用户名: 密码: 验证码:
O_3/GAC/H_2O_2复合工艺深度处理水中DBP的效能与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业废水二级处理设施的建设和运行,水中大量的污染物被去除,但是,随之而来的是难生物降解有机物问题日趋突出,直接影响着水质安全,对人体健康产生危害。抗生素制药行业尤其是发酵类制药是排放难降解污染物的主要行业之一,具有量大面广的特点,对该废水进行深度处理已成为人们关注的热点问题。本研究通过对比分析,选择了臭氧复合催化体系处理难降解污染物的研究,提出的复合改性颗粒活性炭和过氧化氢共同作用的O_3/GAC/H_2O_2复合工艺,对生化处理出水中难降解有机物具有较好的降解效果,充实了臭氧催化氧化处理难降解有机物的理论知识,为开展工业废水中难降解有机物的深度处理提供了技术支持。
     本研究采用气相色谱质谱(GC-MS)分析了抗生素废水生化处理出水(BTE)中存在的难降解有机物,其中酯类化合物和芳香烃类化合物种类最多。利用高效液相色谱(HPLC)分析得到环境内分泌干扰物邻苯二甲酸二丁酯(DBP)在废水中含量最高。根据理论化学需氧量ThOD和化学需氧量COD的相关关系,评价了废水中难降解有机物对污染的贡献程度,发现邻苯二甲酸二丁酯和邻苯二甲酸二异辛酯对废水污染贡献最大,为典型特征污染物。
     O_3/GAC/H_2O_2复合工艺由臭氧联合氨化改性颗粒活性炭和过氧化氢复合构成。经比表面积(BET)和扫描电子显微镜(SEM)、傅里叶变换红外(FTIR)和X射线衍射(XRD)分析发现,改性颗粒活性炭比表面积为1010m2/g,具有复杂的管状结构,表面碱性基团浓度为9.83410-6mol/m2,可有效促进臭氧催化氧化效果。
     O_3/GAC/H_2O_2复合工艺对DBP具有较好的降解效果,DBP降解效率随着臭氧投加浓度、臭氧投加速率、初始pH、反应温度、改性活性炭投加量的升高而增加,呈现正相关性,随着过氧化氢投加量的升高呈现先增加后降低的趋势。氧化剂的连续或多次投加方式有利于提高DBP的去除效率。
     O_3/GAC/H_2O_2复合工艺中DBP降解符合二级反应动力学过程。DBP的表观降解反应速率常数kapp随着臭氧投加浓度、初始pH、反应温度和改性活性炭投加量的增加而提高,随着过氧化氢投加量呈现先增长后降低的相关关系。初始pH对kapp影响最大,改性颗粒活性炭投加量的影响最小。通过多元线性回归分析,建立了O_3/GAC/H_2O_2复合工艺处理DBP的二级表观降解反应动力学模型:
     dC_(DBP)/dt=k_(app)C_(DBP)~2=1.2317×10~(-8)[O_3]~(0.7413)[H_2O_2]~(0.8935)[pH]~(1.1069)[T]~(0.8090)[GAC]~(0.3753) C_(DBP)~2
     O_3/GAC/H_2O_2复合工艺催化氧化DBP的体系中臭氧的液相扩散速率DO3为6.0010~(-10)m~2/s,Henry系数He为11261.28Pa mol/L,臭氧的液相传质系数kL为2.4010~(-5)m/s, kLa=8.8210~(-4)s~(-1)。氧化体系的Hatta为0.04     O_3/GAC/H_2O_2复合工艺可有效氧化抗生素废水二级出水中难降解有机污染物,有机物中间产物种类呈现先增加后降低的趋势。芳香烃类、酯类物质被大幅度降解,中间产物以酸酐、羧酸、酮类、酚类、醇类等污染物为主。废水中大分子有机物被氧化成小分子有机物。通过分析不同氧化阶段废水中有机物的化学结构特点,结合废水处理的COD和TOC污染指标,采用有机物碳的平均氧化数建立了臭氧复合催化氧化处理难降解有机物的评价方法。在实验条件下,废水中有机物碳形成更高比例的碳氧键,碳的平均氧化数MOC从-1.58提高到-0.13。废水可生化性被有效改善,可生化性能指标BOD_5/COD比值从0.11提高到0.78,有利于后续的稳定化生态处理。
With the construction and operation of industrial wastewater secondarytreatment facilities, most of the pollutants in wastewater are degraded. However,the concern on the corresponding problem of refractory organics contaminationincreases significantly. The refractory organics could affect the safety of waterresource and damage the health of human. The advanced treatment of wastewaterfrom antibiotic pharmaceutical industries, especially from fermentationpharmaceutical plants as one of the most seriously polluting industries has beenthe concern focus. By comparation, the catalytical ozone oxidation technologywas chosen to oxidize the non-biodegradable organics. The catalytical ozonationtechnology (O_3/GAC/H_2O_2) composited by modified granular activated carbonwith hydrogen peroxide was proposed in this study, while it can degrade therefractory organics in biologically treated effluent significantly. It can enrich thetheory of catalytical ozone oxidation about refractory organics and providetechnical support for advanced treatment of them in industry wastewater.
     The refractory organics in antibiotic pharmaceutical biologically treatedeffluent (BTE) were analyzed by Gas Chromatograph-Mass Spectrum (GC-MS)analysis. The highest amounts of organics were esters and aromatic hydrocarbonsin wastewater. According to High Performance Liquid Chromatography (HPLC)analysis, the dibutyl phthalate as one typical kind of Endocrine DisruptingChemicals (EDC) was the main pollutant in wastewater. Based on therelationship of Chemical Oxygen Demand (COD) and Theoretical OxygenDemand (ThOD), the contributions of different organics to COD was evaluated,while the dibutyl phthalate and bis(2-ethylhexyl) phthalate were determined asthe typical pollutants because of their most contributions to COD in effluent.
     The O_3/GAC/H_2O_2technology was composited by ozone, modified GACand hydrogen peroxide. According to the analysis of BET, Scanning ElectronicMicroscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-raydiffraction (XRD), the high specific surface area of1010m2/g and theconcentration of surface basic groups of9.83410-6mol/m2were determined,while the complex tubular structures were found with amorphous carbon status in the modified GAC.
     The significant effect for DBP degradation was found by compositedprocess of O_3/GAC/H_2O_2. The positive effects of factors of ozone concentration,gas flow rate, initial pH, reaction temperature and modified GAC dosage for DBPdegradation were investigated, respectively. The degradation efficiency increasedfirst, then decreased along with the increase of H2O2dosage. With the samedosage of applied ozone and H2O2, the multiple steps addition showed the higherdegradation efficiency than that obtained by adding within one step before thestart of the experiment.
     The degradation process of DBP in the catalytical ozone systemO_3/GAC/H_2O_2was investigated to follow a second-order kinetic model. Theeffects of influencing factors, ie. ozone concentration, gas flow rate, H2O2dosage,initial pH, reaction temperature and modified GAC dosage, on the apparentreaction rate constant kappwere evaluated in the study. The positive correlationrelationships of kappwith influencing factors above were investigated, while thekappincreased first, then decreased along with the increase of H2O2dosage. Bycomparison analysis the initial pH was found to have greatest influence on thekappwith moderate influence of H2O2dosage and ozone concentration. However,the GAC dosage has the lowest influence on kapp.By means of multiple linearregression fitting, the kinetic practical equation of second-order apparent kineticsabout DBP degradation was determined as follows:
     dC_(DBP)/dt=k_(app)C_(DBP)~2=1.2317×10~(-8)[O_3]~(0.7413)[H_2O_2]~(0.8935)[pH]~(1.1069)[T]~(0.8090)[GAC]~(0.3753) C_(DBP)~2
     In view of the kinetic theory of ozone consumption, the diffusion coefficientDO3, the Henry coefficient He and the liquid phase mass transfer coefficient kL,kLa of ozone in DBP oxidation system were determined as6.0010~(-100m~2/s,11261.28Pa mol/L,2.4010~(-5)m/s and8.8210~(-4)s~(-1),respectively. The Hattanumber Ha was calculated in the range of0.04to0.1, and the reaction factor Ewas1, which indicated that the catalytical ozonation was in low kinetic regime.The organic pollutants were degraded by competitive oxidations of ozone-directreactions with ozone-indirect reactions, ie. reactions with hydroxyl radicals.Many intermediate products of organics during catalytical ozonation wereidentified by GC-MS using of solid phase extraction. The oxidation pathway of DBP in system was investigated that the DBP was oxidated by series reactions ofisomerization, electrophilic substitution, the hydroxylation and opening ofaromatic rings. Many intermidate compounds were produced and then furtheroxidized by hydroxylation and opening of aromatic rings to short chain aliphaticacids, such as acetic acid, oxalic acid, malonic acid and so on. The aliphatic acidswere finally mineralized completely.
