用户名: 密码: 验证码:
面向可适应性的产品模块化设计方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可适应设计(AD)是面向产品生命周期,将满足不同需求及需求变化的可适应性作为重要评价标准,以提供具有柔性、易定制性、可重用性、可扩展性的产品为目标的全新设计方法。通过可适应设计,用户不仅可以得到价格低廉、“一物多用”的新型产品,还能够通过零部件替换满足未来的需求。本文基于公理设计方法探讨如何从模块化的设计角度来研究和提高产品的可适应性。从需求分析出发,以公理设计方法中设计域之间的层级映射为框架,以设计结构矩阵为分析工具,采用优化聚类算法,从底层参数级到上层零部件级设计参数对产品的结构进行模块化可适应的设计研究,以开发和设计多样化的高可适应性新型产品。
     首先,综述了目前模块化设计、产品族设计、可适应设计及相关领域的理论方法和研究现状,分析了可适应设计与模块化设计之间关系。
     其次,以公理设计的设计域为研究主线,针对面向可适应性的模块化体系结构的设计探讨并提出了若干新方法。具体包括:
     (1)针对产品可适应性评价问题,基于公理设计和功能模块独立条件矩阵分别从参数级和模块级分析了功能要求和设计参数的一一对应程度,并通过接口标准化程度、功能兼容性、拆卸可逆性三个指标评定接口的可适应性;基于Kano需求模型对产品通过适应性变化达到客户满足的程度进行了评价,并以台式打孔装订机为例进行了验证。结果表明:该方法不仅能从结构上对产品可适应性进行度量,更能反映出设计的不足,对进一步的改良设计提供有价值的借鉴。
     (2)在模块划分方法方面,基于公理设计通过微分分析将设计矩阵转化成设计结构矩阵,并分别构建设计参数从功能域、过程域和结构域角度考虑的相关性设计结构矩阵;从考虑模块的加工效率出发,建立了设计参数关于过程域中过程变量的相似性矩阵,通过基于最小描述长度的遗传算法对其进行聚类分析,以打孔装订机的打孔装置为实例实现了模块的合理划分。结果表明,该方法考虑因素较以往方法更全面、更直观,设计者可以根据产品实际情况对各交互关系有所偏重,快速得到合理的定量化分析结果。
     (3)针对模块划分过程中的耦合设计参数容易导致反复迭代的问题,基于公理设计和基于三角模糊数的层次分析法获得设计参数的量化设计结构矩阵,建立了工作量变化矩阵模型,给出了设计模态和关键设计参数的定义,并由此判断给定设计是否收敛和识别出关键设计参数。最后通过打孔装订机的切管装置实例验证表明,该方法可以判断给定设计的收敛性,并能识别出影响设计反复迭代的关键设计参数。
     (4)针对现有两大产品平台设计方法提供平台定制能力有限的问题,提出了可适应平台的概念。基于灰色关联和模糊聚类相结合的方法对客户需求进行量化聚类分析,以对识别可适应平台的构成元素提供依据;基于公理设计推导出设计参数构成公共平台参数的数学模型,利用敏感设计结构矩阵对公共平台参数和定制参数进行了区分。最后,通过台式打孔装订机产品族可适应平台的分析实例验证表明,该方法弥补了现有两种平台设计方法的缺点,可以同时从横向和纵向上提高了平台的定制能力和可适应能力。
     开发了面向产品可适应性的模块化设计系统MDSA,介绍了系统软件实现的体系结构、功能组成等,并给出了系统针对以上几个实例的运行界面及其结果表示。
     最后对全文进行了总结,指出了进一步的研究方向。
Adaptable design (AD) is a new design methodology based on product life-cycle, and takes the adaptability that can meet various and changeable requirements as an important evaluation criterion. It aims to provide customer flexible, customizable, reusable, extensible and versatile product with a low price, which can satisfy potential requirements through simple replacement of parts. This dissertation focuses on how to improve the adaptability of product with modularization. Base on the hierarchical mapping between the design domains of axiomatic design method, analyses of customer requirements are first performed, design structure matrix is introduced as analytical tool, and modular and adaptable product architecture is researched from bottom to up design parameters with advanced and reasonable optimization algorithm in order to develop new product with high adaptability.
