用户名: 密码: 验证码:
大跨度立交桥抗震设计理论与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震是严重危害人类的一大自然灾害。在强震作用下,结构一般都处于非线性状态,如支座位移过大导致落梁、相邻结构物之间发生碰撞等等。在现代交通系统中,特别是在城市交通体系中,大跨度城市立交桥梁越来越多的被采用。为了提高桥梁抗震分析的水准和改进设计,也因为大跨度桥梁地震响应的复杂和独特性,加强结构的非线性理论研究具有十分重要的意义。
    本文在前人研究的基础上,对大跨度桥梁空间地震反应进行了一些理论分析,发展了相应计算机抗震分析程序,对于桥梁抗震非线性分析理论中的支座单元、碰撞等问题做了研究工作。在此基础上,应用本文的程序对大型立交桥梁结构作了动力性能分析,从而在一定程度上加深了对结构在地震作用下的动力性能的认识。本文主要完成了下列一些工作内容:
    1、大跨度城市立交曲线梁桥的动力特性分析和破坏模式的研究,对北京的一座大跨度城市立交曲线梁桥动力特性及其地震响应进行了深入研究。同时,对比了现场实测和分析计算结果,用理论与试验相结合的方法对该桥的抗震性能做出基本评价,并通过计算分析比较了双向地震输入与单向地震输入的计算误差。
    2、将城市桥梁简化为支承在多个弹性支座上的刚性曲线梁桥模型,提出了地震反应的简化分析方法,系统地总结和分析了各种因素对曲线桥梁动力反应的影响规律,给出了频率和振型的计算公式,编制了相应的计算图表,可供初步设计参考。
    3、扩展了IDARC-BRIDGE(GAO)的功能,在联桥模型中加入了碰撞单元,使之成为适用于大跨度城市立交桥梁抗震分析的有效工具,并将它应用于大跨度城市立交桥梁的抗震研究和设计计算。
    4、对城市立交桥梁,用上述计算工具,应用非线性时程分析方法探讨了地震作用下城市立交桥梁相邻联的非同向振动特性和伸缩缝处的碰撞效应。根据分析研究成果建议了减小相邻联非同向振动和伸缩缝处碰撞效应的措施和方法。此外还发展了桥梁上部结构在地震荷载下相对位移的简化计算方法,使工程设计人员
As one of the most devastating natural disaster, earthquakes always cause tremendous losses of life and property. Under great earthquake, bridge may go into nonlinear phase, for example, unseating caused by excessive seismic displacement of bearing, pounding between adjacent structures, etc. As the development of modern traffic system, long span bridge are adopted more widely, for the complexity and the particularity, it’s important to intensify the research of structural nonlinear theory for the sake of improving the level of seismic analysis and design of bridge structures.
    Based on the previous research achievements in this field, nonlinear analyses of bridge structure including pounding effect are studied in this dissertation. As a result, finite element models suitable for large scale structure are introduced and a program for seismic analysis of bridge system is developed on the basis of IDARC-BRIDGE program. The dynamic analyses of some bridges are carried out using this program and then some insights in comprehension of the structure dynamic characteristics are brought into. The main contents of this dissertation are described as follows:
    1. In this paper, a study of the seismic response of long span curved bridges is conducted. Multiple-span bridges with up to seven spans are analyzed. The in-situ responses and analysis results were evaluated. The combined effects of the earthquake excitations in the two horizontal directions are also discussed. The coupling between the flexural modes and torsion modes, which exists in the curved bridge, is significant. This is determined by the characters of the curved bridges, but it, cannot be identified when the bridge regarded as straight beams.