     The refractory organics existing in biologically treated effluent of antibioticpharmaceutical wastewater were effectively oxidized by composited ozoneheterogeneous catalytical oxidation (O_3/GAC/H_2O_2). The kinds of organics inwastewater increased first and then decreased during oxidation process. Aromatichydrocarbons and esters were degraded substantially to form by-products of acidanhydrides, carboxylic acids, ketones, phenols, alcohols compounds.Macromolecular organics were oxidized to micromolecular ones during reactions.By the analysis of organic characters at different oxidation status, the evaluationmethodology for organics degradation by ozone catalytical oxidation wasestablished by use of the Mean Oxidation Number of Carbon (MOC), which wascalculated by COD and TOC indexes. Under the oxidation condition in this study,the more carbon-oxygen bonds were formed in organics, so that the MOC oforganic pollutants was increased from-1.58to-0.13. The biodegradability ofwastewater was improved obviously with the indicator index of BOD_5/CODincreasing from0.11to0.78, which was suitable for following stabilizationbiological treatments.
引文
[1]张越群.我国工业废水处理现状及趋势[J].水工业市场,2011(6):23-26.
    [2]潘兴福.我国工业废水处理的五十年历程[J].四川建筑,2006,26(3):191-192.
    [3]周宏春.我国工业废水处理存在的问题及建议[J].水工业市场,2011(6):18-20.
    [4] Bierbaum S,Oeller H J. Cost Savings in the Ozone Treatment of Paper MillEffluents Achieved by a Closed-Loop Ozone Control System[J].Ozone-Science&Engineering,2009,31(6):454-460.
    [5] Nagel-Hassemer M E,Carvalho-Pinto C R S,Matias W G,et al. Removalof Coloured Compounds from Textile Industry Effluents by UV/H2O2Advanced Oxidation and Toxicity Evaluation[J]. EnvironmentalTechnology,2011,32(16):1867-1874.
    [6]周岳溪,宋玉栋,蒋进元,等.工业废水有毒有机物全过程控制技术策略与实践[J].环境工程技术学报,2011,1(1):7-14.
    [7]程雪敏.抗生素制药废水处理研究[D].东北大学硕士学位论文,2008
    [8]赵雷.超声强化臭氧/蜂窝陶瓷催化氧化去除水中有机物的研究[D].哈尔滨工业大学博士学位论文,2008
    [9]郭秀红.珠江三角洲地区浅层地下水有机污染研究[D].中国地质大学(北京)博士学位论文,2006
    [10]杨军,陆正禹,胡纪萃,等.抗生素工业废水生物处理技术的现状与展望[J].环境科学,1997,18(3):83-86.
    [11]潘碌亭,王文蕾,吴锦峰.水解酸化/SBR/强化絮凝处理抗生素废水[J].中国给水排水,2011,27(4):78-80+85.
    [12]张华,黄健,冯少茹.气浮—水解酸化—UBF—两段接触氧化工艺处理抗生素废水[J].给水排水,2009,35(6):71-73.
    [13]祁佩时,丁雷,刘云芝.微氧水解酸化工艺处理高浓度抗生素废水[J].环境科学,2005,26(3):106-111.
    [14]乔俊莲,郑广宏,徐远雄.水解酸化/接触氧化/气浮/氧化工艺处理制药废水[J].工业水处理,2006,26(2):67-69.
    [15]章毅. UASB-两级A/O处理制药废水工程设计与运行[J].工业用水与废水,2012,43(1):79-82.
    [16] Chen Z Q,Wang H C,Chen Z B,et al. Performance and Model of aFull-scale Up-flow Anaerobic Sludge Blanket (UASB) to Treat thePharmaceutical Wastewater Containing6-APA and Amoxicillin[J]. Journalof Hazardous Materials,2011,185(2-3):905-913.
    [17] Chen Z B,Wang H C,Ren N Q,et al. Simultaneous Removal and Evaluationof Organic Substrates and NH3-N by a Novel Combined Process in TreatingChemical Synthesis-Based Pharmaceutical Wastewater[J]. Journal ofHazardous Materials,2011,197:49-59.
    [18]张文艺,姚立荣,闫刚,等.前置回流式反硝化-硝化组合反应器(UBF-BAF)处理高氨氮制药废水[J].环境化学,2011,30(6):1168-1174.
    [19] Christen V,Oggier D M,Fent K. A Microtiter-Plate-Based CytochromeP4503A Activity Assay in Fish Cell Lines[J]. Environmental Toxicologyand Chemistry,2009,28(12):2632-2638.
    [20]梁静,周峰. EGSB反应器在制药废水处理中的应用[J].能源与环境,2011(3):85-86.
    [21]方勇,杨友强. EGSB-CASS工艺处理制药废水[J].给水排水,2009,35(12):55-57.
    [22]龚敏,张勇,赵九旭,等. ABR-EGSB-SBR组合工艺处理制药废水[J].环境科学与技术,2006,29(12):80-81.
    [23]高静,王治江,王道涵,等.深度处理维生素制药废水的中试研究[J].水资源与水工程学报,2012,23(1):26-29.
    [24]郑土章,王诗发. ABR-生物接触氧化工艺处理制药废水[J].广东化工,2008,35(7):101-103.
    [25]徐灏龙,白俊跃,章一丹,等.间歇膨胀复合厌氧工艺用于处理抗生素废水[J].中国给水排水,2012,28(4):61-64.
    [26] Elmolla E S,Chaudhuri M. The Feasibility of Using Combined Fenton-SBRfor Antibiotic Wastewater Treatment[J]. Desalination,2012,285:14-21.
    [27] Ben W,Qiang Z,Pan X,et al. Degradation of Veterinary Antibiotics byOzone in Swine Wastewater Pretreated with Sequencing Batch Reactor[J].Journal of Environmental Engineering-Asce,2012,138(3):272-277.
    [28] Gerrity D,Gamage S,Holady J C,et al. Pilot-Scale Evaluation of Ozone andBiological Activated Carbon for Trace Organic Contaminant Mitigation andDisinfection[J]. Water Research,2011,45(5):2155-2165.
    [29] Reungoat J,Escher B I,Macova M,et al. Ozonation and BiologicalActivated Carbon Filtration of Wastewater Treatment Plant Effluents[J].Water Research,2012,46(3):863-872.
    [30]徐耀东.应用CASS工艺处理中药制药废水[J].中国环境管理丛书,2010(3):40-42.
    [31]范荣桂,刘海娟,边春捷,等. HDIC与CASS复合工艺处理高浓度制药废水[J].中国给水排水,2010,26(8):82-85.
    [32]李亚新,周鑫,赵义. A2/O工艺各段对焦化废水中难降解有机物的去除作用[J].中国给水排水,2007,23(14):4-7.
    [33]梅竹松,迟春娟,俞华勇,等.抗生素生产废水处理工程实例[J].给水排水,2007(6):57-59.
    [34]李英.混凝气浮-生物-臭氧气浮处理抗生素生产废水[J].华北水利水电学院学报,2011,32(6):148-150.
    [35]王晴.混凝-Fenton法在制药废水生化处理后出水深度处理中的研究[J].河北工业科技,2011,28(1):33-36.
    [36]杨常凤.强化混凝处理制药废水的实验研究[J].污染防治技术,2009,22(5):11-12.
    [37]郭瑾,盛丰,马民涛,等.污水二级生化出水有机物(EfOM)性质表征及去除研究现状[J].北京工业大学学报,2011,37(1):131-138.
