用户名: 密码: 验证码:
持久性有毒物质污染土壤/沉积物的电动力学修复技术和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持久性有毒物质(Persistent toxic substance, PTS)如持久性有机污染物(Persistent organic pollutants, POPs)和重金属等进入环境后,随大气沉降、降雨和地表径流等迁移并最终在土壤/沉积物上沉积,造成土壤/沉积物的污染,因而对污染土壤/沉积物的修复非常必要。绝大部分土壤修复技术对土壤的渗透性有较高的要求,处理效果随粘性增加而降低。电动力学(Electrokinetic, EK)技术利用电场驱动土壤中的污染物迁移,在粘性土壤修复上具有很大的潜力。
     本文在综述电动力学土壤/沉积物修复现状的基础上,指出当前电动力学土壤修复中存在的问题:(1)EK技术对多氯代芳烃类POPs污染土壤的修复效果和机理目前尚不清楚,而当前土壤受六氯苯( Hexachlorobenzene, HCB )、多氯联苯(Polychlorobiphenyls, PCBs)等污染较为严重;(2)EK技术在实际运行中的电能消耗较高,使其推广和应用受到限制;(3)在有机污染土壤修复中对电能的综合利用不够,有可能实现土壤中有机物的EK迁移和电化学降解的结合,避免或减少有机废水的后续处理。
     因此,本文首先研究了化学助剂强化EK技术对土壤中HCB的修复效果和机理;为降低EK过程中的电能损耗,构建了一种基于原电池原理的土壤/沉积物修复的新方法,并研究了该方法对重金属和硝基酚污染土壤修复的可行性;为避免或减少后续废水处理过程,研究了废水中有机物的原位电化学降解条件和机理。本文的主要结论有:
     (1)阴离子、阳离子和非离子型表面活性剂单独存在时对土壤中HCB解吸效果的强化作用为:Tween 80 >十二烷基苯磺酸钠(SDBS) >十四烷基溴化吡啶(MPB)。三种表面活性剂在土壤都有较大的吸附,其吸附量大小为:MPB > Tween 80 > SDBS。水相表面活性剂促进HCB的解吸,土壤吸附态表面活性剂抑制HCB的解吸,污染土壤中HCB的解吸率同水相胶束浓度呈正线性相关。多种表面活性剂的优化组合可以减少表面活性剂在土壤上的吸附损失,但同时对HCB的解吸效果也有所降低。
     (2)电渗析流(EOF)随阳极冲洗液缓冲容量(0-0.05 mmol/L)的增加先增加(0-0.025 mmol/L)后降低(0.025-0.05 mmol/L),随离子强度的增加而降低。阳极冲洗液中加入Tween 80或β-环糊精(β-CD)可以明显强化土壤中HCB的EK迁移效果。β-CD对HCB的强化解吸效果比Tween 80低,但对HCB的迁移效果更明显。HCB在化学助剂作用下先解吸并溶解进入土壤空隙水,溶解态的HCB随着电渗析流迁移。三种低氯代苯都表现出较明显的EK迁移效果,其迁移效果随水溶性增加而增加。
     (3)利用铁屑和活性碳构建的原电池产生电场来驱动土壤中重金属的电迁移是可行的。土壤中铜的迁移效果同土壤pH具有很强的相关性,pH越低迁移效果越明显。多个原电池的串联可以扩展处理区域,每个电池中镉的电迁移效率比在单个电池中的小。沉积物中的铜可以通过原电池技术得到去除,去除效果随上覆水层电解质含量的增加而降低,随底部沉积物中电解质含量的增加而增加。
     (4)原电池对土壤/沉积物中硝基酚的迁移效果较弱。土壤中的硝基酚经扩散作用向极室的迁移非常明显;沉积物中的硝基酚向上覆水层中的扩散作用较强,扩散到水相的硝基酚由活性碳吸附、铁还原、挥发和自然代谢等途径去除。铁棒对硝基酚具有很好的还原效果,还原效率随pH降低而增加。串联碳可以显著促进铁对硝基酚的还原速率和铁本身的腐蚀速率。
     (5)在有机污染土壤的电动力学修复中,合理调控电动力学条件,实现有机物的电动力学迁移和电化学降解的有效结合是可行的。迁移到极室的有机污染物的电化学降解,可以避免后续处理或减少后续处理的难度,抑制析氢或析氧反应,减少电极反应导致的土壤性质破坏和对电渗析流的影响。
Persistent toxic substances (PTS), such as persistent organic pollutants (POPs) and heavy metals, migrate with atmospherical settling, raining and surface run off, deposit in soils and sediment and lead to soil and sediment pollution. It is therefore necessary to remediate the polluted sites. However, most remediation technologies are suitable to permeable soils. Electrikinetic (EK), which utilizes electric field to drive the movement of pollutants in soils, has shown great potential in the remediation of clayed soils.
     This study reviewed the literatures on EK remediation and point out the problems involved in the process. The efficiency and mechanism of EK remediation of soils contaminated with POPs such as polychlorinated aromatic hydrocarbons are still unknowm. The electric energy consumption of EK remediation is relatively high, which restricted the extensive practical application. It is possible to integrate the EK movement of organic pollutants in soils and the in situ electrochemical degradation in aqueous solutions.
     Therefore, this paper first investigated the EK movement of hexachlorobenzene (HCB), a typical polychlorinated aromatic hydrocarbon, in soils. In order to reduce electric consumption in EK process, a novel galvanic cell EK process was developed. The electrochemical degradation of toxic organic pollutants was studied to provide useful information on the integration of EK migration and in situ electrochemical degradation. The main conclusions are drawn as follows:
     (1) The potential of single surfactants to enhance the desorption of HCB from soil was obtained as Tween 80 > sodium dodecyl benzene sulfonic (SDBS) > myristyl pyridinium bromide (MPB). All the surfactants were largely adsorbed on soil and the sorption followed MPB > Tween 80 > SDBS. The desorption of HCB increased significantly and linearly with the increase of the aqueous micelle concentrations of surfactants. Optimal combination of surfactants could reduce the sorption loss of surfactants.
