用户名: 密码: 验证码:
大跨度公铁两用悬索桥结构体系及力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学的进步,新材料、新技术的日新月异,悬索桥的发展在跨度上越来越趋于大跨,并且大跨度悬索桥也开始使用于铁路交通建设。但随着更大跨度悬索桥的出现和为了满足铁路悬索桥高标准的运营要求,就需要寻求新的解决方法,以改善单缆悬索桥刚度小等问题所带来的将这种桥梁结构形式提高到更大跨度和广泛运用于铁路建设上的局限性。
     悬索桥的整体刚度主要来源于其缆索体系。新的缆索体系,由于其结构形式和单缆悬索桥不同,导致其具有不同的力学特性;本文对两种悬索桥缆索体系(双层缆体系悬索桥和双链体系悬索桥)进行一些相关研究,希望得到的结论可供特大跨度悬索桥以及公铁两用悬索桥在方案选取和初步设计时参考。
     1)以某座跨海峡公铁两用悬索桥为例,运用桥梁结构非线性分析系统BNLAS分别建立单跨悬吊和三跨悬吊的单缆悬索桥、双层缆悬索桥和双链悬索桥全桥有限元模型,将双层缆悬索桥和双链悬索桥的恒载状态、活载作用下的内力和变形、横风作用下的变形、列车过桥静力效应和自振特性与单缆悬索桥比较,对两种缆索体系的受力状态、竖向刚度、横向刚度、行车平顺性和动力特性进行分析,结果表明双层缆悬索桥和双链悬索桥在提高桥梁结构的竖向刚度和行车平顺性上各有优势,而改变缆索体系对横向刚度的影响较小。
     2)参照单缆悬索桥挠度理论的思路,通过详细推导,分别建立单跨悬吊双层缆悬索桥和双链悬索桥的平衡微分方程,通过对微分方程的求解,得到活载作用下主缆水平分力增量、加劲梁内力和挠度的解析计算公式;用FORTRAN语言采用动态规划法编制基于解析分析方法的计算程序;运用BNLAS建立有限元模型,把解析分析法计算程序得到的计算结果与有限元计算结果进行对比;结果表明双层缆悬索桥和双链悬索桥解析分析方法计算的影响线与有限元计算结果都比较吻合,加劲梁上的弯矩、挠度的包络图也较接近,建立的双层缆悬索桥和双链悬索桥解析分析法的公式是正确的,编制的计算程序可用。
     3)用编制的计算程序分析矢跨比和上下层主缆恒载分配比的变化对双层缆悬索桥静力特性的影响;探讨矢跨比和边中跨比的变化对双链悬索桥静力特性的影响;通过不同参数下材料用量和结构刚度的讨论,综合对桥塔高度、加劲梁内力、主缆面积和结构刚度等的考虑,建议双层缆悬索桥矢跨比和恒载分配比的合理选择范围,以及双链悬索桥矢跨比的合理取值。
With the progress of science and the advancement of new materials and technology, the span of the suspension bridges is becoming longer and longer, and it has been used in the construction of railway. With the appearance of the longer span suspension bridges, in order to meet the high standards of operational requirement of the railway suspension bridges, some new solutions need to be seeked to improve the serious problems of single-cable suspension bridge stiffness, the limitations of a ultra-large span and widely used in the railway construction.
     The global stiffness of the suspension bridges mainly come from the cable system. The new cable system, because of the difference of the structure with the single-cable suspension bridges, leads to its different mechanical characteristics. In this thesis, the two kinds of cable system of the suspension bridge were studied, which were double-layer-cable system and double-stranded system. Hoping the conclusions can be used for the reference of the ultra-large span suspension bridges and rail-cum-road suspension bridge during scheme selection and preliminary design.
     1) By taking a strait-crossing rail-cum-road suspension bridge as an example, the full-bridge finite element model of the single-span and three-span single-cable suspension bridge, the double-layer-cable suspension bridge and double-stranded suspension bridge were established with the bridge nonlinear anlysis system BNLAS. the double-layer-cable suspension bridge and double-stranded suspension bridge dead load state, internal force and deformation under live load, deformation under the action of the horizontal wind, analysis of train bridge static effect, vibration characteristics to compare to single-cable suspension bridge, the analysis of the stress state of the two kinds of cable system, vertical stiffness, lateral stiffness, driving and dynamic characteristics, finally the results show that the advantages of double-layer-cable suspension bridge and double-stranded suspension bridge to improve the vertical stiffness of the bridge structure and improve driving stability, but the cable system has little effect on the lateral stiffness.