    [38]王树涛,王虹,马军,等.我国北方城市污水处理厂二级处理出水的水质特性[J].环境科学,2009,30(4):1099-1104.
    [39]孔祥吉.污水处理过程中内分泌干扰物的分布特征与去除效果研究[D].哈尔滨工业大学博士学位论文,2008
    [40]孙青亮,吴昌永,胡翔,等.石化污水厂二级出水溶解性有机物分级解析研究[J].中国环境科学,2012,32(11):2017-2022.
    [41] Basile T,Petrella A,Petrella M,et al. Review of Endocrine-Disrupting-Compound Removal Technologies in Water and Wastewater TreatmentPlants: An EU Perspective[J]. Industrial&Engineering ChemistryResearch,2011,50(14):8389-8401.
    [42] Rocha M J,Cruzeiro C,Ferreira C,et al. Occurrence of Endocrine DisruptorCompounds in the Estuary of the Lberian Douro River and Nearby PortoCoast (NW Portugal)[J]. Toxicological and Environmental Chemistry,2012,94(2):252-261.
    [43] Diana A,Dimitra V. Alkylphenols and Phthalates in Bottled Waters[J].Journal of Hazardous Materials,2011,185(1):281-286.
    [44]赵艳红,郭栋生.黄河水中邻苯二甲酸二丁酯、壬基酚、双酚A含量的现状分析[J].中国环境监测,2007(05):19-21.
    [45]陆继龙,郝立波,王春珍,等.第二松花江中下游水体邻苯二甲酸酯分布特性[J].环境科学与技术,2007,30(12):35-37.
    [46]陈丽,周颖,吴毅凌,等.以黄浦江为水源的管网末梢水中微量有机物污染现状[J].卫生研究,2008,37(2):137-143.
    [47]陈敏,万华,徐爱兰.长江口地区饮用水源地有毒有害污染状况分析与评价[J].南通大学学报(自然科学版),2011,10(2):41-47.
    [48]郭栋生,李艳霞,赵艳红,等.活性炭吸附黄河水中邻苯二甲酸二丁酯、壬基酚和双酚A的研究[J].给水排水,2007,33(1):30-33.
    [49]姜盛君,李存雄,张明时.贵阳市水环境中6种酞酸酯类污染现状研究[J].贵州师范大学学报(自然科学版),2010,28(1):45-48.
    [50]韩关根,吴平谷,王惠华,等.邻苯二甲酸酯对城镇供水的污染及现行水处理工艺净化效果的评价[J].环境与健康杂志,2001,18(3):155-156.
    [51]袁峰,魏俊富,汤恩旗,等. BA接枝改性聚丙烯纤维对水中邻苯二甲酸二丁酯的吸附[J].天津工业大学学报,2009,28(2):21-24.
    [52]吴维,赵新华,刘旭.粉末活性炭处理抗生素污染原水试验研究[J].给水排水,2012,28(5):133-136.
    [53]祁佩时,王娜,刘云芝,等. Fenton氧化-活性炭吸附协同深度处理抗生素制药废水研究[J].净水技术,2008,27(6):38-41.
    [54]林明利,崔福义,赵志伟,等.城市给水厂应对原水发生邻苯二甲酸酯污染的处理技术及处理效能[J].化工学报,2010,61(12):3279-3289.
    [55]高旭,刘宇飞,郭劲松,等.活性炭和沸石滤柱对饮用水中邻苯二甲酸酯类吸附性能的比较[J].水处理技术,2009(3):57-61.
    [56]刘辉,方战强,陈晓蕾,等.活性炭吸附去除水中邻苯二甲酸二丁酯的动力学研究[J].净水技术,2008,27(2):23-26.
    [57]宋鑫,任立人,吴丹,等.制药废水深度处理技术的研究现状及进展[J].广州化工,2012,40(12):29-31.
    [58] Ruiz F N,Arevalo A A,Alvarez J C D,et al. Operating Conditions andMembrane Selection for the Removal of Conventional and EmergingPollutants from Spring Water Using Nanofiltration Technology: The TulaValley Case[J]. Desalination and Water Treatment,2012,42(1-3):117-124.
    [59] Lopez-Munoz M J,Sotto A,Arsuaga J M. Nanofiltration Removal ofPharmaceutically Active Compounds[J]. Desalination and WaterTreatment,2012,42(1-3):138-143.
    [60]刘久清,刘海翔,蒋彬,等.膜法浓缩己内酰胺废水[J].膜科学与技术,2012,32(2):76-79.
    [61]屈阁,王志,樊智锋,等.混凝-砂滤-微滤-反渗透集成技术深度处理抗生素制药废水[J].膜科学与技术,2008,28(3):72-78.
    [62]黄瑾辉,刘萍,曾光明,等.饮用水中微量有机污染物质的GC/MS分析[J].湖南大学学报(自然科学版),2004(5):36-40.
    [63]程爱华,王磊,王旭东.腐殖酸共存条件下NF90纳滤膜去除水中邻苯二甲酸二丁酯[J].水处理技术,2012(6):91-95.
    [64] Balabanic D,Hermosilla D,Merayo N,et al. Comparison of DifferentWastewater Treatments for Removal of Selected Endocrine-Disruptors fromPaper Mill Wastewaters[J]. Journal of Environmental Science and HealthPart a-Toxic/Hazardous Substances&Environmental Engineering,2012,47(10):1350-1363.
    [65] Fang C R,Long Y Y,Wang W,et al. Behavior of Dibutyl Phthalate in aSimulated Landfill Bioreactor[J]. Journal of Hazardous Materials,2009,167(1-3):186-192.
    [66] Fang C R,Long Y Y,Shen D S. Comparison on the Removal of PhthalicAcid Diesters in a Bioreactor Landfill and a Conventional Landfill[J].Bioresource Technology,2009,100(23):5664-5670.
    [67] Ejlertsson J,Meyerson U,Svensson B H. Anaerobic Degradation of PhthalicAcid Esters During Digestion of Municipal Solid Waste Under LandfillingConditions[J]. Biodegradation,1996,7(4):345-352.
    [68]方程冉,龙於洋,沈东升.生物反应器填埋场中邻苯二甲酸二丁酯的迁移转化[J].环境科学,2012,33(4):1397-1403.
    [69] Fang H H P,Zheng H H. Adsorption of Phthalates by Activated Sludge andIts Biopolymers[J]. Environmental Technology,2004,25(7):757-761.
    [70]曾锋,傅家谟,盛国英,等.邻苯二甲酸二丁酯的酶促降解性的研究[J].应用与环境生物学报,2000(05):477-482.
    [71]王亚轩,赵慧.臭氧—生物活性炭深度处理石化废水的试验研究[J].黑龙江八一农垦大学学报,2012,24(3):28-31.
    [72]鲁翌.邻苯二甲酸酯类化合物好氧生物降解的实验研究[D].华中科技大学博士学位论文,2009
    [73] Li L S,Zhu W P,Zhang P Y,et al. UV/O3-BAC Process for RemovingOrganic Pollutants in Secondary Effluents[J]. Desalination,2007,207(1-3):114-124.
    [74] Li L S,Zhu W P,Zhang P Y,et al. Comparison of AC/O3-BAC and O3-BACProcesses for Removing Organic Pollutants in Secondary Effluent[J].Chemosphere,2006,62(9):1514-1522.
    [75] Hendriksen H V,Larsen S,Ahring B K. Influence of a Supplemental CarbonSource on Anaerobic Dechlorination of Pentachlorophenol in GranularSludge[J]. Applied and Environmental Microbiology,1992,58(1):365-370.
    [76] Pour A K,Cooper D G,Mamer O A,et al. Mechanisms of Biodegradationof Dibenzoate Plasticizers[J]. Chemosphere,2009,77(2):258-263.
    [77] Okamoto Y,Toda C,Ueda K,et al. Transesterification in the MicrobialDegradation of Phthalate Esters[J]. Journal of Health Science,2011,57(3):293-299.
    [78]董春娟,吕炳南,陈志强,等.处理生物难降解物质的有效方式—共代谢[J].化工环保,2003,23(2):82-86.
