用户名: 密码: 验证码:
基于运动学图谱的石材加工设备模块化设计技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石材异型制品应用日益广泛,并朝着多元化、个性化的方向发展,这就要求石材设备生产企业能够快速的研发并制造出满足制品加工需求的石材异型制品加工设备,而大部分企业目前所采用的设计方法因其效率低下等问题制约着设备的开发。模块化设计作为一种实用高效的设计方法在机械工程领域已经得到广泛应用,其通过模块的选择与组合可实现产品的快速设计。本文将模块化设计技术引入石材异型制品加工设备的设计中,在现有的模块化理论研究的基础上,对石材异型制品加工设备模块化设计过程中的模块创建、模块的编码及接口的设计等问题进行深入的研究和探索,从而为石材异型制品加工设备的模块化设计提供理论依据,推动石材设备生产企业模块化设计模式的进程,实现设备的快速设计。
     对市场上常用的石材异型制品进行归纳、定义和分类描述,分析各类制品的成形面、常用的加工刀具类型和成形加工原理,在此基础上深入研究石材异型制品的成形方法及其成形运动。制品加工的成形运动决定了设备的结构形式,成形运动的分析为面向模块化设计的石材异型制品加工设备系列型谱的拟定奠定基础。归纳所有的成形运动得到石材异型制品所有的加工运动组合,在数控设备坐标系下建立石材异型制品加工完整的运动学图谱。通过运动学图谱可以直观形象的分析设备的运动,从而为设备的功能、结构的分析与分解及模块的划分提供指导。
     进行石材异型制品加工设备的模块化设计的前期准备工作,包括:对整个模块化设计过程进行整体规划,将其划分为模块化系统的开发和基于模块化系统的设备设计两个阶段,并详细分析各阶段的开发流程,从而为模块化设计的具体实施提供指导;基于石材异型制品的分类及其成形运动分析,拟定石材异型制品加工设备系列型谱,并详细分析该系列设备的功能和结构,为基于功能和结构分解的模块划分奠定基础;针对石材异型制品加工设备的特点,提出面向生命周期的模块划分原则,结合功能独立和结构独立的通用性原则,能够有效的指导模块的划分。
     考虑石材异型制品加工设备结构的复杂性,将公理设计理论、运动学图谱和模糊树图理论相结合对其进行模块的划分。首先,采用公理设计的功能域-物理域的映射框架进行设备的逐级分解,在分解得到的设计矩阵均为对角阵的情况下,设备的子结构满足功能和结构的独立性,可单独作为一个模块,在适当的层次停止分解,基于运动学图谱,将模块映射到具体的结构形式,即得到划分完成的模块。若得到的设计矩阵为三角阵或者满矩阵,则对分解得到的子结构进行功能和结构相关度的分析,采用模糊树图聚类法将子结构聚类为模块。以模块化设备设计中的横系列、纵系列和更新换代设计复杂度为优化目标,建立面向设计的模块划分方案数学评价模型,对模块划分方案进行优选,从而得到利于设备再设计的最终的模块划分方案。
     对划分得到的各模块,综合其所属的设备系列、模块的功能和结构特征等信息进行详细的编码,以方便模块的管理和模块的计算机辅助选择与组合;基于模块化设计规则中的界面规则,研究模块接口的标准化设计,包括接口的形状和几何参数的标准化,以便于模块的互换与重组;在对接口的类型、形状、参数、功能流方向等各种信息进行分析与综合的基础上,建立接口的模型,并对接口模型的各种信息进行编码。接口的模型可为模块间关系的判断提供核心数据,是模块匹配性识别、模块可组合的依据。
     根据以上关键技术的研究,结合石材异型制品加工设备的设计特点,开发石材异型制品加工设备计算机辅助模块化设计系统。首先从系统整体的角度,采用IDEF0建模方法构建系统的功能模型,并将系统功能划分为模块化设计、数据管理和协同设计三个部分;然后在功能模型指导下,规划系统的整个体系结构和整体运行流程,并对各个子系统进行详细的分析与设计;最后,通过实例说明整个系统的运行过程。该系统可实现模块化设计过程的自动化,提高模块化设计的效率。
Application of special shaped stones becomes increasingly wide and the special shaped stones become diversified and personalized, which require stone machining equipment manufacturers to develop and manufacture special shaped stones machining equipments which meet the processing needs of special shaped stones quickly. However, existing design methods restrict the development of equipment because of problems such as their low efficiency. Modular design enables rapid design of products through the selection and combination of modules. As a practical and efficient design method, modular design has been widely used in the field of mechanical engineering. Modular design technology is led into the design of special shaped stones machining equipments in this dissertation and the problems such as the partition, encoding and interface design of module during the modular design of shaped stones machining equipments are studied and explored deeply in order to provide a theoretical basis for the modular design of special shaped stones machining equipments and promote the process of modular design model in stone equipment manufacturing enterprises and achieve rapid design of equipment ultimately.