    2. A simplified bridge model suitable for use in a parametric study of curved highway bridges with stiffness eccentricity is presented. The proposed model is simple, yet it captures essential features that affect the dynamic response of these bridges. Using this simplified model, formulas for computing earthquake response of the bridges are presented and parameters that significantly influence the dynamic response of curved bridges are identified. The study indicates that
    the response of a given curved bridge depends on the radius of the curved bridges, width of the deck and central angle of the curved bridges. The calculated results of natural frequencies for the proposed bridge system are illustrated in tables and diagrams. These results can be employed in primarily seismic design. 3. IDARC-BRIDGE is extended for seismic assessment of long span bridge through adding Pounding Element and Tension-Gap-Yield element. The dynamic characteristics and seismic response for pounding effect of elevated bridges is computed with this program and ANSYS. The results of analyses and comparisons demonstrate the modified procedure is accurate. 4. Pounding of adjacent superstructure segments in elevated bridges during severe earthquake can results in significant damage. In the study, analytical modal are used to examine the factors affecting the global responses of a multi-span bridge due to pounding of adjacent frames. The results show that the influence of pounding on the structural response is significant in the longitudinal direction of the bridge and significantly depend on the gap size between superstructure segments. Parameters studies of one-sided pounding are conducted to determine the effects of span stiffness ratio on the pounding response of bridge frames. This paper also proposes a method to estimate the maximum relative displacement between adjacent elastic structures subjected to seismic traveling waves. The method, seeks the cross-correlation between the responses of adjacent structures subjected to earthquake excitation with time lag. 5. For highway bridges being as lifeline structures, it is essential that residual displacement after an earthquake should be smaller than the acceptable maximum value so that the bridges can be easier repaired. Both the maximum displacement and the residual displacement are important in seismic design. Residual displacement is undesirable because it causes difficulty in repair and reconstruction after earthquake. Damage indices available in the literature, either based on ductility, energy dissipation or a combination of both are discussed. The concept of residual deformation as a critical complementary indicator to cumulative damage is introduced in the paper. In addition the P-Delta effect is corporated into the corresponding post-yield stiffness and
引文
1 Tatsuo Ogata, Koji Osada. Seismic Retrofitting of Expressway Bridges in Japan, Cement and Concrete Composites. 2000,22:17~27
    2 赵成刚,冯启民. 生命线地震工程. 地震出版社,1994: 91~116
    3 W. S. Tseng, J. Penzien. Seismic Analysis of Long Multiple-Span Highway Bridges. Earthquake Engineering and Structural Dynamics. 1975,4:3~24
    4 W. S. Tseng, J. Penzien. Seismic Response of Long Multiple-Span Highway Bridges. Earthquake Engineering and Structural Dynamics. 1975,4:25~48
    5 D. Williams, W. Godden. Seismic Response of Long Curved Bridge Structures:Experimental Model Studies. Earthquake Engineering and Structural Dynamics. 1979,7:107~128
    6 K. Kawashima, J. Penzien. Theoretical and Experimental Dynamic Behaviour of a Curved Model Bridge Structure. Earthquake Engineering and Structural Dynamics. 1979,7:129~145