    [79]李魁晓,顾继东.邻苯二甲酸二甲酯及其异构体的好氧微生物降解[J].热带海洋学报,2006,25(01):51-55.
    [80]吴学玲,代沁芸,梁任星,等.利用高效降解菌株强化修复土壤中DBP及其细菌群落动态解析[J].中南大学学报(自然科学版),2011(05):1188-1194.
    [81]吴学玲,金德才,赵维良,等.4株邻苯二甲酸二丁酯降解菌的分离鉴定及其相关降解基因的克隆[J].环境科学,2009(09):2722-2727.
    [82] Roslev P,Vorkamp K,Aarup J,et al. Degradation of Phthalate Esters in anActivated Sludge Wastewater Treatment Plant[J]. Water Research,2007,41(5):969-976.
    [83]曾锋,傅家谟,盛国英,等.邻苯二甲酸二丁酯的微生物降解[J].环境科学,1999,20(5):52-54.
    [84] Chung C Y,Fang S Y,Chang Y Y,et al. Two New Biphenyl-Type NeolignanDerivatives from the Flower Buds of Magnolia Biondii[J]. Planta Medica,2012,78(11):1195-1195.
    [85] Quesada-Penate I,Julcour-Lebigue C,Jauregui-Haza U J,et al. Degradationof Paracetamol by Catalytic Wet Air Oxidation and Sequential Adsorption-Catalytic Wet Air Oxidation on Activated Carbons[J]. Journal of HazardousMaterials,2012,221-222:131-138.
    [86] Oliviero L, Barbier-Jr J, Duprez D. Wet Air Oxidation of Nitrogen-Containing Organic Compounds and Ammonia in Aqueous Media[J].Applied Catalysis B-Environmental,2003,40(3):163-184.
    [87] Acero J L,Haderlein S B,Schmidt T C,et al. MTBE Oxidation byConventional Ozonation and the Combination Ozone/Hydrogen Peroxide:Efficiency of the Processes and Bromate Formation[J]. EnvironmentalScience&Technology,2001,35(21):4252-4259.
    [88] Katsoyiannis I A,Canonica S,von Gunten U. Efficiency and EnergyRequirements for the Transformation of Organic Micropollutants by Ozone,O3/H2O2and UV/H2O2[J]. Water Research,2011,45(13):3811-3822.
    [89] Zoschke K,Dietrich N,Bornick H,et al. UV-Based Advanced OxidationProcesses for the Treatment of Odour Compounds: Efficiency andBy-Product Formation[J]. Water Research,2012,46(16):5365-5373.
    [90] Suarez-Ojeda M E,Carrera J,Metcalfe I S,et al. Wet Air Oxidation (WAO)as a Precursor to Biological Treatment of Substituted Phenols: RefractoryNature of the WAO Intermediates[J]. Chemical Engineering Journal,2008,144(2):205-212.
    [91] O'Brien C P,Thies M C,Bruce D A. Supercritical Water Oxidation of thePCB Congener2-Chlorobiphenyl in Methanol Solutions: A KineticAnalysis[J]. Environmental Science&Technology,2005,39(17):6839-6844.
    [92] Jing G L,Luan M M,Chen T T. Heterogeneous Catalytic Supercritical WaterOxidation of Refractory Organic Pollutants in Industrial Wastewaters[J].Journal of Advanced Oxidation Technologies,2012,15(1):133-145.
    [93] Jung Y J,Kim W G,Yoon Y,et al. Removal of Amoxicillin by UV andUV/H2O2Processes[J]. Science of the Total Environment,2012,420:160-167.
    [94] Jasim S Y,Ndiongue S,Alshikh O,et al. Impact of Ozone and HydrogenPeroxide vs. UV and Hydrogen Peroxide on Chlorine Residual[J].Ozone-Science&Engineering,2012,34(1):16-25.
    [95] Beltran F J,Aguinaco A,Garcia-Araya J F. Application of Ozone InvolvingAdvanced Oxidation Processes to Remove Some PharmaceuticalCompounds from Urban Wastewaters[J]. Ozone-Science&Engineering,2012,34(1):3-15.
    [96] Yadav G D,Thorat P A. Microwave Assisted Lipase Catalyzed Synthesis ofIsoamyl Myristate in Solvent-Free System[J]. Journal of MolecularCatalysis B-Enzymatic,2012,83:16-22.
    [97] Naddeo V, Meric S, Kassinos D, et al. Fate of Pharmaceuticals inContaminated Urban Wastewater Effluent Under Ultrasonic Irradiation[J].Water Research,2009,43(16):4019-4027.
    [98] Mendez-Arriaga F,Torres-Palma R A,Petrier C,et al. MineralizationEnhancement of a Recalcitrant Pharmaceutical Pollutant in Water byAdvanced Oxidation Hybrid Processes[J]. Water Research,2009,43(16):3984-3991.
    [99] Sires I,Brillas E. Remediation of Water Pollution Caused by PharmaceuticalResidues Based on Electrochemical Separation and DegradationTechnologies: A Review[J]. Environment International,2012,40:212-229.
    [100] Wen G,Ma J,Liu Z Q,et al. Ozonation Kinetics for the Degradation ofPhthalate Esters in Water and the Reduction of Toxicity in the Process ofO3/H2O2[J]. Journal of Hazardous Materials,2011,195:371-377.
    [101] Wang T C, Lu N, Li J, et al. Evaluation of the Potential ofPentachlorophenol Degradation in Soil by Pulsed Corona Discharge Plasmafrom Soil Characteristics[J]. Environmental Science&Technology,2010,44(8):3105-3110.
    [102] Garoma T,Gurol M D,Thotakura L,et al. Degradation of Tert-ButylFormate and Its Intermediates by an Ozone/UV Process[J]. Chemosphere,2008,73(11):1708-1715.
    [103] Lemaire J,Croze V,Maier J,et al. Is It Possible to Remediate a BTEXContaminated Chalky Aquifer by In Situ Chemical Oxidation?[J].Chemosphere,2011,84(9):1181-1187.
    [104] Fridman N,Lahav O. Formation and Minimization of Bromate Ions withinNon-Thermal-Plasma Advanced Oxidation[J]. Desalination,2011,280(1-3):273-280.
    [105] Sui M H,Xing S C,Zhu C Y,et al. Kinetics of Ozonation of TypicalSulfonamides in Water[J]. Biomedical and Environmental Sciences,2011,24(3):255-260.
    [106] Nothe T,Fahlenkamp H,von Sonntag C. Ozonation of Wastewater: Rate ofOzone Consumption and Hydroxyl Radical Yield[J]. Environmental Science&Technology,2009,43(15):5990-5995.
    [107] Flyunt R,Leitzke A,Mark G,et al. Determination of (OH)-O-Center Dot,O2(Center Dot-), and Hydroperoxide Yields in Ozone Reactions in AqueousSolution[J]. Journal of Physical Chemistry B,2003,107(30):7242-7253.
    [108] Wang Y,Zhang H,Chen L,et al. Ozonation Combined with Ultrasound forthe Degradation of Tetracycline in a Rectangular Air-Lift Reactor[J].Separation and Purification Technology,2012,84(SI):138-146.
    [109] Kim J, Lee C W, Choi W. Platinized WO3as an EnvironmentalPhotocatalyst that Generates OH Radicals under Visible Light[J].Environmental Science&Technology,2010,44(17):6849-6854.
    [110] Azrague K,Osterhus S W,Biomorgi J G. Degradation of pCBA byCatalytic Ozonation in Natural Water[J]. Water Science and Technology,2009,59(6):1209-1217.
    [111] Bing J S,Li L S,Lan B Y,et al. Synthesis of Cerium-Doped MCM-41forOzonation of P-Chlorobenzoic Acid in Aqueous Solution[J]. AppliedCatalysis B-Environmental,2012,115:16-24.
    [112]刘宁,徐刚,吴明红,等.邻苯二甲酸二丁酯的电子束辐射降解[J].核技术,2008(3):209-213.
    [113]费学宁,姜远光,吕岩,等.环境激素邻苯二甲酸二丁酯的光催化降解机理探讨[J].应用化学,2006(1):59-63.