     (2) With the increase of buffering capacity of anodic purging solution (0?0.05 mmol/L), electroosmotic flow (EOF) fisrt increased and then decreased. EOF decreased with the increase of ionic strength. Addition of Tween 80 orβ-CD to anodic purging solution could highly attribute to the movement of HCB. Althoughβ-CD led to less desorption of HCB from soil than Tween 80, the migration of HCB withβ-CD was more significant than that with Tween 80. The mechanism of HCB movement involved the desorption of HCB from soil to pore solution and the subsequent migration with electroosmotic flow. The EK movement of less chlorinated benzenes was significant and the efficiency increased with the increase of their aqueous solubility.
     (3) It is feasible to drive the electromigration of heavy metals in soil by a galvanic cell constructed with iron and carbon. The migration of copper in soil increased with the drop of soil pH. The series of multiple galvanic cells could expand the treatment area, but the migration of cadmium of each cell in the series was lower than that in separated cell. Copper in sediment could be also removed by the galvanic cell and the removal efficiency increased with the increase of electrolyte in sediment or the decrease of electrolyte in supernatant water.
     (4) The EK movement of nitrophenol in soil driven by the galvanic cell was insignificant. Nitrophenol in soil could diffuse into electrode compartments. Nitrophenol in sediment diffused into supernatant water and was then removed by carbon adsorption, iron reduction, volatilization and natural degradation. The reduction of nitrophenol on iron stick was clear and could be enhanced when a carbon stick was connected. The reduction of nitrophenol in both cases rose with the drop of aqueous pH.
     (5) In the EK remediation of organic compound polluted soils, it is possible to integrate the EK movement of organic compounds from soils to compartments and the electrochemical degradation of the compound in the compartments via conditioning the EK parameters. This integration may avoid post-treatment or reduce the post-treatment difficulty, inhibit the evolution of H2 and O2, and decrease the change of soil characteristics.
引文
[1] http://www.zhb.gov.cn/eic/649094490434306048/20060718/19875.shtml.
    [2] Seidel H., L?ser C., Zehnsdorf A., et al. Bioremediation process for sediments contaminated by heavy metals: feasibility study on a pilot scale. Environ. Sci. Technol. 2004, 38, 1582-1588.
    [3] Brenner R.C., Magar V.S., Ickes J.A., et al. Characterization and fate of PAH-contaminated sediments at the Wyckoff/eagle harbor superfund site. Environ. Sci. Technol. 2002, 36, 2605-2613.
    [4] http://www.zhb.gov.cn/xcjy/zwhb/200609/t20060912_92691.htm
    [5]陈宝梁.表面活性剂在土壤有机污染修复中的作用及机理:博士学位论文.浙江大学图书馆. 2004.
    [6]周启星,宋玉芳.污染土壤修复原理和方法.北京:科学出版社,2004.
    [7] Kumar P. B. A. N., Dushenkov V., Motto H., et al. Phytoremediation: the use of plants to remove heavy metal from soils. Environ. Sci. Technol. 1995, 29, 1232-1238.
    [8] Probstein, R. F.; Hicks, R. E. Removal of contaminants from soils by electric field. Science 1993, 260, 498-503.
    [9] Acar, Y. B.; Alshawabkeh, A. N. Principles of electrokinetic remediation. Environ. Sci. Technol. 1993, 27, 2638-2647.
    [10] Shapiro, A. P.; Probstein, R. F. Removal of contaminants from saturated clay by electroosmosis. Environ. Sci. Technol. 1993, 27, 283-291.
    [11] Hicks, R. E.; Tondorf, S. Electrorestoration of metal contaminated soils. Environ. Sci. Technol. 1994, 28, 2203-2210.
    [12] Lageman, R. Electroreclamation: applications in the Netherlands. Environ. Sci. Technol. 1993, 27, 2648-2650.
    [13] Ho S., Athmer C., Sheridan P. W., et al. The Lasagna Technology for In Situ Soil Remediation. 2. Large Field Test. Environ. Sci. Technol. 1999, 33, 1092-1099.
    [14] Zhou D. M., Cang L., Alshawabkeh A. N., et al. Pilot-scale electrokinetic treatment of a Cu contaminated red soil. Chemosphere 2006, 63, 964-971.
    [15] Mulligan C. N., Yong R. N., Gibbs B. F. An evaluation of technologies for the heavy metal remediation of dredged sediments. J. Hazard. Mater. 2001, 85, 145-163.
    [16] Selecting remediation techniques for contaminated sediment. Office of water, Office and applied science division, U.S. Environmental Protection agency, Washington, D.C.
    [17] Azcue J. M., Zeman A. J., Mudroch A., et al. Assessment of sediment and porewater after one year of subaqueous capping of contaminated sediments in Hamilton harbour, Candana. Water Sci. Technol. 1998, 37, 323-329.
    [18] St?ben D., Walpersdorf E., Voss K., et al. Application of lake marl at Lake Arendsee, NE Germany: First results of a geochemical monitoring during the restoration experiment. Sci. Total Envron. 1998, 218, 33-44.
    [19] Varjo E., Liikanen A., Salonen V. P., et al. A new gypsum-based technique to reduce methane and phophorus release from sediments of eutrophied lakes: (Gypsum treatment to reduce internal loading). Water Res. 2003, 37, 1-10.
    [20] Reitzel K., Hansen H., Andersen F. ?., et al. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment. Environ. Sci. Technol. 2005, 39, 4134-4140.
    [21] Duba A. G., Jackson K. J., Jovanovich M. C., et al. TCE remediation using in situ resting-state bioaugmentation. Environ. Sci. Technol. 1996, 30, 1982-1989.
    [22] Dybas M. J., Barcelona M., Bezborodnikov S., et al. Pilot-scale evaluation of bioaugmentation for in situ remediation of a carbon tetrachloride-contaminated aquifer. Environ. Sci. Technol. 1998, 32, 3598-3611.
    [23] King R. F., Royle A., Potwain P. D., et al. Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial. Environ. Pollut. 2006, 143, 318-326.
    [24] Nystroem G. M., Ottosen L. M., Villumsen, A. Electrodialytic removal of Cu, Zn, Pb, and Cd from harbor sediment: influence of changing experimental conditions. Environ. Sci. Technol. 2005, 39, 2906-2911.
    [25] Stichnothe H., Th?ming J., Calmano W. Detoxification of tributyltin contaminated sediments by an electrochemical process. Sci. Total Environ. 2001, 266, 265-271.