     Special shaped stones commonly used on the market are defined, classified and described. The shape of each kind of special shaped stones, processing tools commonly used and the shaping principle are analyzed, on the basis of which the shaping method and shaping motion are studied deeply. Shaping motion of the stones determine the structure of equipment, therefore the analysis of shaping motion lay the foundation for the development of special shaped stones machining equipment series model which face modular design. Machining motion combinations of special shaped stones can be obtained by summing up all shaping movements, and then kinematics spectrum of the machining of special shaped stones can be established under the CNC machine tool coordinate system. Equipment movement can be analyzed intuitively through kinematics spectrums, which provide guidance for both the analysis and decomposition of the equipments' function and structure and the partition of module.
     The preparatory work of modular design of special shaped stones machining equipment is done which includes several steps as follows. Firstly, the whole process of modular design is integrated planned. The process is divided into two stages which are the development of modular system and the design of equipment based on the modular system, besides, the development process of each stage are analyzed in detail, which provide guidance on the specific implementation of modular design; Secondly, based on the classification of special shaped stones and their motion analysis, special shaped stones machining equipment series model is developed and the function and structure of the series equipments are analyzed in detail, which lay the foundation for the module partition which based on the decomposition of function and structure; Thirdly, considering the characteristics of special shaped stones machining equipment, module partition principle for life-cycle is proposed which can effectively guide the module partition by combining the general principle of functional and structural independence.
     Considering the complexity of the structure of special shaped stones machining equipment, module partition is completed by the combination of axiomatic design, kinematics spectrum and fuzzy dendrogram. The product is gradually divided using the framework of zigzagging map between the functional domain and physical domain of axiomatic design. In the case that the design matrix are diagonal matrices, the substructures of the division meet the functional and structural independence and can be considered as a separate module, then the division of module can be ended. Based on kinematics spectrum, modules are mapped to a specific structural form and the ultimate module can be obtained. When the design matrices are triangle matrices or fall rank matrices, the relevance of function and structure between the substructures are analyzed and then fuzzy dendrogram is used to cluster the substructures into modules. Mathematical evaluation model of module partition program for product design which considering the complexity of cross-series design, longitudinal series design and replacement design as the optimization goal is established, by which module partition programs can be evaluated in order to get the most reasonable module partition program.
     In order to facilitate the management and computer-aided selection and combination of modules, each module is encoded in detail by considering the information of respective equipment series, functional and structural characteristics of modules. Based on the interface rules of the modular design rules, standardized design of module interfaces which includes the standardization of interfaces' structure and parameter is studied in order to facilitate the exchange and reorganization of the modules. On the basis of analysis and synthesis of interfaces' type, shape, parameters, functional flow direction and other information, interface model is established and information included is encoded. Interface model provides the core data in the determination of the relationship between modules and is the foundation for the matching recognition and combination between modules.
     Based on the study of the key technologies above, computer-aided modular design system of special shaped stones machining equipment is developed considering the design features of special shaped stones machining equipment. Firstly, the system's functional model is built using IDEF0 modeling method and system functions are divided into three parts including modular design, data management and collaborative design. Secondly, under the guidance of the functional model, the overall structure and run process of the entire system are planned and each subsystem is analyzed and designed in detail. Ultimately, an example is used to show the running process of the whole system.