     Firstly, the state quo of researching on the methodologies of modular design and adaptable design and other relative field is summarized and the connotation. Further on, the relationship of AD and modular design is expatiated.
     Secondly, several new methods addressing how to design modular product architecture for adaptability are proposed with design domains of axiomatic design as leading clue, including:
     (1) In view of the problem of that the current evaluation method for adaptability cannot provide effective feedback to product redesign, the corresponding degree of functional requirements and design parameters is analyzed based on axiomatic design and independent matrix of functional modules from parameter and module hierarchy respectively. The adaptability of interfaces and the performance of adaptive requirements are estimated with three criteria and Kano requirement model respectively, and bookbinding machine is selected as an illustration. The results show that the method can not only evaluate the adaptability of product according to architecture, but also reflect the shortcomings in the design and provide valuable reference for redesign.
     (2) Because most current modularization methods address the problem with unilateral consideration and lack of generality, the design matrix is transformed into design structure matrix of the design parameters utilizing total differential calculation, and correlation matrices of design parameters about function, process and structure are established based on design matrices. The similarity matrix of design parameters about process variable in process domain is also constructed with the consideration of the manufacturing efficiency. At last, genetic algorithm combined with the minimal description length is employed to solve the modularization optimization problem. The modularization illustration of the bookbinding shows that the proposed method is more comprehensive and clear, and the designer can set different weights to each interaction relationship and get reasonable result with quantification means.
     (3)In order to solve the coupling problem in the modularization process, the quantified design structure matrix of design parameters is obtained based on axiomatic design. Subsequently, work transform matrix model is established to judge whether the design is convergent and identify key coupled parameters that cause design iterations mostly. An illustrative example of the cutting set of bookbinding machine shows that the presented method can judge the given design convergent or not, and identify the key coupled parameters and design modes that mostly lead to long development cycle.
     (4) Because the two existing product platform design methods both have the disadvantage of limited customization ability, the concept of adaptable platform is presented, and the composing and character also are analyzed. In order to provide reasonable reference for the identification of components of adaptable platform, customer requirements are quantified and clustered with the combination of grey relational analysis and fuzzy clustering. The mathematic condition model for design parameters to be common platform parameters is deduced based on axiomatic design, and sensitivity design structure matrix is adopted to distinguish common platform parameters and customization parameters. The layout illustration of bookbinding machine shows that the presented method can make up the shortcomings of current platform design methods, and can improve the customization ability and adaptability transversely and longitudinally.
     Then, the support system of MDSA is developed. The system architecture and functional modules are introduced, followed on with the presentation of some main implementation interfaces.
     Finally, a conclusion is drawn and the trend on AD is anticipated.
引文
[1]陈云卿.产品多样化与产品在全球获得成功的质量因素[J].管理科学文摘,1996,(8):11
    [2]尹继佐.可持续发展战略[M].上海:上海人民出版社,1998:105-142.
    [3]Gu,P.,Hashemian,M.and Nee,A.Y.C.Adaptable Design[J].Annals of CIRP,Manufacturing Technology,2004,53(2):539-557.
    [4]Suh,N.P.Axiomatic design:advances and applications[M].New York:Oxford University Press,2001.
    [5]顾佩华.设计理论与方法学研究方面的最新发展[J].机械与电子,1998,5:26-31.
    [6]陈晓川,刘晓冰,张暴暴等.基于公理设计理论的现代化设计方法集成研究[J].计算机集成制造系统—CIMS,2000,6(3):75-79.
    [7]Beom-Seon Jang,Young-Soon Yanga,Yu-Suk Song,et al.Axiomatic design approach for marine design problems[J].Marine Structures,2002,15:35-56.
    [8]H.Hirani,N.P.Sub.Journal bearing design using multiobjective genetic algorithm and axiomatic design approaches[J].Tribology International,2005,38:481-491.
    [9]程贤福,肖人彬.基于公理化设计理论的起重机起升机构分析[J].机械设计,2005,22(1):45-47.
    [10]宋慧军,林志航.公理化设计支持的概念设计产品模型[J].计算机辅助设计与图形学学报,2002,14(7):632-636.