    [26] Haas C. N., Horowitz N. D. Adsorption of cadmium to kaolinite in the presence of organic material. Water Air Soil Pollut. 1986, 27, 131-140.
    [27] Puls R. W., Powell R. M., Donald C., et al. Effect of pH, soild/solution rate, ionic strength, and organic acids on Pb and Cd sorption on kaolinite. Water Air Soil Pollut. 1991, 57-58, 423-430.
    [28] Sun B., Zhao F. J., Lombi E., et al. Leaching of heavy metals from contaminated soils using EDTA. Environ. Pollut. 2001, 113, 111-120.
    [29] Smith J. A., Sahoo D., Mclellan H. M., et al. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 1. transport of triton X-100. Environ. Sci. Technol. 1997, 31, 3565-3572.
    [30]何宏平.粘土矿物与金属离子作用研究.北京:石油工业出版社,2001.
    [31]陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996.
    [32] Undabeytia T., Nir S., Tytwo G., et al. Modeling adsorption-desorption processes of Cu on edge and planar sites of montmorillonite. Environ. Sci. Technol. 2002, 36, 2677-2683.
    [33] Xu Y. H., Zhao D. Y. Removal of copper from contaminated soil by use of poly(amidoamine) dendrimers. Environ. Sci. Technol. 2005, 39, 2369-2375.
    [34] Gao Y. Z., He J. Z., Ling W. T., et al. Effects of organic acids on copper and cadmium desorption from contaminated soils. Environ. Int. 2003, 29, 613-618.
    [35] Wasay S. A., Barrington S., Tokunaga S. Organic acids for the in situ remediation of soils polluted by heavy metals: soil flushing in columns. Water Air Soil Pollut. 2001, 127, 301-314.
    [36] Wu L. H., Luo Y. M., Christie P., et al. Effects of EDTA and low molecular weight organic acids on soil solution properties of heavy metal polluted soil. Chemosphere 2003, 50, 819-822.
    [37] Doong R. A., Wu Y. W., Lei W. G. Surfactant enhanced remediation of cadmium contaminated soils. Water Sci. Technol. 1998, 37, 65-71.
    [38] Schwarzenbach R. P., Gschwend P. M., Imboden D. M. Environmental Organic Chemistry. John Wiley & Sons, Inc. 2003.
    [39] You C. N., Liu J. C. Desorptive behavior of chlorophenols in contaminated soils. Water Sci. Technol. 1996, 33, 263-270.
    [40] Edwards D. A., Adeel Z., Luthy R. G. Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environ. Sci. Technol. 1994, 28, 1550-1560.
    [41] Pennell K. D., Abriola L. M., Weber W. J. Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. experimental investigation. Environ. Sci. Technol. 1993, 27, 2332-2340.
    [42] Ko S. O., Schlautman M. A., Carraway E. R. Partitioning of hydrophobic organic compounds to sorbed surfactants. 1. experimental studies. Environ. Sci. Technol. 1998, 32, 2769-2775.
    [43]薛生国.超积累植物商陆锰富集机理及其对污染水体的修复潜力:博士论文.浙江大学图书馆. 2005.
    [44] Wu J., Hsu F. C., Cunningham S. D. Chelate-assisted Pb phytoextraction: Pb availability, uptake and translocation constrains. Environ. Sci. Technol. 1999, 33, 1898-1904.
    [45] Robinson B., Duwing C., Bolan N., et al. Uptake of arsenic by New Zealand watercress (Lepidium sativam). Sci. Total Environ. 2003, 301, 67-73.
    [46] Pulford I. D., Watson C. Phytoremediation of heavy metal-contaminated land by trees-a review. Environ. Int. 2003, 29, 529-540.
    [47] Raskin I., Smith R. D., Salt D. E. Phytoremediation of metals: using plants to remove pollutants from the environment. Plant Biotech. 1997, 8, 221-226.
    [48] Cherian S., Oliveira M. M. Transgenic plants in phytoremediation: recent advances and new possibilities. Environ. Sci. Technol. 2005, 39, 9377-9390.
    [49] Burken J. G., Schnoor J. L. Predictive relationship for uptake of organic contaminants by hybrid poplar trees. Environ. Sci. Technol. 1998, 32, 3379-3385.
    [50] Huang J. W., Chen J. J., Berti W. R., et al. Phytoremediation of lead contaminated soils?role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 1997, 31, 800-805.
    [51] Nigam R., Srivastava S., Prakash S., et al. Cadmium mobilization and plant availability?the impact of organic acids commonly exudated from roots. Plant Soil 2001, 230, 107-113.
    [52]许世远,陈振楼,俞立中.苏州河底泥污染与整治.北京:科学出版社,2003.
    [53]王绿洲,管薇,李维平等.富营养化湖泊中沉积物原位治理技术进展.陕西师范大学学报(自然科学版). 2006,34,76-81.
    [54] Ottosen L. M., Hansen H. K., Laursen S., et al. Electrodialytic remediation of soil polluted with copper from wood preservation industry. Environ. Sci. Technol. 1997, 31, 1711-1715.
    [55] Li Z. M., Yu J. W., Neretnieks I. Electroremediation: Removal of heavy metals from soils by using cation selective membrane. Environ. Sci. Technol. 1998, 32, 394-397.
    [56] Ko S. O., Schlautman M. A., Carraway E. R. Cyclodextrin-enhanced electrokinetic removal of phenanthrene from a model clay soil. Environ. Sci. Technol. 2000, 34, 1535-1541.
    [57] Lee H. H., Yang J. W. A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. J. Hazard. Mater. 2000, B77, 227-240.
    [58] Saichek R. E., Reddy K. R. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere 2003, 51, 273-287.
    [59] Zhou D. M., Deng C. F., Cang L. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere 2004, 56, 265-273.
    [60] Zhou D. M., Deng C. F., Cang L., et al. Electrokinetic remediatioin of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH. Chemosphere 2005, 61, 519-527.
    [61] Amrate S., Akretche D. E. Modeling EDTA enhanced electrokinetic remediation of lead contaminated soils. Chemosphere 2005, 60, 1376-1383.
    [62] Luo Q. S., Zhang X. H., Wang H., et al. Mobilization of phenol and dichlorophenol in unsaturated soil by non-uniform electrokinetics. Chemosphere 2005, 59, 1289-1298.
