用户名: 密码: 验证码:
中子及γ射线对肠免疫组织放射损伤效应及IL-2对肠上皮再生调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:中子辐射对肠道损伤较γ射线程度重、发生早、疗效差、难恢复,迄今机制未明,肠免疫组织参与其损伤修复过程,然关于中子对肠免疫组织损伤特点及IL-2对肠上皮损伤及修复作用及其机制尚未见报道。本文研究中子辐射后肠免疫组织病变特点及其对肠上皮再生调控作用,为其防治提供新思路。
     方法:采用2.5~5.5Gy中子及5.5-12Gyγ射线照射350只BALB/C小鼠和IEC-6细胞(正常SD大鼠空肠隐窝上皮细胞),并用IL-2(25×10~3~1×10~5U/L)及JAK_1阻断剂A77-1726于照前12h或照后即刻处理细胞,分别于照后6h,12h,1~5d,7d,14d,21d及28d活杀取材或15min,30min,1h,3h,6h,9h,12h,1~3d收集细胞,采用光镜、电镜、免疫组化、MTT、FACS、免疫印迹等方法对比研究中子及γ射线照后肠免疫组织损伤、恢复规律和IL-2对IEC-6再生作用及其机制。
     结果:(1)肠免疫组织病理变化:中子组2.5Gy照后3d内,淋巴细胞发生凋亡、坏死,5d见再生,14~21d渐恢复,4.0和5.5Gy照后以坏死多见,未见明显恢复;γ射线组5.5Gy照后病变与中子2.5Gy组类似,但程度轻、再生早、凋亡多见,12Gy照后损伤程度介于中子4.0~5.5Gy组之间。(2)肠PP内T、B细胞及浆细胞变化:2.5Gy中子照后5d内,进行性减少,T/B比例升高,14d后恢复,其中T及浆细胞均呈量—效关系。(3)肠免疫因子变化:2.5Gy中子和5.5Gyγ射线照后5d内,IL-2,4及IgA均进行性减少,7~10d少量表达,14d后渐恢复,IFNγ,TGFβ_3,TNFα和IL-18于照后2d内进行性减少,3~7d增多,14d后恢复,均呈量—效关系。(4)IL-2对IEC-6作用及IL-2Rβ/JAK_1/STAT_5通路变化:中子4Gy照后3d内,IEC-6增殖活力降低,照后1d凋亡和坏死增多,以坏死为主,γ射线4~12Gy照后1d以凋亡多见;给予IL-2后1~3d,IEC-6增殖活力提高,凋亡减少,且呈量—效关系,同时IL-2R表达增加,JAK_1激酶和转录因子STAT_5活化增强;IEC-6经A77-1726、IL-2与8Gyγ线共处理后24h增殖活力降低,STAT_5活化减弱。
     结论:(1)中子致肠免疫组织损伤重,恢复慢,损伤期凋亡与坏死并存,4.0和5.5Gy组以坏死为主,而γ射线照射以凋亡为主。(2)内源性IgA及肠上皮生长刺激因子IL-2、IL-4于中子损伤期减少,而生长抑制及凋亡诱导因子IFNγ,TGFβ,TNFα及IL-18于损伤期增多,进一步抑制肠上皮恢复。(3)4Gy中子照射抑制IEC-6增殖,以坏死损伤为重,而γ射线损伤以凋亡为主,IL-2可促进IEC-6增殖,抑其凋亡,活化JAK_1及STAT_5,A77-1726可抑制IL-2的促增殖及活化效应,IL-2可通过活化IL-2Rβ/JAK_1/STAT_5通路而介导其抗辐射效应。
Objective: Compared to y ray injury, Neutron radiation injury of intestine always occur more rapidly and severely, have less curative effect and recover more difficultly. Now characteristics of neutron injury on gut-associated lymphoid tissues and effects of IL-2 on reepithlialization of enteric epithelium after neutron radiation have not yet been reported. It is very important for prevention, diagnosis and treatment of neutron injury to research characteristics of pathological changes of gut-associated lymphoid tissues and regulation of which on reepithlialization of enteric epithelium after neutron injury.
    Materials and methods: 350 BALB/C mice and IEC-6 (jejunum crypt epithelial cells of normal SD rats) was radiated by 2.5~5.5Gy neutron and 5.5~12Gy γ ray, and IEC-6 was treated by IL-2 (25 × 10~3~1×10~5U/L) and JAK, blocking agent (A77-1726) on 12h before radiation or immediately after radiation. The mice were sacrificed on 6h, 12h, 1~5d, 7d,14d, 21d and 28d after irradiation, IEC-6 were collected on 15min, 30min, 1h, 3h, 6h, 9h, 12h and 1~3d. Then the regularity of gut-associated lymphoid tissues injury and recovery and effects of IL-2 on reepithlialization of enteric epithelium could be studied with light microscope, electron microscope, histochemical stain, MTT colorimetry, FACS and immunoblot method and so on.