    7 J. A. Richardson, B. M. Douglas. Results from Filed Testing a Curved Box Girder Bridge Using Simulated Earthquake Loads. Earthquake Engineering and Structural Dynamics. 1993,22:905~922
    8 M. N. Abdel-Salam, C. P. Heins. Seismic Response of Curved Steel Box Girder bridges. Journal of Structural Engineering. 1988,114(12): 2790~2800
    9 Y. Chen. Effects of Modeling and Analysis Methods on Seismic Responses of Curved Bridges. Engineering Mechanics: Proceedings of 10th Conference, University of Colorado at Boulder, Boulder, CO., ASCE, 1995,2:1078~1081
    10 J. Senthilvasan, G. H. Brameld, D. P. Thambiratnam. Vibration Analysis of Continuous Curved Bridges. Fourteenth Australasian Conference on the Mechanics of Structures and Materials, University of Tasmania, Hobart, Australia. December 11-13, 1995:152~157
    11 R. Singh. Seismic Response Analysis of Curved Bridge. Individual Studies by Participants: The International Institute of Seismology and Earthquake
    Engineering. 1996,32:233~249
    12 J. S. Davidson, C. H.Yoo. Local Buckling of Curved I-Girder Flanges. Journal of Structural Engineering. 1996,122(8): 936~947
    13 C. H. Yoo, Y. J. Kang, J. S. Davidson. Buckling Analysis of Curved Beams by Finite Element Discretization. Journal of Engineering Mechanics. 1996,122, (8): 762~770
    14 J. S. Davidson, M. A. Keller, C. H. Yoo. Cross-Frame Spacing and Parametric Effects in Horizontally Curved I-Girder Bridges. Journal of Structural Engineering. 1996,122(9): 1089~1096
    15 R. Desroches, G. L. Fenves. Evaluation of Recorded Earthquake Response of a Curved Highway Bridge. Earthquake Spectra. 1997,3(3): 363~386
    16 T. Hyashikawa, A. Otake, A. Nakajima. Nonlinear Behavior of Curved Viaducts Subjected to Three-dimensional Earthquake Ground Motions. The 10th Earthquake Engineering Symposium Proceedings. Paper No. G1-20, Architectural Institute of Japan, Tokyo, 1998,2:2391~2396
    17 Otsuka, Hisanori. Dynamic Analysis of Sliding Behavior of Curved Bridge Superstructure Caused by Horizontal Ground Motion. Bulletin of Earthquake Engineering Laboratory, Kyushu University, August 8-9, 1998
    18 W. X. Zhang. Horizontally Curved Steel Box Girder Bridge Analysis. Paper No. T165-3. Structural Engineering Worldwide [computer file], Elsevier Science Ltd., Oxford, England. 1998
    19 A. Zureick, R. Naqib, J. M. Yadlosky. Curved Steel Bridge Research Project Interim Report I: Synthesis. FHWA-RD-93-129, Federal Highway Administration, VA. 1993
    20 A. Zureick, R. Naqib. Horizontally Curved Steel I-Girders: State-of-the-Art Analysis Methods. Journal of Bridge Engineering. 1999,4(1): 38~47
    21 P. C. Chang, C. P. Heins, G. H. Li, D. Shi. Seismic Study of Curved Bridges Using the Rayleigh-Ritz Method. Computers and Structures. 1985,21(6): 1095~1104
    22 袁万城, 王玉贵, 杨玉民, 范立础. 曲线梁桥空间地震反应分析. 第十二届全国桥梁学术会议论文集,广州,1996:585~590
    23 秦权, 张威, 罗玲. 用非弹性反应检查立交桥的抗震能力. 土木工程学报. 1996,29(4): 3~10
    24 朱东生, 虞庐松, 刘世忠. 不规则桥梁地震动输入主方向的研究. 兰州铁道学院学报(自然科学版). 2000, 19(6): 37~40
    25 李杰, 李国强. 地震工程学导论. 地震出版社, 1992
    26 M. F. Giberson. Two Nonlinear Beams with Definitions of Ductility. ASCE, ST2. 1969,95:137~157
    27 朱伯龙, 董振祥. 钢筋混凝土非线性分析. 同济大学出版社, 1985
    28 潘士颉, 许哲明. 框架结构的非线性地震反应分析. 同济大学学报. 1980, (2): 43~63
    29 杜宏彪,沈聚敏. 在任意加载路径下双轴弯曲钢筋混凝土柱的非线性分析.地震工程与工程振动. 1990,10(3): 41~55
    30 汪梦甫, 周锡元. 钢筋混凝土剪力墙多垂直杆非线性单元模型的改进及其应用. 建筑结构学报. 2002,23(1): 38~57
    31 杜修力. 钢筋混凝土结构弹塑性地震反映分析文献综述. 世界地震工程. 1990,(4):1~7
    32 康洪震. 双向水平荷载作用下钢筋混凝土柱全过程分析. 河北理工学院学报. 2000,22(2): 85~91
    33 陈滔,黄宗明. 钢筋混凝土框架非弹性地震反应分析模型研究进展. 世界地震工程. 2002,18(1): 91~97
    34 薛伟辰,张志铁. 钢筋混凝土结构非线性全过程分析方法及其应用. 计算力学学报. 1998,16(3): 332~342