    [11]朱龙英,朱如鹏,刘正埙.公理化设计与质量功能配置集成研究[J].机械科学与技术,2004,23(6):647-650.
    [12]Joseph Chung-Yu Su,Shi-Jie(Gary) Chen,Li Lin.A structured approach to measuring functional dependency an d sequencing of coupied tasks in engineering design[J].Computers & Industrial Engineering,2003,45(1):195-214.
    [13]Cochran,D.S.,Eversheim,W.,Kubin,G.,Sesterhenn,M.L.The application of AD and lean management principles in the scope of production system segmentation[J].International Journal of Production Research,2000,38(6),1159-1173.
    [14]Houshmand,M.,Jamshidnezhad,B.Conceptual design of lean production systems through an axiomatic design.Proceedings of ICAD2002,second international conference on axiomatic design,Cambridge,MA(CD-Disc),2002.
    [15]Suh,N.P.Design of systems.Annals of the CIRP,1997,46(1),75-80.
    [16]Mitchell M.TSENG,Jianxin JIAO.A module identification approach to the electrical design of electronic products by clustering analysis of the design matrix[J].Computer & Industrial Engineering,1997,33(1-2):229-233.
    [17]P.Gu,M.Hashemian,S.Sosale.An Integrated Modular Design Methodology for Life-Cycle Engineering[J].Annals of the CIRP,1997,46(1):71-74.
    [18]Ulrich k,Tung K.Fundamentals of product Modularity[A].In..Sharon A ed.Issues in Design / Manufacturing Integration,Proceedings ASME Winter Annual Meeting Conference[C].Atlanta,1991,New York:ASME,DE 39,1991:73-80.
    [19]Pahl G.,W Beitz.Engineering Design-a systematic approach,Springer-Verlag,London,U.K,1996.
    [20]Du,X.,Jiao,J.,Tseng,M.M.Graph Grammar Based Product Family Modeling [J].Concurrent engineering:Research and Application,2002,10(2):113-128.
    [21]Pahl G,Beitz W.Engineering Design:A systematic approach.1st ed.London:Springer-Verlag,1984.
    [22]Stone Robert B.A heuristic method for identifying modules for product architectures [J].Design studies,2000,21(1):5-31.
    [23]Kahmeyer M,Warnecke HJ,Sheider WD.Fractal product design:Design for assembly and disassembly in fractal factory,Proceedings of DFMA Conference,USA,1994.
    [24]You-Tern Tsail,Kuo-Shong Wang.Development of modular-based design in considering technology complexity[J].European Journal of Operation Research,1999,119(3):692-703.
    [25]Erixon Gunnar.Modularity-the basis for product and factory reengineering [J].Annals of CIRP,1996,45(1):1-6.
    [26]侯亮.机械产品模块化开发原理、方法及其应用研究[D].杭州:浙江大学,2003.
    [27]Pimmler TU,Eppinger SD.Integration analysis of product decompositions.ASME Design Theory and Methodology Conference Minneapolis,September 1994,MN.
    [28]Ulrich k,Tung K.Fundamentals of product Modularity[A].In:Sharon A,editor.Issues in Design/Manufacturing Integration,Proceedings ASME Winter Annual Meeting Conference,Atlanta,New York,1991.
    [29]Salhieh SM,Kamrani AK.Macro level product development using design for modularity[J].Robotics and Computer-Integrated Manufcturing,1999,15:319-329.
    [30]Krenga VB,Lee TP.Modular product design with grouping genetic algorithm—a case study[J].Computers & Industrial Engineering,2004,46:443-460.
    [31]Huang CC and Kusiak A.Modularity in Design of Products and Systems[J].IEEE T Syst,Man Cy C-Part A:Systems and Humans 1998,28(1):66-77.
    [32]Kim SJ,Suh NP,Kim S.Design of software systems based on AD[J].Robotics and Computer-Integrated Manufcturing,1991,8(4):243-255.
    [33]Holmqvist TKP,Persson ML.Analysis and Improvement of Product Modularization Methods:Their Ability to Deal with Complex Products[J].System Engineering 2003,6(3):195-209.