     2) Refer to the deflection theory of the single-cable suspension bridge, through detailed derivation, balance differential equationes of single-span double-layer-cable suspension bridge and double-stranded suspension bridge were established, by solving the differential equation, the analytic formulas for the main cable horizontal component of incremental, the stiffening girder internal forces and deflection under live load could been received; the preparation of dynamic programming in FORTRAN software is based on analytical method for calculation program; with the apply of BNLAS finite element model, analytical calculation results with the finite element results were compared to verify the correctness of the analytical analysis methodology and programming; The results show that the influence lines of the double-layer-cable suspension bridge and double-stranded suspension bridge analytic calculation program is consistent with the results of finite element analysis, also the stiffening beam bending moment and deflection envelope figure are closer, analytical formula of the double-layer-cable suspension bridge and double-stranded suspension bridge is correct, and the calculation program is available.
     3) By the calculation program,the influence of rise-span ratio and distribution ratio of dead load in the two layer main cables on the static characteristic of the double-layer-cable suspension bridge was studied, also the influence of sag-span ratio and ratio of side span to main span on the static characteristics of the double-stranded suspension bridge. Through discussion about the amount of material and structural stiffness in the different parameters, center on the consideration the height of tower, the stiffening girder internal forces, the main cable area and structural stiffness, so as to offer reasonable range of rise-span ratio and dead load distribution ratio of double-layer-cable suspension bridge, and the rise-span ratio of the double-stranded suspension bridge.
引文
[1]严国敏.现代悬索桥[M].北京:人民交通出版社,2002.
    [2]周孟波,刘自明,王邦媚.悬索桥手册[M].北京:人民交通出版社,2003.
    [3]钱冬生.大跨悬索桥的设计与施工[M].成都:西南交通大学出版社,2002.
    [4]雷俊卿,郑明珠,徐恭义.悬索桥设计.[M]北京:人民交通出版社,2002.
    [5]尼尔斯J·吉姆辛(丹麦).缆索支承桥梁一概念与设计(第二版).北京:人民交通出版社,2002.
    [6]Larsen A. Aerodynamic aspects of the final design of the 1624m suspension bridge across the Great Belt[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993,48(2):261-285.
    [7]日本本州四国联络桥综述.严国敏编译.原载日本《桥梁与基础》,1984.
    [8]周世忠.中国悬索桥的发展[J].桥梁建设,2003(5).
    [9]Xu Y L, Ko J M. Vibration Studies Of Tsing Ma Suspension Bridge[J]. Jounral Of Brigde Engineering. Nov.1997.
    [10]唐茂林,邱景,齐东春,张兴标.泰州长江大桥施工监控总报告[R].成都:西南交大技术转移中心有限责任公司.
    [11]唐茂林,邱景,齐东春,张兴标.南京长江四桥施工监控总报告[R].成都:西南交大科技园管理有限责任公司.
    [12]唐茂林,严琨,邱景,张兴标.马鞍山长江大桥施工监控总报告[R].成都:西南交大科技园管理有限责任公司.
    [13]徐升桥,刘春彦,罗世东.大跨度铁路悬索拱桥设计研究[C].中国土木工程学会.土木工程与高新技术-中国土木工程学会第十届年会论文集.北京:中国建筑工业出版社,2002:141-147.
    [14]肖汝诚,陈红,魏乐永.桥梁结构体系的研究,优化与创新[J].土木工程学报,2008,41(6): 69-74.
    [15]梁鹏,肖汝诚,夏刘.超大跨度缆索承重桥梁结构体系[J].公路交通科技,2004(05).
    [16]Max Irvine H. Cable Structure[M]. Cambridge:TheMIT Press,1981.
    [17]Alan Jennings. Gravity stiffness of classical suspension bridges[J]. Journal of Structure Engineering,1983,109(1):16-36.
    [18]Liu Zhao, Liu Hou-jun. New arithmetic for cable deflec-tion and gravity stiffness of suspension bridges[J]. En-gineering Mechanics,2009,26(6):127-132.
    [19]伊藤学,川田忠树.超长大桥梁建设的序幕—技术者的新挑战[M].刘健新,和丕壮,译.北京:人民交通出版社,2002.
    [20]严琨,沈锐利,唐茂林.大跨度悬索桥主缆抗弯刚度模型试验[J].建筑科学与工程学报.2010(03).
    [21]严国敏.墨西拿海峡大桥的设计近况[J].国外桥梁,1993(2):94-97.
    [22]柴生波,肖汝诚,孙斌.双缆悬索桥体系的力学特性(I)[J].华南理工大学学报(自然科学版).2011(12).
    [23]柴生波,肖汝诚,孙斌.双缆悬索桥体系的力学特性(Ⅱ)[J].华南理工大学学报(自然科学版).2012(02).
    [24]肖恩源.再论悬挂索的重力刚度——双索、多跨[J].公路,2001(7):67-72.
    [25]丁南宏,林丽霞,钱永久,王常峰.双链式悬索桥地震反应特征研究[J].振动与冲击.2012.
    [26]丁南宏,钱永久,林丽霞,吴亚平.双链式悬索桥在单车荷载下的振动特征[J].振动与冲击,2010.