引文
1 王炳源.石材加工机械的现状及发展[J].石材,2004,(1):21-24.
    2 廖原时,谭金华,高峰.异型石材[M].北京:中国建材工业出版社,1999.
    3 吴玉厚,赵德宏,陆峰,等.异型石材制品加工技术与设备发展概述[J].石材,2007,(8):29.30-33.
    4 Baldwin C Y,Clark K B.Managing in an Age of Modularity[J].Harvard Business Review,1997,75(5):84-93.
    5 Ulrich K,Tung K.Fundamentals of Product Modularity[C].Proceedings of the 1991 Windter Annual Meeting.De-Vol 39,Altanta,GA,1991.
    6 Paul G,Beitz W.Engineering Design[M].London,U.K.:Springer-Verlag,1996.
    7 Buenstorf G.Sequential Production,Modularity and Technological Change[J].Structural Change and Economic Dynamics,2005,16(2):221-241.
    8 Hoetker G.Do Modular Products Lead to Modular Organizations[J].Strategic Management Journal,2006,27:501-518.
    9 Frigant V,Talbot D.Technological Determinism and Modularity:Lessons from a Comparison Between Aircraft and Auto Industries in Europe[J].Industry and Innovation,2005,12(3):337-355.
    10 贾延林.模块化设计[M].北京:机械工业出版社,1993.
    11 王海军.面向大规模定制的产品模块化若干设计方法研究[D].大连理工大学博士学位论文,2005.
    12 Fujita K.Product Variety Optimization Under Modular Architecture[J].Computer-aided design,2002,34(12):953-965.
    13 童时中.模块化设计原理、方法及应用[M].北京:中国标准出版社,2000.
    14 李春田.现代标准化前沿:模块化研究[M].北京:中国标准出版社,2008.
    15 卡丽斯·鲍德温,金·克拉克.设计规则:模块化的力量[M].张传良译.北京:中信出版社,2006.
    16 青木昌彦,安藤晴彦.模块时代:新产业结构的本质[M].周国荣译.上海:上海远东出版社,2003.
    17 姜慧,徐燕申,谢艳,等.机械产品模块化设计总体规划方法的研究[J].机械设计,1999,(12):1-2.
    18 侯亮,徐燕申,李森,等.基于参数化造型、变量优化的广义模块化设计[J].组合机床与自动化加工技术,2001,(8):13-15.
    19 Schilling M A.Toward a General Modular Systems Theory and Its Application to Interfirm Product Modularity[J].Academy of Management,2000,25(2):312-334.
    20 Pandremenos J,Paralikas J,Salonitis K,Chryssoiouris G.Modularity Concepts for the Automotive Industry:a Critical Review[J].CIRP Journal of Manufacturing Science and Technology,2009,1(3):248-152.
    21 钱平凡,黄川川.模块化:解决复杂系统问题的有效方法[J].中国工业经济,2003,(11):85-90.
    22 王一丹.模块化理论在产品创新中的应用[D].北京化工大学硕士学位论文,2008.
    23 Ulrich K.The Role of Product Architecture in the Manufacturing Firm[J].Research Policy,1995,(24):419-440.
    24 纪雪洪,王维.模块化研究综述[J].当代经济管理,2006,28(3):19-22,26.
    25 Chen K M,Liu R J.Interface Strategies in Modular Product Innovation[J].Technovation,2005,25(7):771-782.
    26 Erixon G,Yxkull A,Arnstrom A.Modularity-the Basis for Product and Factory Reengineering[J].CIRP Annals-Manufacturing Technology,1996,45(1):1-6.
    27 Gu P,Sosale S.Product Modularization for Life Cycle Engineering[J].Robotics and Computer-integrated Manufacturing,1999,15(5):387-401.
    28 Stone R B,Wood K L,Crawford R H.A Heuristic Method for Identifying Modules for Product Architectures[J].Design Studies,2000,21(1),5-31.
    29 Salhieh S M,Kamrani A K.Macro Level Product Development Using Design for Modularity[J].Robotics and Computer-integrated Manufacturing,1999,15(4):319-329.
    30 Jiao J X,Tseng M M.An Information Modeling Framework for Product Families to Support Mass Customization Manufacturing[J].Annals of the CIRP,1999,48(1):93-98.
