Energies,2010,3(5): 899-919.
    [166]Xie X, Ye M, Hu L, et al. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes[J]. Energy Environmental & Science,2012,5(1):5265-5270.
    [167]Ozkaya B, Akoglu B, Karadag D, et al. Bioelectricity production using a new electrode in a microbial fuel cell[J]. Bioprocess and Biosystems Engineering,2012,35(7):1219-1227.
    [168]Tschope A, Sommer E, Birringer R. Grain size-dependent electrical conductivity of polycrystalline cerium oxide:I. Experiments[J]. Solid State Ionics,2001,139(3-4):255-265.
    [169]李广新.电磁学生物应用概论[M].北京:中国农业出版社,1997:106-107.
    [170]李国栋.2000-2004年生物磁学研究和应用的新进展[J].生物磁学,2004,4(4):25-26.
    [171]Moore R L. Biological effects of magnetic fields:studies with microorganisms[J]. Canadian Journal of Microbiology,1979,25(10):1145-1151.
    [172]Justo O R, Perez V H, Alvarez D C, et al. Growth of Escherichia coli under extremely low-frequency electromagnetic fields[J]. Applied Biochemistry and Biotechnology,2006, 134(2):155-163.
    [173]Sahebjamei H, Abdolmaleki P, Ghanati F. Effects of magnetic field on the antioxidant enzyme activities of suspension-cultured tobacco cells[J]. Bioelectromagnetics,2007,28(1): 42-47.
    [174]May A E, Snoussi S, Miloud N B, et al. Effects of static magnetic field on cell growth, viability, and differential gene expression in Salmonella[J]. Foodbourne Pathogens & Disease, 2009,6(5):547-552.
    [175]代群威,董发勤,王勇.静磁场对大肠杆菌生长过程的作用机制研究[J].生物磁学,2004,4(3):21-23.
    [176]Okuno K, Fujinami R, Ano T, et al. Disappearance of growth advantage in stationary phase phenomenon under a high magnetic field[J]. Bioelectronchemistry,2001,53(2): 165-169.
    [177]Dunca S, Creanga D E, Ailiesei O, et al. Microorganisms growth with magnetic fluids[J]. Journal of Magnetism and Magnetic Materials,2005,289(1):445-447.
    [178]代群威,董发勤,王媛.趋磁性细菌的研究与应用现状[J].生物磁学,2004,4(4):33-36.
    [179]叶盛英,黄苇,贺明书.磁场非热杀菌技术初探[J].农业工程学报,2003,19(5):156-160.
    [180]刘新星,谢建平,刘文斌.磁选育浸矿菌种新方法的研究-磁泳分离菌种[J].生物磁学,2005,5(4):5-8.
    [181]安燕,程江,杨卓如,等.微生物磁效应在废水处理中的应用[J].化工环保,2006,26(006):467-470.
    [182]安燕,黄尚东,程江,等.微生物磁效应及其强化废/污水生物处理的研究进展[J].环境保护科学,2007,33(2):11-14.
    [183]孙水裕,刘鸿,谢光炎.磁粉强化活性污泥法处理餐饮废水的研究[J].环境污染与防治,2003,25(3):170-172.
    [184]陆光立,赵庆祥.磁粉活性污泥法工艺技术研究[J].城市环境与城市生态,1998,
    11(2):10-12.
    [185]Yavuz H, Celebi S S. Effects of magnetic field on activity of activated sludge in wastewater treatment[J]. Enzyme and Microbial Technology,2000,26(1):22-27.
    [186]韩庆祥,邵风琴.磁场对活性污泥法处理废水的强化作用[J].抚顺石油学院学报,2002,22(1):8-10.
    [187]董春娟,吕炳南,陈志强,等.处理生物难降解物质的有效方式-共代谢[J].化工环保,2003,23(2):82-85.
    [188]Jung J, Sofer S. Enhancement of phenol biodegradation by south magnetic field exposure[J]. Journal of Chemical Technology and Biotechnology,1997,70(3):299-303.
    [189]刘建荣,吴国庆,牛志卿,等.磁态厌流化床处理印染废水[J].中国环境科学,1996,16(1):64-67.
    [190]Yavuz H, Celebi S S. Biofilm formation on magnetic polystyrene particles[J]. Journal of Bioactive and Compatible Polymers,2001,16(5):221-234.
    [191]肖鸿,杨平,郭勇.生物膜反应器中生物膜脱落的机理及数学膜型[J].化工环保,2005,25(1):23-27.
    [192]Wada S, Lchikawa H, Tatsumi K. Removal of phenols with tyrosinase immobilized on magnetite[J]. Water Science and Technology,1992,26(9-11):2057-2059.
    [193]马秀玲,陈盛,黄丽梅.磁性固定化酶处理含酚废水的研究[J].广州化学,2003,28(1):17-22.
    [194]Li W, Sheng G, Liu X, et al. Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells[J]. Biosensors and Bioelectronics, 2011,26(10):3987-3992.
    [195]姚璐,李正龙,刘红.低强度超声波改善微生物燃料电池产电效能[J].北京航空航天大学学报,2006,32(12):1472-1476.
    [196]冯霞.声光磁电能场对活性污泥细菌生物活性的影响研究[D].武汉:武汉理工大学,2006.
    [197]王晓玲,邹立壮,于清江,等.磁场对铁氰化钾与抗坏血酸反应速率的影响[J].化学研究与应用,2001,13(2):163-166.
    [198]尤世界,赵庆良,姜珺秋.废水同步生物处理与生物燃料电池发电研究[J].环境科学,2006,27(9):1786-1790.
    [199]温清,刘智敏,陈野,等.空气阴极生物燃料电池电化学性能[J],物理化学学报,2008,24(6):1063-1067.
    [200]Kubo I, Fujita T. Modes of antifungal action of alkanols against Saccharomyces cerevisiae[J]. Bioorganic & Medicinal Chemistry,2003,11(6):1117-1122.
    [201]Clauwaert P, Aelterman P, Pham T H, et al. Minimizing losses in bio-electrochemical systems:the road to applications[J]. Applied Microbiology and Biotechnology,2008,79(6): 901-913.
    [202]Liu S, Yang F, Meng F, et al. Enhanced anammox consortium activity for nitrogen removal:Impacts of static magnetic field[J]. Journal of Biotechnology,2008,138(3-4): 96-102.
    [203]Kovacs P E, Valentine R L, Alvarez P J J. The effect of static magnetic fields on biological systems:implications for enhanced biodegradation[J]. Critical Reviews in Environmental Science and Technology,1997,27(4):319-382.
    [204]Okada T, Wakayama N I, Wang L, et al. The effect of magnetic field on the oxygen reduction reaction and its application in polymer electrolyte fuel cells[J]. Electrochimica Acta, 2003,48(5):531-539.
    [205]Saravanan G, Fujio K, Ozeki S. Magnetic field effects on electric behavior of [Fe(CN)6]3-at bare and membrane-coated electrodes[J]. Science and Technology of Advanced Materials,2008,9(2):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700