    35 薛伟辰,周氐,吕志涛. 混凝土杆系结构滞回全过程分析. 工程力学. 1996,13 (3): 8~16
    36 叶献国. 基于非线性分析的钢筋混凝土结构地震反应与破损的数值模拟. 土木工程学报. 1998,31(4): 3~13
    37 徐伟良,吴德伦. 钢筋混凝土框架全过程分析的非线性简化单元及其应用.建 筑结构学报. 1995,16(3): 59~65
    38 王耀伟. 平面不规则结构非弹性地震反应规律研究. 重庆大学博士学位论文. 2003
    39 A. Zeris, A. Stephen Mahin. Behavior of Reinforced Concrete Structures Subjected to Biaxial Exciation. Journal of Structural Engineering. 1991,117(9): 2657~2673
    40 A. Zeris, A. Stephen Mahin. Analysis of Reinforced Concrete Beam-Columns under Uniaxial Exciation. Journal of Structural Engineering. 1988,114 (4): 804~820
    41 E. Spacone, V. Ciampi, F. C. Filippou. Mixed Formulation of Nonlinear Beam Finite Element. Computers and Structures. 1996,58(1): 71~83
    42 T. Okada. Analysis of the Hachinohe Library Damaged by 1968 Tokachi-Okiea Earthquake. Proc. Japan-U.S. Seminar on Earthquake Engineering with Emphasis on the Safety Buildings, Sendai, Japan, 1969, 172~189
    43 T. Takeda, M. A. Sozen, N. N. Nielsen. Reinforced Concrete Response to Simulated Earthquakes. J. Struct. Div., ASCE, 1970,96:2557~2573
    44 H. Takizawa, H. Aoyama. Biaxial Effects in Modeling Earthquakes Response of R/C Structures. EESD. 1976, (4): 532~552
    45 N. C. Nigam. Yielding in Framed Structures under Dynamic Loads. ASCE, EM5, 1970,106: 687~709
    46 S. K. Kunnath, A. M. Reinhorn. Model for Inelastic Biaxial Bending Interation of Reinforced Concrete Beam-Columns. ACI structural Journal. 1990, 87(3): 284~291
    47 张寰华. 空间框架结构对多维地面运动的弹塑性动力反应. 地震工程与工程振动. 1983, 3(1): 25~42
    48 M. S. Williams, R. G. Sexsmith. Seismic Assessment of Concrete Bridge Using Inelastic Damage Analysis. Engineering Structure. 1997, 19(3): 208~216
    49 A. M. Reihorn, V. Simeonov, G. Mylonakis. IDARC-BRIDGE: A Computational Platform for Seismic Damage Assessment of Bridge Structures. University at Buffalo, State University of New York, MCEER Report: 98-0011
    50 E. Spacone, F. C. Filippou, F.F. Taucer. Fiber Beam-Column Model for Nonlinear Analysis of R/C Frames: Part1. Formulation. Earthquake Engng. Struct. Dyn. 1996, 25: 711~725
    51 E. Spacone, F. C. Filippou, F.F. Taucer. Fiber Beam-Column Model for Nonlinear Analysis of R/C Frames: Part2. Application. Earthquake Engng. Struct. Dyn. 1996, 25: 726~742
    52 G. H. Powell, Paul Fu-Song Chen. 3D Beam-Column Element with Generalized Plastic Hinges. Journal of Engineering Mechanics. 1986, 112(7): 627~641
    53 A. S. Elnashai, D. C. Mcclure. Effect of Modeling Assumptions and Input Motion Characteristic on Seismic Design Parameters of RC Bridge Piers. Earthquake Eng. Stru. Dyn. 1996, 25:435~463
    54 M. Petrange, P. E. Pinto, V. Ciampi. Fiber Element for Cyclic Bending and Shear of RC Structure. (Ⅰ) Theory, (Ⅱ) Verification. Journal of Structure Engineering. ASCE, 1999, 125(9): 994~1009
    55 S. S. Lai, G. T. Will, S. Otani. Model for Inelastic Biaxial Bending of Concrete Members. J. Struc. Engng. 1984, 110(10): 2536~2584
    56 S. S. Lai, G. T. Will. R/C Space Frames with Column Axial Force and Biaxial Bending Moment Interactions. J. Struc. Engng. 1986, 112(7): 1553~1572
    57 李康宁,Kubo T, C. E. Ventura. 建筑物三维分析模型及其用于结构地震反应分析的可靠性. 建筑结构. 2000, 30 (6): 14~18
    58 李康宁,洪亮,叶献国. 结构三维弹塑性分析方法及其在建筑物震害中的研究. 建筑结构. 2001,31(3): 53~57
    59 M. Saiidi, G. Ghusn, Y. Jiang. Five-Spring Element for Biaxially Bend R/C Columns. Journal of Structural Engineering. 1989,115(2): 398~416
    60 Yang Jiang, Mehdi Saiidi. Four-Spring Element for Cyclic Response of R/C Columns. Journal of Structural Engineering. 1990,116(4): 1018~1029
    61 陈以一,沈祖炎. 反复变动轴力作用下钢柱的数值分析模型. 同济大学学报. 1994, 22(4): 499~504
    62 孙飞飞. 高层钢筋混凝土空间框架结构地震反应的仿真分析. 同济大学博士 学位论文. 1999