    31 Tseng H E,Chang C C,Li J D.Modular Design to Support Green Life-cycle Engineering[J].Expert Systems with Applications,2008,34(4):2524-2537.
    32 吕利勇,乔立红,王田苗.面向产品生命周期的产品模块化分解方法研究[J].计算机集成制造系统,2006,12(4):546-551.
    33 祁卓娅,王建正,韩新民.模块柔性划分方法[J].机械工程学报,2007:43(1):87-94.
    34 祁卓娅.机械产品模块化设计方法研究[D].机械科学研究院硕士学位论文,2006.
    35 Tseng H E,Chang T S,Yang Y C.A Connector-based Approach to the Modular Formulation Problem for a Mechanical Product[J].The International Journal of Advanced Manufacturing Technology,2004,24(8):161-171.
    36 Kusiak A,Huang C C.Development of Modular Products[J].IEEE Transactions on Components Packaging and Manufacturing Technology-Part A,1996,19(4):523-538.
    37 Tsai Y T,Wang K S.The Development of Modular-based Design in Considering Technology Complexity[J].European Journal of Operational Research,1999,119(3):692-703.
    38 唐涛,刘志峰,刘光复,等.绿色模块化设计方法研究[J].机械工程学报,2003,39(11):149-154.
    39 Kimura F,Kato S,Hata T,etc.Product Modularization for Parts Reuse in Inverse Manufacturing[J].CIRP Annals-Manufacturing Technology,2001,50(1):89-92.
    40 Ishii K,Eubanks C F,Marco P D.Design for Product Retirement and Material Life-cycle[J].Materials and Design,1994,15(4):225-233.
    41 黄海鸿,刘志峰,王淑旺,等.面向回收的产品模块化设计方法[J].农业机械学报,2006,37(12):144-149.
    42 潘双夏,高飞,冯培恩.批量客户化生产模式下的模块划分方法研究[J].机械工程学报,2003,39(7):1-6.
    43 Kreng V B,Lee T P.Modular Product Design with Grouping Genetic Algorithm-a Case Study[J].Computers and Industrial Engineering,2004,46(3):443-460.
    44 王海军,孙宝元,魏小鹏.基于模糊聚类的产品模块化形成过程分析[J].计算机集成制造系统,2003,12(9):121-126.
    45 刘小鹏,吴俊军,周济.机床模块接口的系列化及其应用[J].机械与电子,2000,(4):6-9.
    46 王世军,赵金娟,雷蕾,等.机械结合部刚度的罚函数表示方法[J].中国机械工程,2008,19(13):635-835.
    47 肖新华,史明华,郝霄鹏,等.基于产品数据管理的并纱机模块化配置系统研究[J].计算机集成制造系统,2008,14(6):1078-1084.
    48 侯亮.机械产品模块化开发原理、方法及其应用实践[D].浙江大学博士后学位论文,2003.
    49 胡维刚.机床模块化设计及其智能支持系统的研究与实践[D].华中理工大学博士学位论文,1993.
    50 Fredrik H.Applying Axiomatic Design to Interface Analysis in Modular Product Development[J].Advances in Design Automation.ASME,1994,2:363-371.
    51 Abele E,Worn A,Fleischer J,etc.Mechanical Module Interfaces for Reconfigurable Machine Tools[J].Product Engineering,2007,1(4):421-428.
    52 齐尔麦.机械产品快速设计原理、方法、关键技术和软件工具研究[D].天津大学博士学位论文,2003.
    53 姜慧.计算机辅助机床模块化方案设计理论和实践[D].天津大学博士学位论文,1998.
    54 Ito Y,Shinno H.Structural Description and Similarity Evaluation of the Structural Configuration in Machine Tools[J].International Journal of Machine Tool Design and Research,1982,22(2):97-110.
    55 高广达,徐燕申,林汉元,等.面向模块化设计与制造全过程的模块编码系统[J].天津大学学报,2001,34(2):183-187.
    56 林海.面向大规模定制的家具设计与制造--论家具的模块化设计[D].南京林业大学博士学位论文,2003.