    Results: (1) Pathological changes of gut-associated lymphoid tissues: lymphocytes occurred apoptosis and necrosis within 3d, regenerated on 5d, and recovered during 14~21d after 2.5Gy neutron radiation, most lymphocytes appeared necrosis after 4.0 and 5.5Gy neutron radiation and no recovery. Pathological changes of 5.5Gy y ray group were similar to those of 2.5Gy neutron group, but were more slight, earlier regeneration and much more apoptosis. Degree of injury of 12Gy y ray was between 4.0 and 5.5Gy neutron group. (2) Changes of T, B lymphocytes in intestinal PP and plasmocytes: decreased progressingly within 5d after 2.5Gy neutron radiation, T/B ratio increased, and recovered after 14d. T lymphocytes and plasmocytes appeard dose-effect
引文
1 Somosy Z, Horvath G, Telbisz A, et al. Morphological aspects of ionizing radiation response of small intestine. Micron, 2002, 33(2): 167-178.
    2 McGowan I, Chalmers A, Smith GR, et al. Advances in mucosal immunology. Gastroenterology Clinics of North America, 1997, 26(2): 145-173.
    3 毛秉智,陈家佩主编.急性放射病基础与临床.北京:军事医学科学出版社,2002:63-65.
    4 Mowat AM, Millington OR, Chirdo FG. Anatomical and cellular basis of immunity and tolerance in the intestine. J Pediatr Gastroentcrol Nutr, 2004, 39(Suppl 3): S723-724.
    5 David WK, Acheson, Stefano L. Mucosal immune responses. Best Pract Res Clin Gastroenterol, 2004, 18(2): 387-404.
    6 Hauet-Broere F, Unger WW, Garsscn J, et al. Functional CD_(25)~-and CD_(25)~+ mucosal regulatory T cells are induced in gut-draining lymphoid tissue within 48h after oral antigen application. Eur J Immunol, 2003, 33(10): 2801-2810.
    7 Sood S, Rishi P, Vohra H, et al. Cellular immune response induced by Salmonella cnterica serotype Typhi iron-regulated outer-membrane proteins at peripheral and mucosal levels. J Med Microbiol, 2005, 54(Pt 9): 815-821.
    8 Frossard CP, Hauser C, Eigenmann PA. Antigen-specific secretory IgA antibodies in the gut are decreased in a mouse model of food allergy. J Allergy Clin Immunol, 2004, 114(2): 377-382.
    9 Baey A, Mende I, Baretton G, et al. A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha. J Immunol, 2003, 170(10): 5089-5094.
    10 Castellaneta A, Abe M, Morelli AE, et al. Identification and characterization of intestinal Peyer's patch interferon-alpha producing (plasmacytoid) dendritic cells. Hum Immunol, 2004, 65(2): 104-113.
    11 Hosono A, Ozawa A, Kato R, et al. Dietary fructooligosaccharides induce immunoregulation of intestinal IgA secretion by murine Peyer's patch cells. Biosci Biotcchnol Biochem, 2003, 67(4): 758-764.
    12 Dohi T, Fujihashi K, Koga T, et al. T helper type-2 cells induce ileal villus atrophy, goblet cell metaplasia, and wasting disease in T cell-deficient mice. Gastroenterology, 2003, 124(3): 672-682.
    13 Chen J, Tsang LL, Ho LS, et al. Modulation of human enteric epithelial barrier and ion transport function by Peyer's patch lymphocytes. World J Gastroenterol, 2004, 10(11): 1594-1599.
    14 陈杰,高杰英,曾丽玲,等.Peyer's结淋巴细胞对结肠上皮细胞屏障功能的影响.自然科学进展,2003,13(3):318-320.
    15 Catherine B, Christopher S. P. Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest, 2000, 105(11): 1493-1499.
    16 Konopliannikova OA, Konopliannikov AG, Vacek A. Radiobiological aspects of increased radioresistance of murine epithelial stem cells from patches of Peyer. Radiats Biol Radioecol, 1994, 34(4-5): 514-519.
    17 Leon F, Sanchez L, Camarero C, et al. Cytokine production by intestinal intracpithclial lymphocyte subsets in celiac disease. Dig Dis Sci, 2005, 50(3): 593-600.
    18 Wildhaber BE, Yang H, Spencer AU, et al. Lack of entcral nutrition: effects on the intestinal immune system. J Surg Res, 2005, 123(1): 8-16.
    19 Ebert EC. IL-15 converts human intestinal intraepithelial lymphocytes to CD_(94) producers of IFN-gamma and IL-10, the latter promoting Fas ligand-mediated cytotoxicity. Immunology, 2005, 115(1): 118-126.
    20 Yang H, Antony PA, Wildhaber BE, et al. Intestinal intraepithelial lymphocyte gamma delta-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. J Immunol, 2004, 172(7): 4151-4158.