    [114]陈德强,吴振斌,成水平,等. UV/H2O2体系光降解邻苯二甲酸二丁酯研究[J].环境科学研究,2005,18(6):52-54.
    [115]陈义群,陈德强. UV/H2O2/草酸铁络合物光降解邻苯二甲酸二丁酯研究[J].环境污染治理技术与设备,2006,7(12):69-71.
    [116] Sun D G,Liu Z H,Du J,et al. Microwave Irradiated Purification ofWastewater Containing Phthalic Acid Esters[J]. Journal of Central SouthUniversity of Technology,2007,14:512-515.
    [117]徐武军,张国臣,郑明霞,等.臭氧氧化技术处理含抗生素废水[J].化学进展,2010,22(5):1002-1009.
    [118]王大勇,陈武,梅平.制药废水处理技术研究进展[J].应用化工,2011,40(12):2202-2205.
    [119] Miltner R J,Shukairy H M,Summers R S. Disinfection by-ProductFormation and Control by Ozonation and Biotreatment[J]. JournalAmerican Water Works Association,1992,84(11):53-62.
    [120]杨阳,王亮,于海涛,等.高级氧化工艺对水中邻苯二甲酸二丁酯的降解研究[J].天津工业大学学报,2012,31(1):40-43.
    [121]尹国勋,李惠,李成杰. Fenton氧化法对制药废水的预处理研究[J].河南理工大学学报(自然科学版),2011,30(6):735-739.
    [122]赵玲玲,蔡照胜.混凝-Fenton氧化预处理抗生素废水的研究[J].环境科学与技术,2010,33(11):138-141.
    [123] Zimmermann S G,Wittenwiler M,Hollender J,et al. Kinetic Assessmentand Modeling of an Ozonation Step for Full-Scale Municipal WastewaterTreatment: Micropollutant Oxidation, By-Product Formation andDisinfection[J]. Water Research,2011,45(2):605-617.
    [124] Park K Y,Lee J W,Song K G,et al. Ozonolysate of Excess Sludge as aCarbon Source in an Enhanced Biological Phosphorus Removal for LowStrength Wastewater[J]. Bioresource Technology,2011,102(3):2462-2467.
    [125] Zhong W J,Wang D H,Xu X W. Phenol Removal Efficiencies of SewageTreatment Processes and Ecological Risks Associated with Phenols inEffluents[J]. Journal of Hazardous Materials,2012,217:286-292.
    [126] Xu B,Li D P,Li W,et al. Measurements of Dissolved Organic Nitrogen(DON) in Water Samples with Nanofiltration Pretreatment[J]. WaterResearch,2010,44(18):5376-5384.
    [127] Naumov S,Mark G,Jarocki A,et al. The Reactions of Nitrite Ion withOzone in Aqueous Solution-New Experimental Data and Quantum-Chemical Considerations [J]. Ozone-Science&Engineering,2010,32(6):430-434.
    [128] Weiss J. Investigations on the Radical HO2in Solution[J]. Trans. FaradaySoc.,1935(31):668-681.
    [129] Staehelin J,Hoigne J. Decomposition of Ozone in Water in the Presence ofOrganic Solutes Acting as Promoters and Inhibitors of Radical ChainReactions[J]. Environmental Science&Technology,1985,19(12):1206-1213.
    [130] Hoigne J,Bader H,Haag W R,et al. Rate Constants of Reactions of ozonewith Organic and Inorganic-Coumpounds in Water.3. Inorganic-Compoundsand Radicals[J]. Water Research,1985,19(8):993-1004.
    [131] Buhler R E,Staehelin J,Hoigne J. Ozone Decomposition in Water Studiedby Pulse Radiolysis.1. HO2/O2-and HO3/O3-as Intermediates[J]. Journal ofPhysical Chemistry,1984,88(22):256-2564.
    [132] Tomiyasu H,Fukutomi H,Gordon G. Kinetics and Mechanism of OzoneDecomposition in Basic Aqueous-Solution[J]. Inorganic Chemistry,1985,24(19):2962-2966.
    [133] Westerhoff P,Song R,Amy G,et al. Applications of Ozone DecompositionModels[J]. Ozone-Science&Engineering,1997,19(1):55-73.
    [134] Pignatello J J,Oliveros E,MacKay A. Advanced Oxidation Processes forOrganic Contaminant Destruction Based on the Fenton Reaction andRelated Chemistry[J]. Critical Reviews in Environmental Science andTechnology,2006,36(1):1-84.
    [135] Bautista P,Mohedano A F,Casas J A,et al. An Overview of theApplication of Fenton Oxidation to Industrial Wastewaters Tsreatment[J].Journal of Chemical Technology and Biotechnology,2008,83(10):1323-1338.
    [136] Logager T,Holcman J,Sehested K,et al. Oxidation of Ferrous-Ions byOzone in Acidic Solutions[J]. Inorganic Chemistry,1992,31(17):3523-3529.
    [137] Li Y M,Geng D W,Liu F B,et al. Study of PCBs and PBDEs in KingGeorge Island, Antarctica, Using PUF Passive Air Sampling[J].Atmospheric Environment,2012,51:140-145.
    [138] Wu C H. Decolorization of CI Reactive Red2in O3, Fenton-Like andO3/Fenton-Like Hybrid Systems[J]. Dyes and Pigments,2008,77(1):24-30.
    [139] Pines D S,Min K N,Ergas S J,et al. Investigation of an Ozone MembraneContactor System[J]. Ozone-Science&Engineering,2005,27(3):209-217.
    [140] Pines D S,Reckhow D A. Effect of Dissolved Cobalt(II) on the Ozonationof Oxalic Acid[J]. Environmental Science&Technology,2002,36(19):4046-4051.
    [141] Beltran F J,Rivas F J,Montero-de-Espinosa R. A TiO2/Al2O3Catalyst toImprove the Ozonation of Oxalic Acid in Water[J]. Applied CatalysisB-Environmental,2004,47(2):101-109.
    [142] Piera E,Calpe J C,Brillas E,et al.2,4-Dichlorophenoxyacetic AcidDegradation by Catalyzed Ozonation: TiO2/UVA/O3and Fe(II)/UVA/O3Systems[J]. Applied Catalysis B-Environmental,2000,27(3):169-177.
    [143] Kim S J,Kim S C,Seo S G,et al. Photocatalyzed destruction of organicdyes using microwave/UV/O3/H2O2/TiO2oxidation system[J]. CatalysisToday,2011,164(1):384-390.
    [144] Li X Y,Zhang P Y,Jin L,et al. Efficient Photocatalytic Decomposition ofPerfluorooctanoic Acid by Indium Oxide and Its Mechanism[J].Environmental Science&Technology,2012,46(10):5528-5534.
    [145]香杰新,张赵田,范洪波,等. US/O3/TiO2/UV氧化处理苯胺废水实验研究[J].环境科学与技术,2010(12):81-85.
    [146] Nie Y L,Xing S T,Hu C,et al. Efficient Removal of Toxic Pollutants OverFe-Co/ZrO2Bimetallic Catalyst with Ozone[J]. Catalysis Letters,2012,142(8):1026-1032.
    [147] Park J S, Choi H, Cho J. Kinetic Decomposition of Ozone andPara-Chlorobenzoic Acid (pCBA) During Catalytic Ozonation[J]. WaterResearch,2004,38(9):2285-2292.
    [148]赵雷,马军,刘正乾,等.常见有机物对催化臭氧化降解水中硝基苯的影响[J].环境科学,2008,29(5):1233-1238.
    [149] Dong Y M,Yang H X,He K,et al. Beta-MnO2Nanowires: A NovelOzonation Catalyst for Water Treatment[J]. Applied Catalysis B-Environmental,2009,85(3-4):155-161.
    [150] Einaga H,Ogata A. Catalytic Oxidation of Benzene in the Gas Phase overAlumina-Supported Silver Catalysts[J]. Environmental Science&Technology,2010,44(7):2612-2617.
    [151] Alvarez P M,Beltran F J,Pocostales J P,et al. Preparation and StructuralCharacterization of Co/Al2O3Catalysts for the Ozonation of PyruvicAcid[J]. Applied Catalysis B-Environmental,2007,72(3-4):322-330.