    57 马强.飞机工艺装备模块化设计技术研究[D].西北工业大学硕士学位论文,2007.
    58 Ito Y,Yoshida Y.Design Conception of Hierarchical Modular Constructure -Manufacturing Different Kinds of Machine Tools by Using Common Modules[C].Proc.19th Int MTDR Conf,1979,147.
    59 刘瑾.仪表车床的机床模块管理系统[J].上海机床,1991,(1):16-20.
    60 楼应侯.一种新的机床模块化设计编码方法[J].宁波大学学报(理工版),1998,11(1):67-71.
    61 侯亮,徐燕申,李森,等.基于模板模块的机械产品广义模块化设计模块编码系统[J].机械设计,2002,(1):8-10.
    62 陈永亮,徐燕申,林汉元.加工中心模块柔性编码系统[J].制造技术与机床,2000,(4):491-493.
    63 Brown D C.Defining Configuring Artificial Intelligent for Engineering Design[J].Analysis and Manufacturing,1998,12(4):301-306.
    64 Wielinga B,Schreiber G.Configuration-design Problem Solving[J].IEEE Expert,1997,4:49-56.
    65 Felfernig A,Friedrich G,Jannach D.Conceptual Modeling for Configuration of Mass-customizable Products[J].Artificial Intelligence in Engineering,2001,15(2):165-176.
    66 He D W,Kusiak A.Designing an Assembly Line for Modular Products[J].Computers and Industrial Engineering,1998,34(1):37-52.
    67 Huang C C,Kusiak A.Modularity in Design of Products and Systems[J].IEEE Transactions on Systems,Man and Cybernetics-part A:Systems and Human,1998,28(1):66-77.
    68 王海军,孙宝元,张建明,等.客户需求驱动的模块化产品配置设计[J].机械工程学报,2005,41(4):85-91.
    69 Fujita K,Sakaguchi H,Yoneda T.Simultaneous Optimization of Product Family Sharing System Structure and Configuration[C].Proceedings of ASME Design Engineering Technical Conferences,Atlanta:ASME Press,1998.
    70 Fujita K,Sakaguchi H,Akagi S.Product Variety Deployment and its Optimization under Modular Architecture and Module Communalization[C].Proceedings of ASME Design Engineering Technical Conferences,LasVegas:ASME Press,1999.
    71 Chakravarty A K,Balakrishnan N.Achieving Product Variety through Optimal Choice of Module Variations[J].ⅡE Transactions,2001,33(7):587-598.
    72 Gu X J,Qi G N,Yang Z X,etc.Research of the Optimization Methods for Mass Customization[J].Journal of Materials Processing Technology,2002,129(1-3):507-512.
    73 Grady P O,Liang W Y.An Object Oriented Approach to Design with Modules[J].Computer Integrated Manufacturing Systems,1998,11(4):267-283.
    74 Shan B.A Distributed System Structure for Modular Product Architecture Development and Variation[M].Canada:Master Dissertation,University of Windsor,2001.
    75 Huang C C.A Multi-agent Approach to Collaborative Design of Modular Products[J].Concurrent Engineering:Research and Application,2004,12(1):39-47.
    76 祁国宁,顾新建,谭建荣.大批量定制技术及其应用[M].北京:机械工业出版社,2003.
    77 Felfeming A,Friedrich G,Jannch D.Consistency-based Diagnosis of Configuration Knowledge Bases[J].Artificial Intelligence,2004,152(2):213-234.
    78 王海军,孙宝元,王吉军,等.面向大规模定制的产品模块化设计方法[J].计算机集成制造系统,2004,10(10):1171-1176.
    79 Dobrescu G,Reich Y.Progressive Sharing of Modules among Product Variants[J].Computer-aided Design,2003,35(9):791-806.
    80 Gonzalez J P,Otto K N.Modular Platform Based Product Family Design[J].In:Proceedings of DETC'00 ASME Design Engineering Technical Conference,Baltimore,Maryland,2000,DAC-14238:677-687.
    81 Gu P,Sievinsky M.Mechanical Bus for Modular Product Design[J].CIRP Annals-Manufacturing Technology,2003,52(1):113-116.