    [34]Tate D,Lindholm D,Harutunian V.Dependencies in axiomatic design[J].International Journal of Design Product Technology,1998,3:159-166.
    [35]王爱民,肖田元,赵银燕等.面向产品族模块化设计和制造的工艺聚类分析方法[J].清华大学学报(自然科学版),2004,44(10):1394-1397.
    [36]Ishii K.Modularity:A Key Concept in Product Life Cycle Engineering[A].In:Molina A,Kusiak A,Sanchez J,editors.Handbook of Life Cycle Engineering[M].Kluwer Academic Publishers;1998:511-531.
    [37]He DW,Kuisak A.Performance analysis of modular products[J].International Journal of Production Ressearch,1996,34(1):253-272.
    [38]Kahoo LP,Situmdrang TD.Solving the assembly configuration problem for modular products using immune algorithm approach[J].International Journal of Production Ressearch,2003,41(15):3419-3434.
    [39]Gershenson JK,Prasad GJ,Allamneni S.Modular Product Design:A Life-Cycle View [J].Society for Design and Process Science,1999:3(4):13-26.
    [40]Gu P,Sosale S.Product modularization for life cycle engineering[J].Robotics and Computer-Integrated Manufcturing,1999,15:387-401.
    [41]Sand JC,Gu P,Watson G.HOME:House of Modular Enhancement-A Tool for Modular Product Redesign[J].Concurrent Engneering:Research and Application.2002;10(2):153-164.
    [42]Kusiak A.Integrated product and process design:a modularity perspective[J].Journal of Engneering Design 2002,13(3):223-231.
    [43]Coulter SL,McIntosh MW,Bras B,Rosen,DW.Identification of Limiting Factors for Improving Design Modularity[A].ASME Design Engineering Technical Conferences-Design Theory & Methodology Conference,1998,Atlanta,GA.
    [44]Newcomb PJ,Bras B,Rosen DW.Implications of Modularity on Product Design for the Life Cycle[J].ASME Journal of Mechnical Design 1998,120(3):483-490.
    [45]Johnnesson H L,Soderberg R.Structure and matrix model s for tolerance analysis from configuration to detail design[J].Research in Engineering Design,2000,12(2):112-125.
    [46]Kang Y J.The method for uncoupling design by contradiction matrix of triz,and case study[C]// Proceedings of the 3rd International Conference on Axiomatic Design,ICAD-2004-11.Cambridge,Mass.,USA:Institute for Axiomatic Design,2004:1-7.
    [47]Su J C,Chen S J,Li L.A structured approach to measuring functional dependency and sequencing of coupled tasks in engineering design[J].Computers & Industrial Engineering,2003,45:195-214.
    [48]曹鹏彬,肖人彬,库琼.公理设计过程中耦合设计问题的结构化分析方法[J].机械工程学报,2006,42(3):46-55.
    [49]肖人彬,库琼,曹鹏彬.基于免疫聚类识别的耦合功能规划方法与实例[J].计算机集成制造系统,2006,12(9):1421-1430.
    [50]Y.Ito,Y.Yoshida.Design Conception of Hierarchical Modular Constructure-Manufacturing Different kinds of Machine Tools by Using Common Modules[A].Proc.19th Int MTDR Conference,1979.
    [51]楼应侯.一种新的机床模块化设计编码方法[J].宁波大学学报,1998(3):67-71.
    [52]赵阳.面向用户的计算机辅助机床模块化设计系统的框架研究[D].天津:天津大 学,1996.
    [53]侯亮,唐任仲,徐燕申.产品模块化设计理论、技术与应用研究进展[J].机械工程学报,2004,40(1):56-61.
    [54]David W.He,Andrew Kusiak.Designing an assembly line for modular products[J].Computers and industrial engineering,1998,34(1):37-52.
    [55]陈敏贤,竺挺.模块化机床的计算机辅助组合[J].上海机床,1989,(3):11-16.
    [56]Peter O'Grady,Liang W Y.An object oriented approach to design with modules [J].Computer Integrated Manufacturing Systems,1998,11(4):267-283.
    [57]Fujita K.product variery optimization under modular architecture[J].Computer-Aided Design,2002,34:953-965.