    63 Yi-Kwei Wen. Method for Random Vibration of Hysteretic System. Journal of Engineering Mechanism. 1976,102(2): 249~263
    64 Y. J. Park, Y. K. Wen, A. H. S. Ang. Random Vibration of Hysteretic System under Bi-directional Ground Motion. Earthquake Engineering and Structural Dynamics. 1986,14(4): 543~557
    65 李贤兴. 强震作用下混凝土多层建筑的空间随机响应分析及其损伤评估. 西南交通大学研究生博士学位论文. 1991
    66 C. Christopoulos, S. Pampanin, M. J. N. Priestley. Performance-Based Seismic Response of Frame Structures including Residual Deformations. Part Ⅰ: Single-Degree of Freedom Systems. Journal of Earthquake Engineering. 2003,7 (1): 97~118
    67 S. Pampanin, C. Christopoulos, M. J. N. Priestley. Performance-Based Seismic Response of Frame Structures including Residual Deformations. Part Ⅱ: Multi-Degree of Freedom Systems. Journal of Earthquake Engineering. 2003,7 (1): 119~147
    68 M. J. N. 谱瑞斯特雷. 桥梁抗震设计与加固. 袁万城,胡勃,韦晓等译. 人民交通出版社, 1997
    69 朱晞. 钢筋混凝土桥梁延性抗震设计的研究及发展. 桥梁建设. 2000,(1):1~5
    70 Y. J. Park, A. H. S. Ang. Mechanistic Seismic Damage Model for Reinforced Concrete. J. Struct. Engng. 1985, 114(4): 722~739
    71 Y. J. Park, A. H. S. Ang, Y. K. Wen. Seismic Damage Analysis of Reinforced Concrete Buildings. J. Struct. Engng. 1985, 114(4): 740~757
    72 A. Ghobarah, H. Abou-Elfath, A. Biddan. Response-based Damage Assessment of Structures. Earthquake Engng. Struct. Dyn. 1999, 28:79~104
    73 潘龙,孙利民,范立础. 基于推倒分析的桥梁地震损伤评估模型与方法. 同济大学学报. 2001,29(1): 10~14
    74 侯钢领,何政,吴斌,欧进萍. 钢筋混凝土结构的屈服位移Chopra 能力谱损伤分析与性能设计. 地震工程与工程振动. 2001,21(3): 29~35
    75 何政,欧进萍. 钢筋混凝土耗能减震结构的地震损伤简化分析方法. 地震工程与工程振动. 2001,21(4): 74~81
    76 叶献国,种迅,李康宁,周锡元. Pushover 方法与循环往复加载分析的研究.合肥工业大学学报. 2001,24(6): 1019~1024
    77 陈永祁, 龚思礼. 结构在地震动时延性和累积塑性耗能的双重破坏准则. 建筑结构学报. 1986,7(1)
    78 阎贵平. 梁式桥弹塑性地震反应与实用延性抗震设计方法的基础研究. 同济大学博士学位论文. 1989
    79 G. W. Housner. Behavior of Structures during Earthquake. J. of EM Div., ASCE. 1959,85(5)
    80 K. Kawashima, G. A. Macrae, J. Hoshikuma. Residual Displacement Response Spectrum. Journal of Structural Engineering. 1998,124 (5): 523~530
    81 G. A Macrae, K. Kawashima. Post-Earthquake Residual Displacements of Bilinear Oscillators. Earthquake Engineering and Structural Dynamics. 1997, 26: 701~716
    82 P. C. Jennings. Engineering Features of the San Fernando Earthquake of February 9, 1971. Rep. No. EERL-71-02, Earthquake Engrg. Res. Laboratory, Calif. Inst. of Tech., Pasadena, Calif. 1971
    83 Earthquake Engineering Research Institute (EERI). Northridge Earthquake Reconnaissance Report, Vol. 1. Rep. No. 95-03, EERI, Oakland, Calif. 1995a
    84 Earthquake Engineering Research Institute (EERI). The Hyogo-Ken Nanbu Earthquake Reconnaissance Report, Vol. 1. Rep. No. 95-04, EERI, Oakland, Calif. 1995b
    85 Earthquake Engineering Research Institute (EERI). 1999 Chi-Chi, Taiwan, Earthquake Reconnaissance Report. Rep. No. 01-02, EERI, Oakland, Calif. 2001
    86 B. F. Maison, K. Kasai. Dynamics of Pounding When Two Building Collide. Earthquake Engng. Struct. Dyn. 1992, 21:771~786
    87 W. Bradford Cross, P. Nicholas Jones. Seismic Performance of Joist-Pocket Connections: I. Modeling II. Application. Journal of Structural Engineering. 1993, 119(10):2986~3023
    88 C. P. Pantelides, X. Ma. Linear and Nonlinear Pounding of Structural Systems. Computers and structures. 1998,66(1): 79-92
    89 R. O. Davis. Pounding of Buildings Modeled by An Impact Oscillator. Earthquake Engineering and Structural Dynamical. 1992,21:253-274
    90 M. Papadrakakis, H. Mouzakis, S. Bitzarakis. Dynamic Contact between Adjacent Structures Using a Formulation with Lagrange Multipliers. Proceedings of the European Conference on Structural Dynamics. 1991, p 913