    82 顾新建,郑国君,朱万贵,等.面向大批量定制生产的模块化制造系统[J].组合机床与自动化加工技术,2003,1:1-3.
    83 张冠伟,徐燕申,高广达,等.基于实例推理的机床模块概念设计系统[J].机械设计,2000,5:29-32.
    84 Kevin N 0,Kristin L W著.产品设计[M].齐春萍,宫小东,等译.北京:电子工业出版社,2005.
    85 柳晓堂.面向工程机械个性化定制的模块化技术研究[D].四川大学硕士学位论文,2007.
    86 Sanchez,Ron.Modular Architectures,Knowledge Assets and Organizational Learning:New Management Processes for Product Creation[J].International Journal of Technology Management,2000,19(6):610-629.
    87 Kevin W Z.Risk-pooling over Demand Uncertainty in the Presence of Product Modularity[J].International Journal of Production Economics,1999,62(1):75-85.
    88 Ouyang M.Intelligent Layout for Modular Design of Machine Tools[J].Proceedings of SPIE-The International Society for Optimal Engineering,1995,2620(10):547-552.
    89 王惠.基于功能模块的石材异型制品加工设备快速设计及评价体系[D].山东大学硕士学位论文,2002.
    90 王鹏.基于模块化的石材异型制品加工设备快速设计[D].山东大学硕士学位论文,2002.
    91 任秀华.基于模块化设计的石材异型制品加工设备CAD系统开发[D].山东大学硕士学位论文,2004.
    92 于丰业.石材异型制品加工设备模块化设计的研究[D].山东大学硕士学位论文,2004.
    93 晏辉.一个石材业内专家的内心感悟:中国石材企业十年风雨路[J].石材,2004(2):48-52.
    94 李运璧.石材应用、开发与投资指南[M].北京:地质出版社,1999.
    95 蔡行来,罗长芳.装饰石材实用大全[M].长春:吉林科学技术出版社,1998.
    96 王经坤.石材异型制品加工设备虚拟设计系统的研究与应用[D].山东大学博士学位论文,2006.
    97 黄克正.复杂表面成形加工系统设计智能化理论与应用研究[D].山东工业大学博士学位论文,1993.
    98 贾亚洲.金属切削机床概论[M].北京:机械工业出版社,1994.
    99 单岩,夏天.数控铣加工[M].北京:机械工业出版社,2004.
    100 #12
    101 Meyer M H,Lehnerd A F.The Fower of Froduct Flafforms:Building Value and Cost Leadership[M].New York:The Free Press,1997.
    102 樊蓓蓓,祁国宁.基于复杂网络的产品族结构建模及模块分析方法[J].机械工程学报,2007,43(3):187-192,198.
    103 兰林春,但斌,冯韬,等.一种面向大规模定制的产品族分类方法[J].重庆大学学报,2004,27(7):97-101.
    104 侯亮,徐燕申,唐任仲,等.面向广义模块化设计的产品族规划方法研究[J].中国机械工程,2003,14(7):596-599.
    105 Suh N P.Axiomatic Design[M].New York:Oxford University Press,2001.
    106 RodePacker W.Methodisches Konstruieren[M].Springer-Velag.Berlin.1971.
    107 王玉新.数字化设计[M].北京:机械工业出版社,2003.
    108 赵庆志,刘正埙,谷安,等.电火花线切割机床模块划分的理论和应用研究[J].机械工程学报,2005,41(9):175-179.
    109 肖新华.基于模块化产品实例的变型设计技术研究与实现[D].天津工业大学硕士学位论文,2005.
    110 Suh N P.The Principle of Design[M].New York:Oxford University Press,1990.
    111 江屏,张换高,陈子顺,等.公理设计辅助产品设计过程重组研究[J].计算机集成制造系 统,2007,13(3):425-464.
    112 朱龙英,朱如鹏,刘正埙.公理化设计与DFA集成的产品信息模型[J].计算机辅助设计与图形学学报,2004,16(2):216-221.