    [58]唐涛,刘志峰,刘光复等.绿色模块化设计方法研究[J].机械工程学报,2003,11(39):149-154.
    [59]Z.M.Bi,W.J.Zhang.Modularity technology in manufacturing:Taxonomy and issues [J].International Journal of Advanced Manufacturing Technology,2001(18):381-390.
    [60]Andersson,S.,Sellgren,U.Representation and use of Functional Surfaces[A].7th Workshop on Product Structuring-Product Platform Development,G6teborg:Chalmers University of Technology,24-25 March,2004.
    [61]Mikkola,J.,H.Modularization assessment of product architecture[M].Frederiksberg:DRUID,Denmark,2000.
    [62]Danny Langenberg.The embodiment phase in modular product design process[A].Proceedings from the 2nd seminar on Development of Modular Products,December 13-14,2004,Campus Framtidsdalen,Dalarna University,Sweden,61-67.
    [63]Sanchez,R.Product and process architectures in the management of knowledge resources[A].In:Persson,M.Managing the Modularization of Complex Products[D].Doctoral Thesis.G(o|¨)teborg:Chalmers University of Technology,ISBN 91-7291-395-9,2004.
    [64]郑堤,唐可洪.机电一体化设计基础[M].北京:机械工业出版社,2001.
    [65]Erixon,G.Modular Function Deployment—A method for Product Modularisation[D].Doctoral Thesis,Stockholm:The Royal Institute of Technology,ISSN 1104-2141,1998.
    [66]Dan Persson.Modules and interfaces[A].Proceedings from the 2nd seminar on Development of Modular Products,December 13-14,2004,Campus Framtidsdalen,Dalarna University,Sweden,55-61.
    [67]Fabrice Alizon,Steven B.Shooter,Henri J.Thevenot.Design structure matrix flow for improving identification and specification modules[A].Proceedings of IDETC/CIE 2006 ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference September 10-13,2006,Philadelphia,Pennsylvania,USA.
    [68]Holtta,K.& Otto K.Incorporating design complexity measures in architectural assessment[A]..In Proceeding of ASME Design Engineering Technical Conferences.Chicago,IL.September 2-6,2003.
    [69]Mike J.Van Wie,James L.Greer,Matthew I.Campbell,et al.Interfaces and Product Architecture[A].Proceedings of DETC20001:ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference September 9-12,2001,Pittsburgh,Pennsylvania.
    [70]Juliana Hsuan Mikkola.Modularity assessment of product architecture:substitutability and interface management[A].DRUID's Nelson and Winter Conference Aalborg,Denmark June 12-15,2001.
    [71]Gu,P.,Stevinsky,M.Mechaincal Bus for Modular Product Design[J].Annals of the CIRP,2003,52(1):113-116.
    [72]姜慧.计算机辅助机床模块化方案设计的理论和实践[D].天津:天津大学博士学位论文,1998.
    [73]王忠浩.面向产品族开发设计的知识发现方法与应用研究[D].武汉:华中科技大学博士学位论文,2007.
    [74]常艳,潘双夏,郭峰等.面向模块化设计的客户需求分析[J].浙江大学学报(工学版),2008,42(2):248-252.
    [75]谢健文.产品族模型快速构建与智能配置关键技术研究[D].广州:广东工业大学博士论文,2003.
    [76]但斌,冯韬.基于GBOM的产品族结构模型和配置方法[J].管理学报,2005,2(4):422-425.
    [77]Du X,Jiao J,Tseng M M.Graph grammar based product family modeling[J].Concurrent Engineering:Research and Application,2002,10(2):113-128.
    [78]Jiao J,Tseng M M,Duffy V G,Lin F.Product family modeling for mass customization[J].Computers and Industrial Engineering,1998,35(3-4):495-498.
    [79]Simpson,T.W.,Maier,J.R.A.,Mistree,F.Product platform design:method and application[J].Research in Engineering Design,2001,13(1):2-22.
    [80]Jiao,J.X.,Simpson,T.W.and Siddique,Z.Product design and platform-based product development:a state-of-the-art review[J].Journal of Intelligent Manufacturing,2007,18,5-29.
    [81]Nayak,R.U.,Chen,W.,Simpson,T.W.A variation-based methodology for product family design[J].Journal of Engineering Optimization,2002,34(1):65-81.