    [63] Pazos M., Sanromán M. A., Cameselle C. Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere 2006, 62, 817-822.
    [64] Gidarakos E., Giannis A. Chelate agents enhanced electrokinetic remediation for removal cadmium and zinc by conditioning catholyte pH. Water air soil Pollut. 2006, 172, 295-312.
    [65] Virkutyte J., Sillanp?? M., Latostenmaa P. Electrokinetic soil remediation - critical overview. Sci. Total Environ., 2002, 289, 97-121.
    [66] Lageman R., Clarke R. L., Pool W. Electro-reclamation, a versatile soil remediation solution. Eng. Geol. 2005, 77, 191-201.
    [67] Ho S., Athmer C., Sheridan P. W., et al. Scale-up aspects of the LasagnaTM process for in situ soil decontamination J. Hazard. Mater. 1997, 55, 39-60.
    [68] Chiou C. T. Partition and adsorption of organic contaminants in environmental systems. John Wiley & Sons, Inc., Hoboken, New Jersey, 2002.
    [69] Kile D. E., Chiou C. T. Water solubility enhancement of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environ. Sci.Technol. 1989, 23, 832-838.
    [70] Huha S., JafféP. R., Peters C. A. Solubilization of PAH mixtures by a nonionic surfactant. Environ. Sci. Technol. 1998, 32, 930-935.
    [71] Prak D. J. L., Abriola L. M., Webber W. J., et al. Solubilization rates of n-alkanes in micellar solutions of nonionic surfactants. Environ. Sci. Technol. 2000, 34, 476-482.
    [72] Mccray J. E., Brusseau M. L. Cyclodextrin-enhanced in situ flushing of multiple-component immiscible organic liquid contamination at the field scale: mass removal effectiveness. Environ. Sci. Technol. 1998, 32, 1285-1293.
    [73] Ko S. O., Schlautman M. A., Carraway E. R. Partitioning of hydrophobic organic compounds to hydroxypropyl-β-cyclodextrin: Experimental studies and model predictions for surfactant-enhanced remediation applications. Environ. Sci. Technol. 1999, 33, 2765-2770.
    [74] Yuan S. H., Tian M., Cui Y. P., et al. Treatment of nitrophenols by cathode reduction and electro-Fenton methods. J. Hazard. Mater. 2006, B137, 573-580.
    [75] Zhou D. M., Deng C. F., Alshawabkeh A. N., et al. Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings. Environ. Int. 2005, 31, 885-890.
    [76] Acar Y. B., Gale R. J., Alshawabkeh A. N., et al. Electrokinetic remediation: basics and technology status. J. Hazard. Mater. 1995, 40, 117-137.
    [77] Acar Y. B., Alshawabkeh A. N. Electrokinetic remediation. I: pilot-scale tests with lead-spiked kaolinite. J. Geotech. Eng. 1996, 122, 173-185.
    [78] Puppala S. K., Alshawabkeh A. N., Acar Y. B., et al. Enhanced electrokinetic remediation of high sorption capacity soil. J. Hazard. Mater. 1997, 55, 203-220.
    [79] Acar Y. B., Rabbi M. F., Ozsu E. E. Electrokinetic injection of ammonium and sulfate ions into sand and kaolinite beds. J. Geotech. Geoenviron. Eng. 1997, 123, 239-249.
    [80] Wong J. S. H., Hicks R. E., Probstein, R. F. EDTA-enhanced electroremediation of metal-contaminated soils. J. Hazard. Mater. 1997, 55, 61-79.
    [81] Li Z. M., Yu J. W., Neretnieks I. A new approach to electrokinetic remediation of soils polluted by heavy metals. J. Contam. Hydrol. 1996, 22, 241-253.
    [82] Li Z. M., Yu J. W., Neretnieks I. Removal of Pb(II), Cd(II) and Cr(III) from sand by electromigration. J. Hazard. Mater. 1997, 55, 295-304.
    [83] Reddy K. R., Parupudi U. S., Devulapalli S. N., et al. Effects of soil composition on the removal of chromium by electrokinetics. J. Hazard. Mater. 1997, 55, 135-158.
    [84] Reddy K. R., Chinthamreddy S. Electrokinetic remediation of heavy metal-contaminated soils under reducing environments. Waste Manage. 1999, 19, 269-282.
    [85] Reddy K. R., Xu C. Y., Chinthamreddy S. Assessment of electrokinetic removal of heavy metals by sequential extraction analysis. J. Hazard. Mater. 2001, B84, 279-296.
    [86] Reddy K. R., Chinthamreddy S. Effects of initial form of chromium on electrokinetic remediation in clays. Adv. Environ. Res. 2003, 7, 353-365.
    [87] Reddy K. R., Chinthamreddy S. Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayed soils. J. Geotech. Geoenviron. Eng. 2003, 129, 263-277.
    [88] Reddy K. R., Chaparro C., Saichek R. E. Iodide-enhanced electrokinetic remediation of mercury-contaminated soils. J. Environ. Eng. 2003, 129, 1137-1148.
    [89] Reddy K. R., Danada S., Saichek R. E. Complicating factors of using ethylenediamine tetraacetic acid to enhance electrokinetic remediation of multiple heavy metals in clayed soils. J. Environ. Eng. 2004, 130, 1357-1366.
    [90] Reddy K. R., Chinthamreddy S. Enhanced electrokinetic remediation of heavy metals in glacial till soils using different electrolyte solutions. J. Environ. Eng. 2004, 130, 442-455.
    [91] Maturi K., Reddy K. R. Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin. Chemosphere 2006, 63, 1022-1031.
    [92] Ottosen L. M., Eriksson T., Hansen H. K., et al. Effects from different types of construction refuse in the soil on electrodialytic remediation. J. Hazard. Mater. 2002, B91, 205-219.
    [93] Riveiro A. B., Mateus E., Ottosen L. M., et al. Electrodialytic removal of Cu, Cr and As from chromated copper arsenate-treated timber waste. Environ. Sci. Technol. 2000, 34, 784-788.
    [94] Velizarova E., Ribeiro A. B., Ottosen L. M. A comparative study on Cu, Cr and As removal from CCA-treated wood waste by dialytic and electrodialytic processes. J. Hazard. Mater. 2002, B94, 147-160.