    91 M. Papadrakakis, H. Mouzakis, N. Plevris, S.Bitzarakis. Lagrange Multiplier Solution Method for Pounding of Buildings during Earthquakes. Earthquake Engineering & Structural Dynamics, 1991,20(11):981~998
    92 Hao Hong, Liu XueYi, Shen Jay. Pounding Response of Adjacent Buildings Subjected to Spatial Earthquake Ground Excitations. Advances in Structural Engineering. 2000,3(2):145~162
    93 姚玲森. 曲线梁. 人民交通出版社, 1989
    94 邵容光等. 混凝土弯梁桥. 人民交通出版社, 1994
    95 孙广华. 曲线桥计算. 人民交通出版社,1995
    96 中华人民共和国交通部标准.公路工程抗震设计规范(JTJ 004-89).北京:人民交通出版社,1990
    97 中华人民共和国国家标准.铁路工程抗震设计规范(GBJ111-87).北京:中国铁道出版社,1988
    98 A. Zureick, R. Naqib, J. M. Yadlosky. Curved Steel Bridge Research Project Interim Report I: Synthesis. FHWA-RD-93-129, Federal Highway Administration, VA. 1993
    99 A. Zureick, R. Naqib. Horizontally Curved Steel I-Girders: State-of-the-Art Analysis Methods. Journal of Bridge Engineering. 1999,4(1):38~47
    100 Heinere Howard. Girder Flange and Cross-Frame Members Earthquake Induced Stress: Comparing Straight and Horizontally Curved Bridge Elements. Research Experience for Undergraduates. Univ. Alabama at Birmingham. 1999
    101 Charles G. Culver. Natural Frequencies of Horizontally Curved Beams. Journal of Structure Division. 1967,(4): 189~203
    102 Katsushi ljima, Hiroyuki Obiya, Gunji Aramaki, Noriaki Kawasaki. A Study on Preventing the fall of Skew and Curved Bridge Decks by Using Rubber Bearings. Structural Engineering and Mechanics. 2001,12(4):347~362
    103 J. Y. Meng, E. M. Lui. Seismic Analysis and Assessment of A Skew Highway Bridge. Engrg. Struct. 2000, (22):1433~1452
    104 J. Y. Meng, E. M. Lui, Y. Liu. Dynamic Response of Skew Highway Bridges. Journal of Earthquake Engineering. 2001, 5(2):205~223
    105 James M. Kelly. Earthquake-Resistant Design with Rubber. Second Edition. 1997
    106 中华人民共和国国家标准(GB50011-2001). 建筑抗震设计规范. 北京:中国建筑工业出版社,2001
    107 C. Menun, A. D. Kiureghian. A Replacement for the 30%, 40% and SRSS Rules for Multicomponent Seismic Analysis. Earthquake Spectra, 1998,14:163~163
    108 高晓安. 曲线桥梁抗震设计方法研究. 中国建筑科学研究院博士学位论文. 2003
    109 T. K. Caughey. Random Excitation of a System with Bilinear Hysteresis. J. Appl. Mech. Trans. ASME. 1960, 27(10):649~652
    110 林家浩, 丁殿明, 田玉山. 串联多自由度体系弹塑性地震反应分析. 大连工学院学报. 1979, 18(4):41~53
    111 W. D. Iwan. A Distributed Element Model for Hysteresis and Its Steady-State Dynamic Responses. J. Appl. Mech. 1966, 33: 893~900
    112 Y. K.Wen. Equivalent Linearization for Hysteretic Systems under Random Excitation. J. Appl., Mech. ASME. 1980, 47(1):150~154
    113 T. T. Baber, Y. K. Wen. Random Vibration of Hysteretic Degrading Systems. J. Eng. Mech. Div. ASCE. 1981,107:1069~1087
    114 R. Bouc. Forced Vibration of Mechanical Systems with Hysteresis. Proc. 4th Conf. Nonlinear Oscillation. Prague. Czechoslovakia. 1967
    115 T. T. Baber, Y. K.Wen. Stochastic Response of Multistory Yielding Frames. Earthquake Engineering and Structural Dynamic. 1982, 10: 403~416
    116 Y. J. Park, Y. J. Wen, A.Ⅱ-S. Ang. Random Vibration of Hysteretic Systems Under Bi-directional Ground Motions. Earthquake Engineering and Structural Dynamics. 1986,14:543~557
    117 R. Jankowski, K. Wilde, Y. Fuzino. Pounding of Superstructure Segments in Isolated Elevated Bridge during Earthquakes. J. Earthquake Eng. Struct. Dyn. 1998,27:487~502
    118 R. Jankowski, K. Wilde, Y. Fuzino. Reduction of Pounding Effects in Elevated Bridges during Earthquake. J. Earthquake Eng. Struct. Dyn. 2000,29:195~212
    119 S. A. Anagnostopoulos, K. V. Spiliopoulos. An Investigation of Earthquake Induced Pounding between Adjacent Buildings. Earthquake Engng. Struct. Dyn. 1992,21:289~302