    [82]Messac,A.,Martinez,M.P.,Simpson,T.W.A penalty function for product family design using physical programming[J].ASME Journal of Mechanical Design,2002,124(2):164-172.
    [83]朱斌,江平宇,龙奕良.产品平台参数的回归规划方法及Web实现[J].计算机集成制造系统,2003,9(12):1067-1071.
    [84]Fellini,R.,Kokkolaras,M.,Michelena,N.,etal.A sensitivity-based commonality strategy for family products of mild variation,with application to automotive body structures[J]..Structural Multidisciplinary Optimization,2004,27,89-96.
    [85] Fujita,K., Sakaguchim,H., Akagi, S. Product variety deployment and its optimization under modular architecture and module communalization[A]. ASME Design Engineering Technical Conferences, DETC1999/DFM-8923, Las Vegas, NV, 1999.
    [86] Simpson, T.W., D'Souza, B. Assessing Variable Levels of Platform Commonality within a Product Family Using a Multiobjective Genetic Algorithm [J]. Concurrent Engineering: Research and Applications, 2004,12(2): 119-130.
    [87] Mark V. Martin, Kosuke Ishii, Design for variety: developing standardized and modularized product platform architectures [J]. Research in Engineering Design, 2002, 13: 213-235.
    [88] Yuval Sered, Yoram Reich. Standardization and modularization driven by minimizing overall process effort [J]. Computer-Aided Design 2006, 38:405-416.
    [89] Hongbin Qin, Yifang Zhong, Renbin Xiao, et al. Product platform communization platform construction and platform elements capture [J]. International Journal of Advanced Manufacturing Technology, 2005,25: 1071-1077.
    [90] Shih-Wen Hsiao, Elim Liu. A structural component-based approach for Designing product family [J]. Computers in Industry, 2005 ,56:13-28.
    [91] Javier P. Gonzalez-Zugasti, Kevin N. Otto, John D. Baker, A method for architecting produt platforms[J]. Research in Engineering Design, 2000(12):61-72.
    [92] Zmirowksi EJ, Otto KN. Identifying Product Portfolio Architecture Modularity Using Function and Variety Heuristics [A]. ASME Design Engineering Technical Conferences-Design Theory & Methodology Conference, 1999, Las Vegas, NV.
    [93] Gonzalez-Zugasti J, Otto K, Baker J. A method for architecting product platforms [J]. Research in Engineering Design, 2000,12(2): 61-72.
    [94] Y.Li, D. Xue, P. GU. Adaptable Design Process for Product Adaptability: Method and Application [A]. The 16th CIRP international design seminar: design& innovation for a sustainable society, Kananaskis, Alberta, Canada: 2006, 448-455.
    [95] Hashemian, M., 2005, Design for Adaptability [D]. Doctor Thesis of Philosophy in the Department of Mechanical Engineering, University of Saskatchewan, Saskatoon.
    [96] Fricke, E. and Schulz, A. P. Design for changeability (DFC): principles to enable changes in systems throughout their entire lifecycle [J]. Systems Engineering, 2005, 8(4): 342-359.
    [97] Kasarda, M. E., Terpenny, J. P., Inman, D. P., et al. Design for adaptability (DFAD)-a new concept for achieving sustainable design [J]. Robotics and Computer-Integrated Manufacturing, 2007, 23:727-734.
    [98] Willems, B., Seliger, G., Duflou, J., Basdere B. Contribution to design for adaptation: method to assess the adaptability of products (MAAP) [C]. Proceedings of EcoDesign 2003: Third International Symposium on Environmentally Conscious Design and Inverse Manufacturing [A]. Tokyo, Japan, 2003, December 8-11, 589-596.
    [99]Wu Qingming,Mei Huafeng.Adaptable Design in Product Development[J].Chinese Journal of Mechanical Engineering,2006,19(3):348-351.
    [100]Peigen Li,Qiang Cheng,Xinyu Shao,et al.ADFP:A Novel Method ofAdaptable Design for Production[A].The 16th CIRP international design seminar:design &innovation for a sustainable society,Kananaskis,Alberta,Canada:2006,462-466
    [101]辛志杰.面向产品族的机床结构可适应动态设计方法、理论与应用[D]天津:天津大学博士论文,2008.