    [95] Pedersen A. J., Kristensen I. V., Ottosen L. M., et al. Electrodialytic remediation of CCA-treated waste wood in pilot scale. Eng. Geol. 2005, 77, 331-338.
    [96] Ottosen L. M., Hansen H. K., Riveiro A. B., et al. Removal of Cu, Pb and Zn in anapplied electric field in calcareous and non-calcareous soils. J. Hazard. Mater. 2001, B85, 291-299.
    [97] Kim S. O., Kim K. W. Monitoring of electrokinetic removal of heavy metals in tailing-soils using sequential extraction analysis. J. Hazard. Mater. 2001, B85, 195-211.
    [98] Kim S. O., Kim K. W., St?ben D. Evaluation of electrokinetic removal of heavy metals from tailing soils. J. Environ. Eng. 2002, 128, 705-715.
    [99] Kim S. O., Kim J. J., Yun S. T., et al. Numerical and experimental studies on cadmium (II) transport in kaolinite clay under electrical field. Water Air Water Pollut. 2003, 150, 135-162.
    [100] Kim S. O., Kim W. S., Kim K. W. Evaluation of electrokinetic remediation of arsenic-contaminated soils. Environ. Geochem. Health 2005, 27, 443-453.
    [101] Sawada A., Tanaka S., Fukushima M., et al. Electrokinetic remediation of clayed soils containing copper(II)-oxinate using humic acid as a surfactant. J. Hazard. Mater. 2003, B96, 145-154.
    [102] Sawada A., Mori K., Tanaka S., et al. Removal of Cr(VI) from contaminated soil by electrokinetic remediation. Waste Manage. 2004, 24, 483-490.
    [103] Grundl T., Michalski P. Electroosmotically drivin water flow in sediments. Water Res. 1996, 30, 811-818.
    [104] Shang J. Q., Lo K. Y. Electrokinetic dewatering of a phosphate clay. J. Hazard. Mater. 1997, 55, 117-133.
    [105] Ho S., Athmer C., Sheridan P. W., et al. Integrated in situ soil remediation technology: the lasagna process. Environ. Sci. Technol. 1995, 29, 2528-2534.
    [106] Ho S., Athmer C., Athmer C. H., et al. The lasagna technology for in situ soil remediation. 1. small field test. Environ. Sci. Technol. 1999, 33, 1086-1091.
    [107] Luo Q. S., Zhang X. H., Wang H., et al. The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil. J. Hazard. Mater. 2005, B121, 187-194.
    [108] Luo Q. S., Wang H., Zhang X. H., et al. In situ bioelectrokinetic remediation of phenol-contaminated soil by use of an electrode matrix and a rotational operation mode. Chemosphere 2006, 64, 415-422.
    [109] Yang G. C. C., Long Y. W. Removal and degradation of phenol in a saturated flow by in-situ electrokinetic remediation and Fenton-like process. J. Hazard. Mater.1999, B69, 259-271.
    [110] Yang G. C. C., Liu C. Y. Remediation of TCE contaminated soils by in situ EK-Fenton process. J. Hazard. Mater. 2001, B85, 317-331.
    [111] Li A., Cheung K. A., Reddy K. R. Cosolvent-enhanced electrokinetic remediation of soils contaminated with phenanthrene. J. Environ. Eng. 2000, 126, 527-533.
    [112] Reddy K. R., Saichek R. E. Effect of soil type on eletrokinetic removal of phenanthrene using surfactants and cosolvents. J. Environ. Eng. 2003, 129, 336-346.
    [113] Yuan C., Weng C. H. Remediating ethylbenzene-contaminated clayed soil by a surfactant-aided electrokinetic (SAEK) process. Chemosphere 2004, 57, 225-232.
    [114] Park J. Y., Lee H. H., Kim S. J., et al. Surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite. J. Hazard. Mater. in press.
    [115] Nystroem G. M., Ottosen L. M., Villumsen A. Test of experimental set-ups for electrodialytic removal of Cu, Zn, Pb and Cd from different contaminated harbor sediments. Engi. Geol. 2005, 77, 349-357.
    [116]张锡辉,王慧,罗启仕.电动力学技术在受污染地下水和土壤修复中新进展.水科学进展2001, 12, 249-255.
    [117]乔志香,金春姬,贾永刚等.重金属污染土壤电动力学修复技术.环境污染治理技术与设备. 2004, 5, 80-83.
    [118]时文歆.铅镉污染土壤动电修复试验研究.哈尔滨工业大学博士论文. 2004.
    [119] Cauwenberghe L. V. Electrokinetics. Ground-Water Remediation Technologies Analysis Center. 1997.
    [120]郭炳熴,李新?钏汕?化学电源-电池原理及制造技术.长沙:中南工业大学出版社,2000.
    [121]但锦锋,袁松虎,刘礼祥等.皂素废水处理工程的设计与调试运行.环境工程. 2006, 14, 20-21.
    [122]李德生,王宝山.曝气铁炭微电解工艺预处理高浓有机化工废水.中国给水排水. 2003, 19, 58-60
    [123]刘剑,马鲁铭,赖世华.催化铁内电解/生物膜法处理化工废水.中国给水排水. 2004, 20, 55-57.
    [124]朗印海,聂新华,贾永刚.零价铁渗透反应格删原位修复地下水中氯代烃的应用及研究进展.土壤. 2006, 38, 23-28.
    [125] Gui L., Gillham R. W., Odziemkowski M. S. Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 1. pathways and kinetics. Environ. Sci. Technol. 2000, 34, 3489-3494.
    [126] Lien H. L., Zhang W. X. Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al. Chemosphere 2002, 49, 371-378.
    [127] Comninellis C., Pulgarin C. Anodic oxidation of phenol for wastewater treatment. J. Appl. Electrochem. 1991, 21, 703-708.
    [128] Nicole J., Comninellis C. Electrochemical promotion of oxide catalyst for the gas phase combustion of ethylene. Solid State Ionics 2000, 136-137, 687-692。
    [129] Panizza M., Ouattara L., Baranova E., et al. DSA-type anode based on conductive porous p-silicon substrate. Electrochem. Commun. 2003, 5, 365-368.
    [130] Wodiunig S., Patsis V., Comninellis C. Electrochemical promotion of RuO-catalysts for the gas phase combustion of C2H4. Solid State Ionics 2000, 136-137, 813–817.