    120 S. A. Anagnostopoulos. Pounding of Buildings in Series during Earthquakes. Earthquake Engng. Struct. Dyn. 1988,16:443~456
    121 J. Azevedo, R. Bento. Design Criteria for Buildings Subjected to Pounding. 11th World Conf. Earthquake Engineering. Acapulco, Mexico, 23-28 June, paper No. 1063. 1996
    122 金星, 廖振鹏. 地震动随机场的物理模拟. 地震工程与工程振动. 1994,14(3):11~19
    123 林家浩,张亚辉,赵岩. 大跨度结构抗震分析方法及近期进展. 力学进展. 2001,31(3):350~360
    124 林家浩,钟万勰,张亚辉. 大跨度结构抗震计算的随机振动方法. 建筑结构学报. 2000,21(1):29~36
    125 Panos Trochalakis, Marc O. Eberhard, John F. Stanton. Design of Seismic Restrainers for In-span Hinges. Journal of Structural Engineering. 1997,123(4): 469~478
    126 A. Caner, E. Dogan, P. Zia, P. E., M. Hon. Seismic Performance of Multisimple-Span Bridges Retrofitted with Link Slabs. Journal of Bridges Engineering. March/April. 2002
    127 Matthew J. Randall, M. Saiidi, Makos E. Marragakis, Tatjana Isakovic. Restrainer Design Procedures for Multi-span Simply-Supported Bridges. MCEER-99-0011
    128 Reginald DesRoches, Gregory L. Fenves. Design Procedures for Hinge Restrainer and Hinge Seat Width for Multiple-Frame Bridges. MCEER-98-0013
    129 A. Shibata, J. M. Sozen. The Subsitute Structure Method for Seismic Design in Reinforced Concrete. Journal of Structural Division. 1976,102:1~18
    130 V. Kilar, P. Fajfaar. Simple Pushover Analysis of Asymmetric Buildings. Earthquake Engng. Struct. Dyn. 1997, 26:233~249
    131 D. Bernal. Amplification Factors for Inelastic Dynamic P-Delta Effects in Earthquake Analysis. Earthquake Engineering and Structural Dynamics. 1987,15: 635~651
    132 M. Aschheim. The Representation of P-Delta Effects Using Yield Point Spectra. Engineering Structures. 2003,25:1387~1396
    133 P. Fajfar. Equivalent Ductility Factors, Taking into Account Low-cycle Fatigue. Earthquake Engineering and Structural Dynamics. 1992,21: 837~848
    134 E. Cosenza, G. Manfredi, R. Ramasco. The Use of Damage Functionals in Earthquake Engineering: A Comparison between Different Methods. Earthquake Engineering and Structural Dynamics. 1993, 22:855~868
    135 周建春,刘光栋. 大跨度公路桥梁抗震分析研究. 桥梁建设. 1998, (1):5~9
    136 邱法维,李文峰,潘鹏,钱嫁如. 钢筋混凝土柱的双向拟静力实验研究. 建筑结构学报. 2001,22(5): 26~31
    137 范立础. 桥梁工程(上册). 人民交通出版社, 1987
    138 刘庆华. 钢筋混凝土桥墩抗震设计中滞回模型与损伤模型的实验与理论研究. 北方交通大学博士学位论文. 1994
    139 杜修力. 钢筋混凝土框架结构弹塑性地震反应的计算机仿真研究. 哈尔滨国家地震局工程力学研究所博士学位论文. 1989
    140 李宏男. 结构多维抗震理论设计方法. 科学出版社, 1998
    141 王东升,冯启民,凌贤长,翟桐. 桥梁非线性地震反应分析若干问题研究现状. 地震工程与工程振动. 2002,22 (1):61~66
    142 姬守中, 江欢成. 考虑轴向变形、双轴弯曲耦合效应的钢筋混凝土柱的弹塑性分析. 地震工程与工程振动. 2002, (4): 74~80
    143 吕西林. 钢筋混凝土结构非线性有限元理论与应用. 同济大学出版社, 1997
    144 过镇海. 钢筋混凝土原理. 清华大学出版社, 1999
    145 杜修力. 结构弹塑性地震反应现状评述. 工程力学. 1994,11(2): 99~104
    146 魏琏,戴国莹,王龙. 线杆系多层多间框架非线性地震反应的简化计算. 建筑结构学报. 1980, (1): 35~44
    147 孙业扬,余安东. 高层建筑杆系-层间模型弹塑性动态分析. 同济大学学报. 1980, 1:87~98
    148 沈勤斋,沈祖炎. 分析高层钢刚架弹塑性稳定的改进P-△法. 同济大学学报. 1992, 20(1): 19~29
    149 冯世平,沈聚敏. 钢筋混凝土杆系结构的非线性全过程分析. 建筑结构学报. 1989, (4): 1~11
    150 沈聚敏,翁义军,冯世平. 周期反复荷载下钢筋混凝土压弯构件的性能. 土木工程学报. 1982, 2:53~64
    151 阎贵平,陈英俊. 考虑塑性剪切变形的梁柱单元弹塑性刚度矩阵. 地震工程与工程振动. 1995 增刊,15:86~92
    152 张宏远. 钢筋混凝土高层建筑空间弹塑性地震反应分析. 清华大学博士学位论文. 1994
    153 钟树生. 水平及竖向地震作用下钢筋混凝土框架柱抗震性能的试验研究. 重庆大学博士学位论文. 2000
    154 H. Banon, D. Veneziano. Seismic Safety of RC Members and Structures. EESD. 1982,10
    155 M. T. Suidan, R. A. Eubanks. Cumulative Fatigue Damage in Seismic Structure. Journal of ST. Div. ASCE. ST5. 1975,99: 923~943
    156 阎贵平,项海帆. 具有单排桩基梁式桥墩的实用延性抗震验算方法研究. 土木工程学报. 1993,26(2): 48~56
    157 王振宇,刘晶波. 建筑结构地震损伤评估的研究进展. 世界地震工程. 2001,17 (3): 43~48
    158 刘光栋,周建春. 大跨度公路梁桥抗震分析的若干研究进展. 湖南大学学报. 1996,23 (5): 104~112
    159 聂利英. 桥梁抗震非线性分析理论研究. 同济大学博士学位论文. 2002