    [102]Li,Y.,Xue,D.Y.and Gu,P.H.Design for Product Adaptability[J].Concurrent Engineering:Research and Applications,2008,16(3):221-232.
    [103]Fletcher,D.,Gu,P.and Brennan,R.Product and Design Adaptability Quantification[A].The 16th CIRP International Design Seminar Design&Innovation for a Sustainable Society,Kananakis,Alberta,Canada July 16-19,2006,432-436.
    [104]Y.L.Chen,Y.S.Xu,Q.Zhang.Adaptable product platform design through generalized modularization and application to hydraulic press frame structures[A].The 16th CIRP international design seminar:design & innovation for a sustainable society,Kananaskis,Alberta,Canada:2006,369-376.
    [105]Xinyu Shao,Zhonghao Wang,Guojun Zhang,et al.Adaptability Measure for Product Family-Based Adaptable Design(PFBAD)[A].The 16th CIRP international design seminar:design & innovation for a sustainable society,Kananaskis,Alberta,Canada:2006,456-461.
    [106]贾延林.模块化设计.北京:机械工业出版社,1993.
    [107]Karl T.Ulrich,Steven D.Eppinger.Product design and development(影印版)[M].北京:高等教育出版社,2004.
    [108]Xinyu Shao,Qiang Cheng,Guojun Zhang,et al.A Structure-based Approach to Measuring Adaptability of Product Design[A].Proceedings of the ASME 2008International Design Engineering Technical Conferences & Computers and Information in Engineering Conference,IDETC/CIE 2008,August 3-6,2008,New Yoke,USA.
    [109]邵家骏.质量功能展开[M].北京:机械工业出版社,2004.
    [110]Erixon,G.,Von Yxkull A.,Arnstrrm,A.Modularity-the Basis for Product and Factory Reengineering[J].Annals of the CIRP,1996,45(1):1-6.
    [111]Kano,N.et al.Attractive quality and must-be quality[J].Hinshitsu:The Journal of the Japanese Society for Quality Control(April),1984:39-48.
    [112]Lee,Y.C.,Sheu,L.C.and Tsou,Y.G.Quality function deployment implementation based on Fuzzy Kano model:An application in PLM system[J].Computer &Industrial Engineering,2008,55:48-63.
    [113]Steward,D.V.The design structure systems:A method for managing the design of complex systems[J].IEEE Transactions on Engineering Management,1981,28(3):71-74
    [114]许树柏.实用决策方法——层次分析法原理[M].天津:天津大学出版社,1988.
    [115]C.K.Kong,H.Bai.A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment[J].Journal of Intelligent Manufacturing,2002,13:367-377.
    [116]Gershenson,J.K.,Prasad,G.J.,Zhang,Y.Product modularity:measures and design methods[J].Journal of Engineering Design,2004,15(1):33-51.
    [117]王永良.基于零部件接口矩阵的机电产品协同设计系统的研究与实现[D].广州:广东工业大学硕士学位论文,2006.
    [118]Chen,J.M.,Liu,R.J.Interface strategies in modular product innovation [J].Technovation,2005,25:771-782.
    [119]Sanchez,R.Strategic product creation:managing new interactions of technology,markets,and organizations[J].European Management Journal,1996,14:121-138.
    [120]Fixson,Sebastian K.Product Architecture Assessment:A Tool to link Product,Process,and Supply Chain Design Decisions[J].Journal of Operations Management,2005,23(3/4):345-369.
    [121]Ulrich K T,Eppinger S D.Product Design and Development(second edition)[M],McGraw Hill,New York,2000.
    [122]Otto,Wood C.Product design:Techniques in reverse engineering and new product development[M].Prentice Hall,Upper Saddle River,NJ,2001.
    [123]刘建刚.并行工程中产品结构和开发过程集成管理关键技术研究[D].南京:南京航空航天大学博士学位论文,2006.
    [124]David M,Sharman,Yassine A.Characterizing Complex Product Architectures[J].Systems Engineering,2004,7(1):35-60.