    [152] Ernst M,Lurot F,Schrotter J C. Catalytic Ozonation of Refractory OrganicModel Compounds in Aqueous Solution by Aluminum Oxide[J]. AppliedCatalysis B-Environmental,2004,47(1):15-25.
    [153] Chetty E C,Dasireddy V B,Maddila S,et al. Efficient Conversion of1,2-Dichlorobenzene to Mucochloric Acid with Ozonation Catalyzed byV2O5Loaded Metal Oxides[J]. Applied Catalysis B-Environmental,2012,117-118:18-28.
    [154] Huang W J,Fang G C,Wang C C. A Nanometer-ZnO Catalyst to Enhancethe Ozonation of2,4,6-Trichlorophenol in Water[J]. Colloids and Surfacesa-Physicochemical and Engineering Aspects,2005,260(1-3):45-51.
    [155] Ren Y M,Dong Q,Feng J,et al. Magnetic Porous Ferrospinel NiFe2O4: ANovel Ozonation Catalyst with Strong Catalytic Property for Degradationof Di-n-Butyl Phthalate and Convenient Separation from Water[J]. Journalof Colloid and Interface Science,2012,382:90-96.
    [156] Li L S,Ye W Y,Zhang Q Y,et al. Catalytic Ozonation of DimethylPhthalate Over Cerium Supported on Activated Carbon[J]. Journal ofHazardous Materials,2009,170(1):411-416.
    [157] Alvarez P M,Beltran F J,Masa F J,et al. A Comparison Between CatalyticOzonation and Activated Carbon Adsorption/Ozone-Regeneration Processesfor Wastewater Treatment[J]. Applied Catalysis B-Environmental,2009,92(3-4):393-400.
    [158] Filby A L,Shears J A,Drage B E,et al. Effects of Advanced Treatmentsof Wastewater Effluents on Estrogenic and Reproductive Health Impacts inFish[J]. Environmental Science&Technology,2010,44(11):4348-4354.
    [159] Sanchez-Polo M,Rivera-Utrilla J,Prados-Joya G,et al. Removal ofPharmaceutical Compounds, Nitroimidazoles, from Waters by Using theOzone/Carbon System[J]. Water Research,2008,42(15):4163-4171.
    [160] Sanchez-Polo M,Rivera-Utrilla J,von Gunten U. Metal-Doped CarbonAerogels as Catalysts During Ozonation Processes in Aqueous Solutions[J].Water Research,2006,40(18):3375-3384.
    [161] Christensen H S,Schensted H,Corfitzan H. Reactions of HydroxylRadicals with Hydrogen Peroxide at Ambient and Elevated Temperatures[J].Journal of Physical Chemistry,1982,86(9):1588-1590.
    [162] Hwang T M,Oh B S,Yoon Y,et al. Continuous Determination ofHydrogen Peroxide Formed in Advanced Oxidation and ElectrochemicalProcesses[J]. Desalination and Water Treatment,2012,43(1-3):267-273.
    [163] Beduk F,Aydin M E,Ozcan S. Degradation of Malathion and Parathion byOzonation, Photolytic Ozonation, and Heterogeneous Catalytic OzonationProcesses[J]. Clean-Soil Air Water,2012,40(2):179-187.
    [164] Martins R C,Quinta-Ferreira R M. Comparison of Advanced OxidationProcesses (AOPs) based on O3and H2O2for the Remediation of RealWastewaters[J]. Journal of Advanced Oxidation Technologies,2011,14(2):282-291.
    [165] Rakness K,Gordon G,Langlais B,et al. Guideline for Measurement ofOzone Concentration in the Process Gas from an Ozone Generator[J].Ozone-Science&Engineering,1996,18(3):209-229.
    [166] Hernandez C,Ramos Y,Fernandez L A,et al. Ozonation of Cisplatin inAqueous Solution at PH9[J]. Ozone-Science&Engineering,2008,30(3):189-196.
    [167] Rangel-Mendez J R,Streat M. Adsorption of Cadmium by ActivatedCarbon Cloth: Influence of Surface Oxidation and Solution pH[J]. WaterResearch,2002,36(5):1244-1252.
    [168] Devi L G,Kumar S G,Reddy K M,et al. Effect of Various InorganicAnions on the Degradation of Congo Red, a Di Azo Dye, by thePhoto-Assisted Fenton Process Using Zero-Valent Metallic Iron as aCatalyst[J]. Desalination and Water Treatment,2009,4(1-3):294-305.
    [169] Rivas F J,Beltran F J,Gimeno O,et al. Fluorene Oxidation by Couplingof Ozone, Radiation, and Semiconductors: A Mathematical Approach to theKinetics[J]. Industrial&Engineering Chemistry Research,2006,45(1):166-174.
    [170] Lindsey M E,Xu G X,Lu J,et al. Enhanced Fenton Degradation ofHydrophobic Organics by Simultaneous Iron and Pollutant Complexationwith Cyclodextrins[J]. Science of the Total Environment,2003,307(1-3):215-229.
    [171] Baker J R,Milke M W,Mihelcic J R. Relationship Between Chemical andTheoretical Oxygen Demand for Specific Classes of Organic Chemicals[J].Water Research,1999,33(2):327-334.
    [172] Klapiszewska B,Krysztafkiewicz A,Jesionowski T. Highly DispersedGreen Silicate and Oxide Pigments Precipitated from Model Systems ofPostgalvanic Waste[J]. Environmental Science&Technology,2003,37(20):4811-4818.
    [173]别聪聪.邻苯二甲酸二丁酯对短裸甲藻的化感抑制机理研究[D].中国海洋大学硕士学位论文,2011
    [174] Singh K,Arora S. Removal of Synthetic Textile Dyes From Wastewaters: ACritical Review on Present Treatment Technologies[J]. Critical Reviews inEnvironmental Science and Technology,2011,41(9):807-878.
    [175] Jonsson A M,Hallquist M,Ljungstrom E. Impact of Humidity on theOzone Initiated Oxidation of Limonene, Delta(3)-Carene, andAlpha-Pinene[J]. Environmental Science&Technology,2006,40(1):188-194.
    [176] Jonsson A M,Hallquist M,Ljungstrom E. Influence of OH Scavenger onthe Water Effect on Secondary Organic Aerosol Formation from Ozonolysisof Limonene, Delta(3)-carene, and Alpha-Pinene[J]. Environmental Science&Technology,2008,42(16):5938-5944.
    [177] Altshul L,Covaci A,Hauser R. The Relationship Between Levels of PCBsand Pesticides in Human Hair and Blood: Preliminary Results[J].Environmental Health Perspectives,2004,112(11):1193-1199.
    [178] Wania F,Axelman J,Broman D. A Review of Processes Involved in theExchange of Persistent Organic Pollutants across the Air-Sea Interface[J].Environmental Pollution,1998,102(1):3-23.
    [179] Froescheis O,Looser R,Cailliet G M,et al. The Deep-Sea as a FinalGlobal Sink of Semivolatile Persistent Organic Pollutants? Part I: PCBs inSurface and Deep-Sea Dwelling Fish of the North and South Atlantic andthe Monterey Bay Canyon (California)[J]. Chemosphere,2000,40(6):651-660.
    [180] Ross P S,Jeffries S J,Yunker M B,et al. Harbor seals (Phoca vitulina) inBritish Columbia, Canada, and Washington State, USA, Reveal aCombination of Local and Global Polychlorinated Biphenyl, Dioxin, andFuran Signals[J]. Environmental Toxicology and Chemistry,2004,23(1):157-165.
    [181]甘志芬.渤海湾西岸典型持久性有机污染物的环境行为初步研究[D].河北大学硕士学位论文,2010
    [182]刘华林,刘敏,杨毅,等.长江口滨岸潮滩动物体中PCBs和OCPs的分布[J].环境科学,2004,25(6):69-73.
    [183]武江越,刘征涛,冯流,等.辽河水体中多环芳烃的分布特征及风险评估[J].环境化学,2012,31(7):1116-1117.