    113 Suh N P.公理设计--发展与应用[M].谢友柏,袁小阳,徐华,等译.北京:机械工业出版社,2004.
    114 Suh N P.Axiomatic Design Advance and Applications[M].New York:Oxford University Press,2001.
    115 Cha S W,Cho K K.Development of DVD for the Next Generation by Axiomatic Approach[J].Annals of the CIRP,1999,48(1):85-88.
    116 侯亮,唐任仲,徐燕申.产品模块化设计理论、技术与应用研究进展[J].机械工程学报,2004,40(1):56-61.
    117 Meng X H,Jiang Z H,Huang G Q.On the Module Identification for Product Family Development[J].The International Journal of Advanced Manufacturing Technology,2007,35(1):26-40.
    118 陆长明,蒋建东,胥芳,等.基于接口的小型农业作业机模块划分方法[J].农业机械学报,2007,38(6):57-61.
    119 赵焕臣,许树柏,和金生.层次分析法[M].北京:科学出版社,1986.
    120 杨纶标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2001.
    121 J.A邦迪,u.S.R.默蒂.图论及其应用[M].吴望名,李念祖,吴兰芳,等译.北京:科学出版社,1984.
    122 冯德益,楼世博,林命迥,等.模糊数学方法与应用[M].北京:地震出版社,1983.
    123 王树禾.图论[M].北京:科学出版社,2004.
    124 胡宝清.模糊理论基础[M].武汉:武汉大学出版社,2004.
    125 贡智兵,李东波,史翔.面向产品配置的模块形成及划分方法[J].机械工程学报,2007,43(11):160-167.
    126 Stone R B,McAdams D A,Kayyalethekkel V J.A Product Architecture-based Conceptual DFA Technique[J].Design Studies,2004,25(3):301-325.
    127 张学文.组成论[M].合肥:中国科学技术大学出版社,2003.
    128 钱钰博,焦黎,徐奕柳,等.面向产品全生命周期的产品模块结构编码研究[J].成组技术与生产现代化,2008,25(4):52-54.
    129 刘承,戴声良,杨丽群,等.客车车身骨架的模块化设计应用研究[J].客车技术,2007,(4):24-27.
    130 白贺斌.基于广义模块化设计的粗纱机模块创建及软件实现技术[D].天津大学硕士学位论文,2005.
    131 黄新明,冷长荣,唐增宝,等.重型数控机床模块编码系统的研究[J].制造技术与机床,1996,(4):38-41.
    132 杨海飞.小农机减速箱可重构模块化设计研究[D].浙江工业大学硕士学位论文,2007.
    133 张建军,张建昌,吴宗彦,等.大规模定制中配置匹配度模型研究[J].计算机集成制造系统,2007,13(1):44-48.
    134 袁驰.活塞加工专用设备模块化设计的研究[D].山东大学硕士学位论文,2007.
    135 孙海涛.货车底架组对夹具模块化设计研究[D].大连交通大学硕士学位论文,2007.
    136 李斌,史明华,肖放.基于模块化设计的纺机产品编码系统的研究[J].组合机床与自动化加工技术,2004,(11):11-13.
    137 张广锋,何卫平,张维,等.模块化思想在工装快速准备中的研究应用[J].计算机工程与应用,2007,43(15):188-192.
    138 黎旭,徐燕申,黄艳群.广义模块化设计及报价系统通用平台的构建及其应用[J].机械工程学报,2007,43(4):205-210.
    139 Koren Y,Heisel U,Jovane F,etc.Reconfigurable Manufacturing Systems[J].CIRP Annals-manufacturing Technology,2006,100(1):527-540.
    140 王松涛,王立华,张鹏.机械结合面阻尼的产生机理研究现状与发展[J].机械,2007,34(12):1-4.
    141 周佶,胡利民.模块接口的标准化[J].标准化报道,1992,13(6):13-14.
    142 朱瑞博.价值模块整合与产业融合[J].中国工业经济,2003,(8):24-31.
    143 谢昕.住宅建筑室内模块化设计应用研究[D].北京建筑工程学院硕士学位论文,2008.
    144 Hatch,N W.Design Rules,Volume 1:the Power of Modularity[J].Academy of Management Revies,2001,26(1):130-133.
    145 柳献忠.现代美式家具结构模块化及其应用研究[D].南京林业大学博士学位论文,2008.