    [125]汤廷孝,廖文和,黄翔等.产品设计过程建模及重组[J].华南理工大学学报:自然科学版,2006,34(2):41-46.
    [126]Yu TL,Yassine AA,Goldberg DE.An information theoretic method for developing modular architectures using genetic algorithms[J].Research in Engineering Design,2007,18:91-109.
    [127]Sharman D,Yassine A.Characterizing Complex Product Architectures[J].System Engineering,2004,7(1):35-60.
    [128]程强,张国军,李培根等.公理设计中关键性耦合设计参数识别方法.机械工程学报,录用2009刊出.
    [129]Dong Q,Whitney D E.Designing a Requirement Driven Product Development Process[C]//Proceedings of DETC 2001:ASME 2001 International Design Engineering Technical Conferences 13th International Conference on Design Theory and Methodology,Pittsburgh,PA,2001:1-11.
    [130]潘双夏,高飞,冯培恩.批量客户化生产模式下的模块划分方法研究[J].机械工程学报,2003,39(7):126.
    [131]王永福.模块化设计理论及其在桥式起重机设计中的应用[D].大连:大连理工大学硕士学位论文,2004.
    [132]孟祥慧,蒋祖华.面向产品族设计的模块规划[J].上海交通大学学报,2006,40(11):1869-1872,1876.
    [133]Meng X,Jiang Z,Huang GQ.On the module identification for product family development[J].International Journal of Advanced Manufacturing Technology,2007,35(1-2):26-40.
    [134]周美立.相似工程学[M].北京:机械工业出版社,1998.
    [135]Scott MJ.Formalizing negotiation in engineering design[D].PhD.Thesis.California Institute of Technology,Pasadena,CA;1999.
    [136]Altus,S.,Kroo,I.,& Gage,P.A genetic algorithm for scheduling and decomposition of multidisciplinary design problems[J].ASME Journal of Mechanical Design,1996,118(4):486-489.
    [137]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [138]Rissanen J.Hypothesis selection and testing by the MDL principle[J].The Comput Journal,1999,42:260-269.
    [139]张丽飞.基于最小描述长度准则的活动围道方法及其若干相关技术[D].中科院研究生院博士学位论文,2002.
    [140]Tian-Li Yu,Ali A.Yassine,David E.Goldberg.An information theoretic method for developing modular architecutres using genetic algorithms[J].Research in Engineering Design,2007,18:91-109.
    [141]Sub N P.The principles of design[M].New York:Oxford University Press,1990.
    [142]Strang G.Linear Algebra and Its Applications,Second Edition[M].Harcourt Brace Jovanovich,New York,1980.
    [143]Marvin M,Minc H.A survey of matrix theory and matrix inequalities[M].Allyn and Bacon,Boston,MA,1964.
    [144]SMITH R P,EPPINGER S D.Identifying controlling features of engineering design iteration[J].Management Science,1997,43(3):276-293.
    [145]张国军,程强,邵新宇,顾佩华.基于SDSM的产品可适应平台规划方法[A].第二届全国智能制造学术会议,NCIM2008[C].汕头,2008.
    [146]楼健人,张树有,谭建荣.面向大批量定制的客户需求信息表达与处理技术研究[J].中国机械工程,2004,15(4):685-687.
    [147]闫书丽,郑华杰,王传丽等.一种基于灰色聚类和模糊聚类的集成方法[J].河南科技大学学报:自然科学版,2008,(29)6:76-78,82.
    [148]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1999
    [149]张国军.基于灰色知识的可复用工艺设计理论及关键技术[D].武汉:华中科技大学博士学位论文,2002.
    [150]Fujita K,Sakaguchim H,Akagi S.Product variety deployment and its optimization under modular architecture and module communalization[C].ASME Design Engineering Technical Conferences,DETC1999/DFM-8923,Las Vegas,NV,1999.
    [151]Konstantinos Kalligeros,Platforms and Real Options in Large-Scale Engineering systems[D].Doctor of Philosophy at the Massachusetts Institute of Technology,June 2006.
    
    [152] Tyson R B. Applying the design structure matrix to system decomposition and integration problems: a review and new directions [J]. IEEE Transactions on Engineering Management, 2001,48(3):292-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700