    [184]刘国卿.珠江三角洲地区多环芳烃的区域地球化学初步研究[D].中国科学院研究生院(广州地球化学研究所)博士学位论文,2005
    [185]孙敏杰.黄河包头段水体中典型持久性有机污染物测试研究[D].内蒙古农业大学硕士学位论文,2008
    [186]赵彩平,丁毅,李玉成.淮河中游重化工聚集区干流水体中多环芳烃研究[J].科技导报,2009(16):83-88.
    [187]许士奋,蒋新,王连生,等.长江和辽河沉积物中的多环芳烃类污染物[J].中国环境科学,2000,20(2):128-131.
    [188]王斌捷,高超.长江三角洲地区环境中的持久性有机污染物[J].江西科学,2007,25(1):112-118.
    [189]郭伟,何孟常,杨志峰,等.大辽河水系表层水中多环芳烃的污染特征[J].应用生态学报,2007,18(7):1534-1538.
    [190]孟阳,薛建良,刘广民,等.持久性有机污染物的环境分布与生物危害[J].污染防治技术,2008,21(6):68-72+93.
    [191]李新荣,赵同科,于艳新,等.北京地区人群对多环芳烃的暴露及健康风险评价[J].农业环境科学学报,2009,28(8):1758-1765.
    [192]余增丽,张立实,吴德生.一些化工原料的雌激素样效应[J].卫生研究,2003(1):10-12.
    [193]徐刚,李发生,汪群慧.紫外光照射处理水中邻苯二甲酸二异辛酯的研究[J].给水排水,2006,32(增刊):178-181.
    [194]卞战强,田向红,黄艳,等.可见光催化降解水中邻苯二甲酸二异辛酯的研究[J].净水技术,2010,29(5):30-32.
    [195] Wongniramaikul W, Liao C H, Kanatharana P. Diisobutyl PhthalateDegradation by Fenton Treatment[J]. Journal of Environmental Science andHealth Part a-Toxic/Hazardous Substances&Environmental Engineering,2007,42(5):567-572.
    [196]王海玲,杨小燕,朱兆连,等.大孔树脂吸附-Fenton试剂氧化法预处理含邻苯二甲酸二异丁酯废水[J].化工环保,2012,32(3):237-241.
    [197] Agustina T E,Ang H M,Vareek V K. A Review of Synergistic Effect ofPhotocatalysis and Ozonation on Wastewater Treatment[J]. Journal ofPhotochemistry and Photobiology C-Photochemistry Reviews,2005,6(4):264-273.
    [198] Pang Y L,Abdullah A Z,Bhatia S. Review on Sonochemical Methods inthe Presence of Catalysts and Chemical Additives for Treatment of OrganicPollutants in Wastewater[J]. Desalination,2011,277(1-3):1-14.
    [199] Lei L,Gu L,Zhang X W,et al. Catalytic Oxidation of Highly ConcentratedReal Industrial Wastewater by Integrated Ozone and Activated Carbon[J].Applied Catalysis a-General,2007,327(2):287-294.
    [200] Alvarez P M,Masa F J,Jaramillo J,et al. Kinetics of Ozone Decompositionby Granular Activated Carbon[J]. Industrial&Engineering ChemistryResearch,2008,47(8):2545-2553.
    [201] Faria P C C,Orfao J J M,Pereira M F R. Mineralisation of ColouredAqueous Solutions by Ozonation in the Presence of Activated Carbon[J].Water Research,2005,39(8):1461-1470.
    [202] Beltran F J,Garcia-Araya J F,Giraldez I,et al. Kinetics of ActivatedCarbon Promoted Ozonation of Succinic Acid in Water[J]. Industrial&Engineering Chemistry Research,2006,45(9):3015-3021.
    [203] Faria P C C,Orfao J J M,Pereira M F R. Ozonation of Aniline Promoted byActivated Carbon[J]. Chemosphere,2007,67(4):809-815.
    [204] Rivera-Utrilla J,Mendez-Diaz J,Sanchez-Polo M,et al. Removal of theSurfactant Sodium Dodecylbenzenesulphonate from Water by SimultaneousUse of Ozone and Powdered Activated Carbon: Comparison with SystemsBased on O3and O3/H2O2[J]. Water Research,2006,40(8):1717-1725.
    [205] Rivera-Utrilla J,Sanchez-Polo M,Prados-Joya G,et al. Removal ofTinidazole from Waters by Using Ozone and Activated Carbon in DynamicRegime[J]. Journal of Hazardous Materials,2010,174(1-3):880-886.
    [206] Abbasi M,Salahi A,Mirfendereski M,et al. Oily Wastewater TreatmentUsing Mullite Ceramic Membrane[J]. Desalination and Water Treatment,2012,37(1-3):21-30.
    [207] Laera G,Cassano D,Lopez A,et al. Removal of Organics and DegradationProducts from Industrial Wastewater by a Membrane Bioreactor Integratedwith Ozone or UV/H2O2Treatment[J]. Environmental Science&Technology,2012,46(2):1010-1018.
    [208] Mizuno T,Ohara S,Nishimura F,et al. O3/H2O2Process for Both Removalof Odorous Algal-Derived Compounds and Control of Bromate IonFormation[J]. Ozone-Science&Engineering,2011,33(2):121-135.
    [209] Tubic A,Agbaba J,Dalmacija B,et al. Effects of O3, O3/H2O2andCoagulation on Natural Organic Matter and Arsenic Removal from TypicalNorthern Serbia Source Water[J]. Separation Science and Technology,2010,45(16):2453-2464.
    [210] Beltran F J,Garcia-Araya J F,Frades J,et al. Effects of Wingle andCombined Ozonation with Hydrogen Peroxide or UV Radiation on theChemical Degradation and Biodegradability of Debittering Table OliveIndustrial Wastewaters[J]. Water Research,1999,33(3):723-732.
    [211] Beltran F J,Garcia-Araya J F,Alvarez P M,et al. Aqueous Degradation ofAtrazine and Some of Its Main By-Products with Ozone HydrogenPeroxide[J]. Journal of Chemical Technology and Biotechnology,1998,71(4):345-355.
    [212] Paillard H,Brunet R,Dore M. Optimal Conditions for Applying anOzone-Hydrogen Peroxide Oxidizing System[J]. Water Research,1988,22(1):91-103.
    [213] Sotelo J L,Beltran F J,Benitez F J,et al. Ozone Decomposition in Water:Kinetic Study[J]. Industrial&Engineering Chemistry Research,1987,26(1):39-43.
    [214] Lundstrom T,Christensen H,Sehested K. Reactions of the HO2Radicalwith OH, H, Fe2+and Cu2+at Elevated Temperatures[J]. Radiation Physicsand Chemistry,2004,69(3):211-216.
    [215] Szymanski G S,Biniak S,Rychlicki G. Carbon Surface Polarity fromImmersion Calorimetry[J]. Fuel Processing Technology,2002,79(3):217-223.
    [216] Biniak S,Szymanski G,Siedlewski J,et al. The Characterization ofActivated Carbons with Oxygen and Nitrogen Surface Groups[J]. Carbon,1997,35(12):1799-1810.
    [217] Guerreroruiz A,Rodriguezramos I,Rodriguezreinoso F,et al. The Role ofNitrogen and Oxygen-Surface Groups in the Behavior of Carbon-SupportedIron and Ruthenium Catalysts[J]. Carbon,1988,26(4):417-423.
    [218] Rio S,Faur-Brasquet C,Le Coq L,et al. Structure Characterization andAdsorption Properties of Pyrolyzed Sewage Sludge[J]. EnvironmentalScience&Technology,2005,39(11):4249-4257.
    [219] Lopez-Ramon M V, Stoeckli F, Moreno-Castilla C, et al. On theCharacterization of Acidic and Basic Surface Sites on Carbons by VariousTechniques[J]. Carbon,1999,37(8):1215-1221.
    [220] Contescu A,Vass M,Contescu C,et al. Acid Buffering Capacity of BasicCarbons Revealed by their Continuous pK Distribution[J]. Carbon,1998,36(3):247-258.
    [221] Montes-Moran M A,Suarez D,Menendez J A,et al. On the Nature of BasicSites on Carbon Surfaces: An Overview[J]. Carbon,2004,42(7):1219-1225.