    [27]葛娟.双链悬索桥的吊索长度计算方法分析[J].山西建筑,2011,37(009):191-192.
    [28]丁南宏,林丽霞,钱永久,廖伟华等.双链式悬索桥车桥耦合振动研究[J].兰州交通大学学报,2010,29(001):95-99.
    [29]F. Brancaleoni, Rom,戴振藩.悬索桥在铁路荷载下的变形[J].世界桥梁,1981.
    [30]Lima, C. S:Static deflection in a long span suspension bridge with continous stiffening trauss, International Symposium on Suspension Bridges, Lissabon,1966.
    [31]Shinohara, Asama:Suspension bridges for railway, International Symposium on Suspension Bridges, Lissabon,1966.
    [32]肖盛燮,赖明,周裕丰,陈尧民,曾维栋.考虑局部非线性双链吊桥的受力分析方法[A].中国土木工程学会桥梁及结构工程学会第九届年会论文集,1990.
    [33]徐君兰.多缆式吊桥的受力特性和合理性分析[A].中国土木工程学会市政工程学会第三次全国城市桥梁学术会议论文集,1991.
    [34]项海帆,方明山.超大跨度桥梁结构体系的演变及发展趋势[A].中国土木工程学会桥梁及结构工程学会第十二届年会论文集,1996.
    [35]陈艾荣,陈文明.多塔悬索桥的性能.中国公路学会桥梁和结构工程学会2001年桥梁学术研讨会,2001.
    [36]罗喜恒.复杂悬索桥施工过程精细化分析研究[D].上海:同济大学,2004.
    [37]梁鹏,肖汝诚,刘浩.超大跨度缆索承重桥梁结构体系[J].公路交通科技,2004.
    [38]林丽霞,丁南宏,吴亚平.双索悬索桥自振特性分析[J].兰州交通大学学报,2005.
    [39]赵孝平.三塔悬索桥动力特性及抗风性能研究[D].浙江工业大学,2009.
    [40]Tommy H T, Guo C L, Li Z X. Finite elementmodeling forfatigue stress analysis of large suspension bridges[J]. JoumalofSound and Vibration,2003,261(3):443-464.
    [41]张新军,陈兰,赵孝平.三塔悬索桥的缆索体系及其抗风稳定性[J].浙江工业大学学报,2010.
    [42]张东.大跨度铁路悬索桥结构体系及对刚度影响的研究[D].西南交通大学,2011.
    [43]Pugsley A. Theory of Suspension Bridges.2nd. Ed,1968.
    [44]SteinmainDB. TheoryofArehesandSuspensionBridge, ChieagO.1913.
    [45]SteinmainDB. A PractiealTreatise on Suspension Bridge,2nd. Ed, wiley,1928.
    [46]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992.
    [47]Jennings A. Gravity StiffnessofClassical Suspension Bridges, Civil Engineering Department Report, Ireland, QueenUniv.1980.
    [48]Brotton D M. A General Computer Program for the Solution of Suspension Bridge Problems. The Structural Engineer,1966,44(5):161-167.
    [49]Saafan S A. Theoretical Analysis of Suspension Bridges. Proc. ASCE,1966,92(4): 1-11.
    [50]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].成都:西南交通大学博士学位论文,2003.
    [51]中华人民共和国交通部.JTGD60-2004公路桥涵设计通用规范.北京:人民交通出版社,2004.
    [52]中华人民共和国铁道部.TB10002.1-2005.铁路桥涵设计基本规范.北京:中国铁道出版社,2005.
    [53]张俊平,车惠民.铁路桥梁横向刚度的初步研究[J].桥梁建设,1996,(2):64-68.
    [54]刘建瑞,沈平.铁路桥梁设计横向刚度指标限值的研究[J].铁道标准设计,2006,(12):23-25.
    [55]沈锐利,张东,唐茂林.大跨度铁路悬索桥合理刚度指标值的探讨.第二十届全国桥梁学术会议论文集(上册),2005.
    [56]中华人民共和国交通部.JTG/TD60-01-2004公路桥梁抗风设计规范[S].北京:2004.
    [57]Larsen A, Walther J H. Aeroelastic analysis of bridge girder sections based on discrete vortex simulations [J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,67:253-265.
    [58]Arco D C, Aparicio A C. Improving the wind stability of suspension bridges during construction[J]. Journal of structural engineering,2001,127(8):869-875.
    [59]Zhang X. Investigation on aerodynamic stability of long-span suspension bridges under erection [J]. Journal of wind engineering and industrial aerodynamics,2004, 92(1):1-8.
    [60]石洞,黄东洲,石志源.桥梁结构电算[M]. 同济大学出版社,1987.
    [61]唐茂林,宋晖,林恰,等.矢跨比对悬索桥受力的影响分析[J].建筑科学与工程学报,2010,27(003):24-28.
    [62]中交公路规划设计院.公路悬索桥设计规范(报批稿)[S].北京:人民交通出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700