    [131] Vianin, Comninellis C. Use of Zr/ZrO2 as a counter electrode for the minimization of loss reactions in a single compartment cell. application to persulfate production. Electrochim. Acta 1998, 43, 1109-1112.
    [132] Baranova E. A.; Foti G., Comninellis C. Promotion of Rh catalyst interfaced with TiO2. Electrochem. Commun. 2004, 6, 170-175.
    [133] Fisher V., Gandinia D., Laufer S., et al. Preparation and characterization of Ti/Diamond electrodes. Electrochim. Acta 1998, 44, 521-524.
    [134] Hermann V., Dutriat D., Mülle S., et al. Mechanistic studies of oxygen reduction at La0.6Ca0.4CoO3-activated carbon electrodes in a channel flow cell. Electrochim. Acta 2000, 46, 365-372.
    [135] Duo I., Fujishima A., Comninellis C. Electron transfer kinetics on composite diamond (sp3)-graphite (sp2) electrodes. Electrochem. Commun. 2003, 5, 695-700.
    [136] Perret A., Haenni W., Skinner N., et al. Electrochemical behavior of synthetic diamond thin film electrodes. Diam. Relat. Mater. 1999, 8, 820-823.
    [137] Iniesta J., Michaud P. A., Panizza M., et al. Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim. Acta 2001, 46, 3573-3578.
    [138] Shen Z. M., Wang W. H., Jia J. P., et al. Degradation of dye solution by an activated carbon fiber electrode electrolysis system. J. Hazard. Mater. 2001, B84, 107-116.
    [139] Kuramitz H., Nakata Y., Kawasaki M., et al. Electrochemical oxidation of bispphenol A. application to the removal of bisphenol A using a carbon fiber electrode. Chemoshpere 2001, 45, 37-43.
    [140] Kuramitz H., Saitoha J., Hattorib T., et al. Electrochemical removal of p-nonylphenol from dilute solutions using a carbon fiber anode. Water Res. 2002, 36, 3323-3329.
    [141] Sonoyama N., Sakata T. Electrochemical continuous decomposition of chloroform and other volatile chlorinated hydrocarbons in water using a column type metal impregnated carbon fiber electrode. Environ. Sci. Technol. 1999, 33, 3438-3442.
    [142] Brillas E., Bastida R. M., Liosa E., et al. Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment rsing a carbon-PTFE O2-fed cathode. J. Electrochem. Soc. 1995, 142, 1733-1741.
    [143] Brillas E., Mur E., Casado J. Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode. J. Electrochem. Soc. 1996, 143, 149-152.
    [144] Brillas E., Sauleda R., Casado J. Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode. J. Electrochem. Soc. 1997, 144, 2374-2379.
    [145] Brillas E., Caple J. C., Casado J. Mineralization of 2, 4-D by advanced electrochemical oxidation processes. Water Res. 2000, 34, 2253-2262.
    [146] Boye B., Dieng M. M., Brillas E. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environ. Sci. Technol. 2002, 36, 3030-3035.
    [147] Boye B., Dieng M. M., Brillas E. Anodic oxidation, electro-Fenton and photoelectro-Fenton treatments of 2, 4, 5-trichlorophenoxyacetic acid. J. Electroanal. Chem. 2003, 557, 135-146.
    [148] Brillas E., Boye B., Banos M. A., et al. A. Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method. Chemosphere 2003, 51, 227-235.
    [149] Brillas E., Boye B., Sirés I., et al. Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim. Acta 2004, 49, 4487-4496.
    [150] Oturan M. A. An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2, 4-D. J. Appl. Electrochem. 2000, 30, 475-482.
    [151] Oturan M. A., Peiroten J., Chartrin P., et al. Complete destruction of p-pitrophenol in aqueous medium by electro-Fenton method. Environ. Sci. Technol. 2000, 34, 3474-3479.
    [152] Oturan M. A., Oturan N., Lahitte C., et al. Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent application to the mineralization of an organic micropollutant, pentachlorophenol. J. Electroanal. Chem. 2001, 507, 96-102.
    [153] Gozmen B., Oturan M. A., Oturan N., et al. Indirect electrochemical treatment of bisphenol a in water via electrochemically generated Fenton’s reagent. Environ. Sci. Technol. 2003, 37, 3716-3723.
    [154] Alvarez-Gallegos A., Pletcher D. The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. part 2: the removal of phenols and related compounds from aqueous effluent. Electrochim. Acta 1999, 44, 2483-2492.
    [155] Chou S. S., Huang Y. H., Lee S. N., et al. Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Water Res. 1999, 33, 751-759.
    [156] Huang Y. H., Chou S. S., Perng M. G., et al. Case study on the bioeffluent of petrochemical wastewater by electro-fenton method. Water Sci. Technol. 1999, 39, 145-149.
    [157] Wang Q., Lemley A. T. Kinetic model and optimization of 2, 4-D degradation by anodic Fenton treatment. Environ. Sci. Technol. 2001, 35, 4509-4514.
    [158] Wang Q., Lemley A. T. Oxidation of diazinon by anodic Fenton treatment. Water Res. 2002, 36, 3237-3244.
    [159] Zhang S. P., Rusling J. F. Dechlorination of polychlorinated biphenyls by electrochemical catalysis in a bicontinuous microemulsion. Environ. Sci. Technol. 1993, 27, 1375-1380.
    [160] Matsunaga A., Yasuhara A. Dechlorination of PCBs by electrochemical reduction with aromatic radical anion as mediator. Chemosphere 2005, 58, 897-904.
    [161] Merica S. G., Banceu C. E., Jedral W., et al. Electroreduction of hexachlorobenzene in micellar aqueous solutions of Triton-SP 175. Environ. Sci. Technol. 1998, 32, 1509-1514.
    [162] Cheng I. F., Fernando Q., Korte N. Electrochemical dechlorination of4-chlorophenol to phenol. Environ. Sci. Technol. 1997, 31, 1074-1078.
    [163] Dabo P., Cyr A., Laplante F., et al. Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol. Environ. Sci. Technol. 2000, 34, 1265-1268.
    [164] Tsyganok A. I., Otsuka K. Selective dechlorination of chlorinated phenoxy herbicides in aqueous medium by electrocatalytic reduction over palladium-loaded carbon felt. Appl. Catal. B Environ. 1999, 22, 15-26.