    [222] Fuente E,Menendez J A,Suarez D,et al. Basic Surface Oxides on CarbonMaterials: A Global View[J]. Langmuir,2003,19(8):3505-3511.
    [223] Suarez D,Menendez J A,Fuente E,et al. Contribution of Pyrone-TypeStructures to Carbon Basicity: An ab Initio Study[J]. Langmuir,1999,15(11):3897-3904.
    [224] Menendez J A,Suarez D,Fuente E,et al. Contribution of Pyrone-TypeStructures to Carbon Basicity: Theoretical Evaluation of the pK(a) of ModelCompounds[J]. Carbon,1999,37(6):1002-1006.
    [225] Sanchez-Polo M,von Gunten U,Rivera-Utrilla J. Efficiency of ActivatedCarbon to Transform Ozone into Center Dot OH Radicals: Influence ofOperational Parameters[J]. Water Research,2005,39(14):3189-3198.
    [226] Beltran F J,Giraldez I,Garcia-Araya J F. Kinetics of Activated CarbonPromoted Ozonation of Polyphenol Mixtures in Water[J]. Industrial&Engineering Chemistry Research,2008,47(4):1058-1065.
    [227] Lucas M S, Peres J A, Lan B Y, et al. Ozonation Kinetics ofWineryWastewater in a Pilot-Scale Bubble Column Reactor[J]. WaterResearch,2009,43(6):1523-1532.
    [228] Grebel J E,Pignatello J J,Mitch W A. Effect of Halide Ions and Carbonateson Organic Contaminant Degradation by Hydroxyl Radical-BasedAdvanced Oxidation Processes in Saline Waters[J]. Environmental Science&Technology,2010,44(17):6822-6828.
    [229] Ahmed M M,Barbati S,Doumenq P,et al. Sulfate Radical Anion Oxidationof Diclofenac and Sulfamethoxazole for Water Decontamination[J].Chemical Engineering Journal,2012,197:440-447.
    [230] Glaze W H, Kang J W. Advanced Oxidation Processes-Test of aKinetic-Model for the Oxidation of Organic-Compounds with Ozone andHydrogen-Peroxide in a Semibatch Reactor[J]. Industrial&EngineeringChemistry Research,1989,28(11):1580-1587.
    [231] Beltran F J,Garcia-Araya J F,Alvarez P M. PH Sequential Ozonation ofDomestic and Wine-Distillery Wastewaters[J]. Water Research,2001,35(4):929-936.
    [232] Rivas J,Beltran F,Acedo B,et al. Two-Step Wastewater Treatment:Sequential Ozonation-Aerobic Biodegradation[J]. Ozone-Science&Engineering,2000,22(6):617-636.
    [233] Kasprzyk-Hordern B,Raczyk-Stanislawiak U,Swietlik J,et al. CatalyticOzonation of Natural Organic Matter on Alumina[J]. Applied CatalysisB-Environmental,2006,62(3-4):345-358.
    [234] Beltran F J,Rivas J,Alvarez P,et al. Kinetics of Heterogeneous CatalyticOzone Decomposition in Water on an Activated Carbon[J]. Ozone-Science&Engineering,2002,24(4):227-237.
    [235] Zhao L,Ma J,Sun Z Z,et al. Influencing Mechanism of Temperature onthe Degradation of Nitrobenzene in Aqueous Solution by CeramicHoneycomb Catalytic Ozonation[J]. Journal of Hazardous Materials,2009,167(1-3):1119-1125.
    [236] Zhao L,Ma J,Sun Z Z,et al. Mechanism of Heterogeneous CatalyticOzonation of Nitrobenzene in Aqueous Solution with Modified CeramicHoneycomb[J]. Applied Catalysis B-Environmental,2009,89(3-4):326-334.
    [237] Zhao L,Sun Z Z,Ma J,et al. Enhancement Mechanism of HeterogeneousCatalytic Ozonation by Cordierite-Supported Copper for the Degradation ofNitrobenzene in Aqueous Solution[J]. Environmental Science&Technology,2009,43(6):2047-2053.
    [238] Zhao L,Sun Z Z,Ma J. Novel Relationship between Hydroxyl RadicalInitiation and Surface Group of Ceramic Honeycomb Supported Metals forthe Catalytic Ozonation of Nitrobenzene in Aqueous Solution[J].Environmental Science&Technology,2009,43(11):4157-4163.
    [239] Lewins W K,Whitman W G. Principles of Gas Absorption[J]. Ind. Eng.Chem.,1924(16):1215-1220.
    [240] Wu D L,Yang Z Z,Wang W,et al. Ozonation as an Advanced Oxidant inTreatment of Bamboo Industry Wastewater[J]. Chemosphere,2012,88(9):1108-1113.
    [241] Raid R C,Prausnitz J M,Sherwood T K. The Properties of Gases andLiquids[M]. New York:McGraw-Hill,1977
    [242] Beltran F J,Encinar J M,Garciaaraya J F,et al. Kinetic-Study of theOzonation of Some Industrial Wastewaters[J]. Ozone-Science&Engineering,1992,14(4):303-327.
    [243] Beltran F J,GarciaAraya J F,Encinar J M. Henry and Mass TransferCoefficients in the Ozonation of Wastewaters[J]. Ozone-Science&Engineering,1997,19(3):281-296.
    [244] Staudinger J,Roberts P V. A Critical Review of Henry's law Constants forEnvironmental Aspplications[J]. Critical Reviews in Environmental Scienceand Technology,1996,26(3):205-297.
    [245] Roth J A,Sullivan D E. Solubility of Ozone in Water[J]. INd. Eng. Chem.Fundam,1981,20(2):137-140.
    [246] Arellanes C,Paulson S E,Fine P M,et al. Exceeding of Henry's Law byHydrogen Peroxide Associated with Urban Aerosols[J]. EnvironmentalScience&Technology,2006,40(16):4859-4866.
    [247] Froment G F,Bischoff K B. Chemical Reactor Analysis and Design[M].New York:John Wiley&Sons,1979
    [248] Lan B Y, Nigmatullin R, Puma G L. Ozonation Kinetics ofCork-Processing Water in a Bubble Column Reactor[J]. Water Research,2008,42(10-11):2473-2482.
    [249] Ohmi T,Isagawa T,Imaoka T,et al. Ozone Decomposition in UltrapureWater and Continuous Ozone Sterilization for a Semiconductor UltrapureWater-System[J]. Journal of the Electrochemical Society,1992,139(11):3336-3345.
    [250] Bajt O, Mailhot G, Bolte M. Degradation of Dibutyl Phthalate byHomogeneous Photocatalysis with Fe(III) in Aqueous Solution[J]. AppliedCatalysis B-Environmental,2001,33(3):239-248.
    [251] Kaneco S,Katsumata H,Suzuki T,et al. Titanium Dioxide MediatedPhotocatalytic Degradation of Dibutyl Phthalate in Aqueous Solution-Kinetics, Mineralization and Reaction Mechanism[J]. ChemicalEngineering Journal,2006,125(1):59-66.
    [252] Stumn W,morgan J J. Aquatic Chemistry,2nd ed.[M]. New York:JohnWiley&Sons,1981:419.
    [253] Mantzavinos D,Livingston A G,Hellenbrand R,et al. Wet Air Oxidationof Polyethylene Glycols; Mechanisms, Intermediates and Implications forIntegrated Chemical-Biological Wastewater Treatment[J]. ChemicalEngineering Science,1996,51(18):4219-4235.
    [254] Vogel F,Harf J,Hug A,et al. The Mean Oxidation Number of Carbon(MOC)-A Useful Concept for Describing Oxidation Processes[J]. WaterResearch,2000,34(10):2689-2702.
    [255] Sirtori C, Zapata A, Oller I, et al. Decontamination IndustrialPharmaceutical Wastewater by Combining Solar Photo-Fenton andBiological Treatment[J]. Water Research,2009,43(3):661-668.
    [256]于凤刚,李彦锋,周林成,等. Fenton强化铁炭微电解工艺处理硫化红棕中间体废水[J].环境科学与技术,2009,32(10):149-152.
    [257]彭娟华,莫正平,李旭东. Fenton试剂预处理提高钻井废水可生化性[J].应用与环境生物学报,2008,14(2):265-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700