    146 方佳佳.产品模块化对组织模块化的影响机制研究[D].浙江大学硕士学位论文,2008.
    147 Lester M,A I D.Construction of American Furniture Treatures[M].New York:Arco Publishing,1985.
    148 The Editors of Science & Mechanics Magazine.Treasury of Woodworking Projects[M].New York:Arco Publishing,1985.
    149 Clark K B,Fujimoto T.Product Development Performance:Strategy,Organization and Management in the World Auto Industry[M].Boston:Harvard Business School Press,1991.
    150 Sanchez R,Collins R P.Competing and Learning in Modular Markets[J].Long Range Planning,2001,34(6):645-667.
    151 荣霞,王江,刘建平.基于IDEF模型的供应链战略联盟的构建[J].昆明理工大学学报(理工版),2006,31(4):108-112.
    152 陈禹六.IDEF建模分析和设计方法[M].北京:清华大学出版社,1999.
    153 陈禹六.计算机集成制造(CIM)系统设计和实施方法论[M].北京:清华大学出版社,1996.
    154 陈禹六.IDEF0及IDEF1X--复杂系统通用的设计分析方法[M].北京:电子工业出版社,1991.
    155 王丁.基于IDEF模型的F电信网络管理部业务流程再造[D].华南理工大学硕士学位论文,2007.
    156 Kim C H,Weston R H,Hodgson A,etc.The Complementary Use of IDEF and UML Modelling Approaches[J].Computers in Industry,2003,50(1):35-56.
    157 邓良松,刘海岩,陆丽娜.软件工程[M].西安:西安电子科技大学出版社,2004.
    158 Kim C H,Yim D S,Weston R H.An Integrated Use of IDEFO,IDEF3 and Petri-net Methods in Support of Business Process Modeling[J].Proceedings of the Institution of Mechanical Engineers,Part E:Journal of Process Mechanical Engineering,2001,215(4):317-330.
    159 Karakostas B,Zorgios Y,Alevizos C C.Automatic Derivation of BPEL4WS from IDEFO Process Models[J].Software and Systems Modeling,2006,5(2):208-218.
    160 Kim S H,Jang K J.Designing Performance Analysis and IDEF0 for Enterprise Modelling in BPR[J].International Journal of Production Economics,2002,76(2):121-133.
    161 Lin Z C,Chow J J.Integration Planning Model of IDEFO and STEP Product Data Representation Methods in a CMM Measuring System[J].The International Journal of Advanced Manufacturing Technology,2001,17:39-53.
    162 任守榘.现代制造系统分析与设计[M].北京:科学出版社,1999.
    163 范玉顺,王刚,高展.企业建模理论与方法学导论[M].北京:清华大学出版社,2001.
    164 徐勤全,程国全.基于IDEF物流中心作业流程建模方法研究[J].物流技术,2005,(9):104-106.
    [1] Wang J K. Research and Application on the Virtual Design System for Profiled Surface Stones Machining Equipment[D]. Shandong University Docteral Dissertation, 2006
    [2] Hou L. Principles, Methods and Applicationn of Modular Development of Mechanical Products[D]. Zhejiang University Post-doctoral Dissertation, 2003
    [3] Wang R J. CAD System Research and Development of New Modular Equipments for Machining Stones[D]. Shandong University Master's Thesis, 2003
    [4] Suh N P. Axiomatic Design[M]. New York: Oxford University Press, 2001
    [5] Meyer M H, Lehnerd A P. The Power of Product Platforms: Building Value and Cost Leadership. New York: The Free Press, 1997
    
    [6] Jia Y L. Modular Design[M]. Beijing: Machinery Industry Press, 1993
    [7] Liao Y S, Tan J H, Gao F. Special Shaped Stones[M]. Beijing: China Building Material Industry Press, 1999
    [8] Yan H. The Sentiment of an Expert in Stone Industry: Decades of Development of China Stone Enterprises[J]. Stone, 2004, (2): 48-52
    [9] Yan H. Several Methods for Improving the Efficiency of Stone Machining[J]. Stone, 2005, (8): 28-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700