    [165] Liu Z. J., Betterton E. A., Arnold R. G. Electrolytic reduction of low molecular weight chlorinated aliphatic compounds: structural and thermodynamic effects on process kinetics. Environ. Sci. Technol. 2000, 34, 804-811.
    [166] Zhang C. Z., Yang J., Wu Z. D. Electroreduction of nitrobenzene on titanium electrode implanted with platinum. Mater. Sci. Eng. 2000, B68, 138-142.
    [167] Jafvert C. T., Van H. P. L., Wei C. The phase distribution of polychlorobiphenyl congeners in surfactant-amended sediment slurries. Water Res. 1995, 29, 2387-2397.
    [168] Kommalapati R. R., Valsaraj K. T., Constant W. D., et al. Aqueous solubility enhancement and desorption of hexachlorobenzene from soil using a plant-based surfactant. Water Res. 1997, 31, 2161-2170.
    [169] Chu W., Chan K. H. The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics. Sci. Total Environ. 2003, 307, 83-92.
    [170] Xu J., Yuan X., Dai S. G. Effect of surfactants on desorption of aldicarb from spiked soil. Chemosphere 2006, 62, 1630-1635.
    [171] Yang K., Zhu L. Z., Xing B. S. Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environ. Sci. Technol. 2006, 40, 4274-4280.
    [172]中国科学院南京土壤研究所.土壤理化分析(第一版).上海:上海科学技术出版社,1978.
    [173] ISO 11260-1997.土质用钡氯溶液测定有效阳离子交换能力和基本饱和水平.
    [174]李学垣.土壤化学与实验指导.北京:中国农业出版社,1997.
    [175] Deshpande S., Shiau B. J., Wade D., et al. Surfactant selection for enhancing ex situ soil washing. Water Res. 1999, 33, 351-360.
    [176] Lee D. H., Cody R. D., Kim D. J., et al. Effect of soil texture on surfactant-based remediation of hydrophobic organic-contaminated soil. Environ. Int. 2002, 27,681-688.
    [177] Ou Z. Q., Yediler A., He Y. W., et al. Adsorption of linear alkylbenzene sulfonate (LAS) on soils. Chemosphere 1996, 32, 827-839.
    [178] Rao P. H., He M. Adsorption of anionic and nonionic surfactant mixtures from synthetic detergents on soils. Chemoshere 2006, 63, 1214-1221.
    [179] Camazano M. S., Martin M. J. S., Cruz M. S. R. Sodium dodecyl sulphate-enhanced desorption of atrazine: effect of surfactant concentration and of organic matter content of soils. Chemosphere 2000, 41, 1301-1305.
    [180] Rosen M. J., Li F. The adsorption of Gemini and conventional surfactants onto some soil solids and the removal of 2-Naphthol by the soil surfaces. J. Coll. Inter. Sci. 2001, 234, 418-424.
    [181] Yang K., Zhu L. Z., Zhao B. W. Minimizing losses of nonionic and anionic surfactants to a montmorillonite saturated with calcium using their mixtures. J. Colloid Inter. Sci. 2005, 291, 59-66.
    [182] Ou Z. Q., Yediler A., He Y. W., et al. Adsorption of linear alkylbenzene sulfonate (LAS) on soils. Chemosphere 1996, 32, 827-839.
    [183] Chen B. L., Zhu L. Z., Zhu J. X., et al. Configurations of the bentonite-sorbed myristylpyridinium cation and cation and their influence on the uptake of organic compounds. Environ. Sci. Technol. 2005, 39, 6093-6100.
    [184] Li Z. H., Bowman R. S. Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite. Environ. Sci. Technol. 1997, 31, 2407-2412.
    [185] Okano T., Tamura T., Abe Y., et al. Micellization and adsorbed film formation of a binary system of anionic/nonionic surfactants. Langmuir 2006, 16, 1508-1514.
    [186] Thibaut A., Bauduin A. M. M., Broze J. G. G., et al. Adsorption of an aqueous mixture of surfactants on silica. Langmuir 2000, 16, 9192-9198.
    [187] Esumi K., Mivazaki M., Arai T., Koide Y. Mixed micellar properties of a cationic gemini surfactant and a nonionic surfactant. Colloid Surf. A-Physicochem. Eng. Asp. 1998,135, 117-122.
    [188] Garamus V. M. Formation of mixed micelles in salt-free aqueous solutions of sodium docecyl sulfate and C12E6. Langmuir 2003, 19, 7214-7218.
    [189] Wang X. Y., Wang J. B., Wang Y. L., et al. Properties of mixed micelles of cationic gemini surfactants and nonionic surfactant triton X-100: effect of the surfactant composition and the spacer length. J. Colloid Inter. Sci. 2005, 286, 739-746.
    [190] Huang L., Maltesh C., Somasundaran P. Adsorption behavior of cationic and nonionic surfactant mixtures at the alumina-water interface. J. Colloid Inter. Sci. 1996, 177, 222-228.
    [191] Huang L., Zhang R., Somasundaran P. Adsorption of mixtures of nonionic sugar-based surfactants with other surfactants at solid/liquid interfaces II. adsorption of n-dodecyl-β-D-maltoside with a cationic surfactant and a nonionic ethoxylated surfactant on solids. J. Colloid Inter. Sci. 2006, 302, 25-31.
    [192] Zhang R., Somasundaran P. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv. Colloid Inter. Sci. 2006, 123-126, 213-229.
    [193] Chen L., Xiao J. X., Ruan K., et al. Homogeneous solutions of equimolar mixed cationic-anionic surfactants. Langmuir 2002, 18,7250-7252.
    [194] Huang Z., Yan Z. L., Gu T. R. Mixed adsorption of cationic and anionic surfactants from aqueous solution on silica gel. Colloid Surf. 1989, 36, 353-358.
    [195] Ko S. O., Schlautman M. A., Carraway E. R. Effects of solution chemistry on the partitioning of phenanthrene to sorbed surfactants. Environ. Sci. Technol. 1998, 32, 3542-3548.
    [196] Sheremata T. W., Hawari J. Cyclodextrins for desorption and solubilization of 2, 4, 6-trinitrotoluene and its metabolites from soil. Environ. Sci. Technol. 2000, 34, 3462-3468.