    160 朱东生. 桥梁抗震设计中几个问题的研究. 西南交通大学博士学位论文.1999
    161 李小军. 地震工程中动力方程求解的逐步积分方法. 工程力学. 1996,13 (2): 110~116
    162 朱伯龙, 吴明舜, 张琨联. 在周期荷载作用下,钢筋混凝土构件滞回曲线考虑裂面接触效应的研究. 同济大学学报. 1980, (1): 63~75
    163 何政,欧进萍. 钢筋混凝土双向压弯构件非线性静力分析及参数影响. 哈尔滨建筑大学学报. 2000,33(4): 1~7
    164 P. Fajfar. Capacity Spectrum Method Based on Inelastic Demand Spectra. Earthquake Engineering and Structural Dynamics. 1999,28: 979~993
    165 N. M. Newmark, W. J. Hall. Procedures and Criteria for Earthquake Resistant Design. Building Research Series No. 46. National Bureau of Standards, U.S. Dept. of Commerce, Washington, 1973: 209~236
    166 A. A. Nassar, H. Krawinkler. Seismic Demands for SDOF and MDOF Systems. John A. Blume Earthquake Engineering Center Report No.95. Stanford University, CA, 1991
    167 E. Miranda. Site-dependent Strength Reduction Factors. Journal of Structural Engineering. 1993, 116(12): 3503~3519
    168 T. Vidic, P. Fajfar. Consistent Inelastic Design Spectra: Strength and Displacement. Earthquake Engineering and Structural Dynamics. 1994, 24(5): 507~521
    169 Li Hyung Lee, Sang Whan Han, Young Hun Oh. Determination of Ductility Factor Considering Different Hysteretic Models. Earthquake Engineering and Structural Dynamics. 1999, 28(9): 957~977
    170 B. Borzi, A. S. Elnashai. Refined Force Reduction Factors for Seismic Design. Engineering Structures. 2000, 22(9): 1244~1260
    171 叶献国,周锡元. 建筑结构地震反应简化分析方法的进一步改进. 合肥工业大学学报. 2000,23(2): 149~153
    172 D. Bernal. Amplification Factors for Inelastic Dynamic P-Delta Effects in Earthquake Analysis. Earthquake Engineering and Structural Dynamics. 1987, 15: 635~651
    173 Reginald DesRouches, M., Susendar Muthukumar. Effect of Pounding and Restrainers on Seismic Response of Multiple-frame Bridges. Journal of Structural Engineering. 2002,128(7):860~869
    174 Sang-Hyo KIM, Sang-Woo LEE, Jeong-Hun WON, Ho-Seong MHA. Dynamic Behavior of Bridges under Seismic Excitations with Pounding between Adjacent Girders. 12th World Conf. Earthquake Engineering, Auckland, New Zealand. 30 January, 2000, Paper No. 1815
    175 Hao Hong. Parametric Study of the Required Seating Length for Bridge Decks during Earthquake. Earthquake Engineering & Structural Dynamics. 1998,27(1): 91~103
    176 Kazuhiko Kawashima, Gaku Shoji. Effect of Restrainers to Mitigate Pounding between Adjacent Decks Subjected to a Strong Ground Motion. 12th World Conf. Earthquake Engineering, Auckland, New Zealand, 30 January, 2000. Paper No. 1435
    177 Trochalakis Panos, Marc O. Eberhard, John F. Stanton. Design of Seismic Restrainers for In-Span Hinges. Journal of Structural Engineering. 1997,123(4): 469~478
    178 Lin, Jeng-Hsiang. Separation Distance to Avoid Seismic Pounding of Adjacent Buildings. Earthquake Engineering & Structural Dynamics. 1997,26(3): 395~403
    179 Penzien Joseph. Evaluation of Building Separation Distance Required to Prevent Pounding During Strong Earthquakes. Earthquake Engineering & Structural Dynamics. 1997,26(8):849~858
    180 Zhu Ping, Abe Masato, Fujino Yozo. Evaluation of Pounding Countermeasures and Serviceability of Elevated Bridges during Seismic Excitation Using 3D Modeling. Earthquake Engineering and Structural Dynamics. 2004,33(5): 591~609
    181 A. Ruangrassamee, K. Kawashima. Control of Nonlinear Bridge Response with Pounding Effect by Variable Dampers. Engineering Structures. 2003,25(5): 593~606
    182 W. S. Tseng, J. Penzien. Analytical Investigations of the Seismic Response of Long, Multiple-Span Highway Bridge. Report No. EERC 73-12. Earthquake Engineering Research Cenrer, University of California, Berkeley. 1973

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700