    [197] Fathepure B. Z., Tiedje J. M., Boyd S. A. Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzenes in anaerobic sewage sludge. Appl. Environ. Microbiol. 1988, 54, 327-330.
    [198] Pavlostathis S. G., Prytula M. T. Kinetic of sequential microbial reductive dechlorination of hexachlorobenzene. Environ. Sci. Technol. 2000, 34, 4001-4009.
    [199] Lee C. L., Fang M. D. Sources and distribution of chlorobenzenes and hexachlorobutadiene in surficial sediments along the coast of southestern Taiwan. Chemosphere 1997, 35, 2039-2050.
    [200] Adrian L., G?risch H. Microbial transformation of chlorinated benzenes under anaerobic conditions. Res. Microbiol. 2002, 153, 131-137.
    [201] Hunter R. J. Zeta Potential in Colloid Science: Principles and Applications. Academic Press 1981, London.
    [202] Hamed J. T., Bhadra A. Influence of current density and pH on electrokenetics. J.Hazard. Mater. 1997, B55, 279-294.
    [203] Yeung A. T., Hsu C. N. Electrokinetic remediation of cadmium-contaminated clay. J. Environ. Eng. 2005, 131, 298-304.
    [204] Giannis A., Gidarakos E. Washing enhanced electrokinetic remediation for removal cadmium from real contaminated soil. J. Hazard. Mater. 2005, B123, 165-175.
    [205]傅献彩.物理化学.北京:高等教育出版社,1990.
    [206] Yeung A. T. Fundamental aspects of prolonged electrokinetic flows in kaolinites. Geomech. Geoeng. Inter. J. 2006), 1(1), 13-25.
    [207] Ko S. O., Schlautman M. A., Carraway E. R. Effects of solution chemistry on the partitioning of phenanthrene to sorbed surfactants. Environ. Sci. Technol. 1998, 32, 3542-3548.
    [208] Miller M. M., Waslk S. P., Huang G. L., et al. Relationship between octanol-water partition coefficient and aqueous solubility. Envrion. Sci. Technol. 1985, 19, 522-529.
    [209] Rohrs J., Ludwig G., Rahner D. Electrochemically induced reactions in soils -a new approach to the in-situ remediation of contaminated soils? Part 2: remediation experiments with a natural soil containing highly chlorinated hydrocarbons. Electrochim. Acta 2002, 47, 1405-1414.
    [210] Arias M., Novo C. P., Osorio F., et al. Adsorption and desorption of copper and zinc in the surface layer of acid soils. J. Colloid Inter. Sci. 2005, 228, 21-29.
    [211] Srivastava P., Singh B., Angove M. Competitive adsorption behavior of heavy metals on kaolinite. J. Colloid Inter. Sci. 2005, 290, 28-38.
    [212] Stobel B. W., Hansen H. C. B., Borggaard O. K., et al. Cadmium and copper release kinetics in relation to afforestation of culcultivated soil. Geochim. Cosmochim. Acta 2001, 65, 1233-1242.
    [213] Atanassova I., Okazaki M. Adsorption-desorption characteristics of high levels of copper in soil clay fractions. Water Air Soil Pollut. 1997, 98, 213-228.
    [214] ?ren A. H., Kaya A. Factors affecting adsorption characteristics of Zn2+ on two natural zeolites. J. Hazard. Mater. 2006, B131, 59-65.
    [215] Phillips I. R., Lamb D. T., Warker D. W., et al. Effect of pH and salinity on copper, lead, and zinc sorption rates in sediments from moreton bay, Australia. Bull. Environ. Contam. Toxical. 2004, 73, 1041-1048.
    [216] You C. N., Liu J. C. Desorptive behavior of chlorophenols in contaminated soils.Water Sci. Technol. 1996, 33, 263-270
    [217] Gupta V. K., Ali I., Saini V. K. Removal of chlorophenols from wastewater using red mud: an aluminum industry waste. Environ. Sci. Technol. 2004, 38, 4012-4018.
    [218] Agrawal A., Tratnyek P. Reduction of nitro aromatic compounds by zero-valent iron metal. Environ. Sci. Technol. 1996, 30, 153-160.
    [219] Mantha R., Taylor K. E., Biswas N., et al. A continuous system for Fe0 reduction of nitrobenzene in systhetic wastewater. Environ. Sci. Technol. 2001, 35, 3231-3236.
    [220] Mu Y., Yu H. Q., Zheng J. C., et al. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron. Chemosphere 2004, 54, 789-794.
    [221] Gui L., Gillhan R. W., Odziemkowski M. S. Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 1. pathways and kinetics. Environ. Sci. Technol. 2000, 34, 3489-3494.
    [222]叶康民.金属腐蚀与防护概论(第三版).北京:高等教育出版社1993.
    [223] Klausen J., Tr?ber S. P., Haderlein S. B., et al. Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions. Environ. Sci. Technol. 1995, 29, 2396-2404.
    [224] Pecher K., Haderlein S. B., Schwarzenbach R. P. Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides. Environ. Sci. Technol. 2002, 36, 1734-1741.
    [225] Hofstetter T. B., Schwarzenbach R. P., Haderlein S. B. Reactivity of Fe(II) species associated with clay minerals. Environ. Sci. Technol. 2003, 37, 519-528.
    [226] Hofstetter T. B., Neumann A., Schwarzenbach R. P. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectities. Environ. Sci. Technol. 2006, 40, 235-242.
    [227] Saracco G., Solarino L., Aigotti R., et al. Electrochemical oxidation of organic pollutants at low electrolyte concentrations. Electrochim. Acta 2000, 46, 373-380.
    [228] Azzam M. O., Al-Tarazi M., Tahhoub Y. Anodic destruction of 4-chlorophenol solution. J. Hazard. Mater. 2000, B75, 99-113.
    [229]冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用.北京:化学工业出版社,2002.
    [230] Hu S. S., Xu C. L., Wang G. P., et al. Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbonelectrode. Talanta 2001, 54, 115-123.
    [231] Luz R. C. S., Damos F. S., Oliveira A. B., et al. Voltammetric determination of 4-nitrophenol at a lithium tetracyanoethylenide (LiTCNE) modified glassy carbon electrode. Talanta 2004, 64, 935-942.
    [232] Canizares P., Saez C., Lobato J., et al. Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes, Ind. Eng. Chem. Res. 2004, 43, 1944-1951.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700