    21 Shibahara T, Miyazaki K, Sato D, et al. Alteration of intestinal epithelial function by intraepithelial lymphocyte homing. J Gastroenterol, 2005, 40(9): 878-886.
    22 徐辉,程天民,粟永萍,等.小鼠全身辐射后对小肠上皮内淋巴细胞形态及功能的影响.第三军医大学学报,1998,20(4):281-284.
    23 Mafia M, Philiippe S. Epithelial cell responses. Best Pract Res Clin Gastroenterol, 2004, 18(2): 373-386.
    24 Yang H, Spencer AU, Teitelbaum DH. Interleukin-7 administration alters intestinal intraepithelial lymphocyte phenotype and function in vivo. Cytokine, 2005, 31(6): 419-428.
    25 Ericsson A, Svensson M, Arya A, et al. CCL25/CCR9 promotes the induction and function of CD_(103) on intestinal intraepithelial lymphocytes. Eur J Immunol, 2004, 34(10): 2720-2729.
    26 Okazawa A, Kanai T, Nakamaru K, et al. Human intestinal epithelial cell-derived interleukin (IL)-I8, along with IL-2, IL-7 and IL-15, is a potent synergistic factor for the proliferation of intraepithelial lymphocytes. Clin Exp Immunol, 2004, 136(2): 269-276.
    27 Scofield VL, Montufar-Solis D, Cheng E, et al. Intestinal TSH production is localized in crypt enterocytes and in villus 'hotblocks' and is coupled to IL-7 production: evidence for involvement of TSH during acute enteric virus infection. Immunol Lett, 2005, 99(1): 36-44.
    28 Booth D, Potten CS. Protection against mucosal injury by growth factors and cytokines. J Natl Cancer lnst Monogr, 2001, 29(1): 16-20.
    29 Booth D, Haley JD, Bruskin AM, et al. Transforming growth factor-β_3 protects murine small intestinal crypt stem cells and animal survival after irradiation, possibly by reducing stem-cell cycling. Int J Cancer, 2000, 86(1): 53-59.
    30 Yang-Snyder JA, Rothenberg EV. Spontaneous expression of interleukin-2 in vivo in specific tissues of young mice. Dev Immunol, 1998, 5(4): 223-245.
    31 O'Loughlin EV, Pang GP, Noltorp R, et al. Interleukin 2 modulates ion secretion and cell proliferation in cultured human small intestinal enterocytes. Gut, 2001, 49(5): 636-643.
    32 Ciacci C, Mahida YR, Dignass A, et al. Functional interleukin-2 receptors on intestinal epithelial cells. J Clin Invest, 1993, 92(1): 527-532
    33 Garcia-Tunnon I, Ricote M, Ruiz A, et al. Interleukin-2 and its receptor complex (α, β and γ, chains) in in situ and infiltrative human breast cancer an immunohistoehemical comparative study. Rreast Cancer Res, 2004, 6(1): R1-7.
    34 Pfeffer LM, Yang CH, Pfeffer SR, et al. Inhibition of omithine decarboxylase induces STAT_3 tyrosine phosphorylation and DNA binding in IEC-6 cells. Am J Physiol Cell Physiol, 2000, 278(2): C331-335
    35 Han SK, Song JY, Yun YS, et al. Gamma irradiation-reduced IFN-gamma expression, STAT_1 signals, and cell-mediated immunity. J Biochem Mol Biol, 2002, 35(6): 583-589.
    1 龚志锦,詹镕洲.病理组织制片和染色技术.上海:上海科学技术出版社,1994:48-51,348-353.
    2 古德全,粟永萍,阎国和.显示浆细胞的组织化学方法.诊断病理学杂志,1995,2(3):175.
    3 舒翠莉,高杰英,彭虹,等.痢疾菌苗滴鼻免疫小鼠诱导不同部位淋巴组织的免疫应答.细胞与分子免疫学杂志,2002,18(1):49-51.
    4 姜泊,张亚历,周殿元主编.分子生物学常用实验方法.北京:人民军医出版社,2002:125-126.
    5 毛秉智,陈家佩主编.急性放射病基础与临床.北京:军事医学科学出版社,2002:3-4,200-212.
    6 Mowat AM, Millington OR, Chirdo FG. Anatomical and cellular basis of immunity and tolerance in the intestine. J Pediatr Gastroenterol Nutr, 2004, 39(Suppl 3): S723-724.
    7 McGowan I, Chalmers A, Smith GR, et al. Advances in mucosal immunology. Gastroenterology Clinics of North America, 1997, 26(2): 145-173.
    8 周吕主编.胃肠生理学—基础与临床,科学出版社,1991:222-226.
    9 Karen MP, Bremner AR, John NG, et al. Best Practice & Research Clinical Gastroenterology, 2004, 18(2): 271-285.
    10 Beagley KW, Husband AJ. Imraepithelial Lymphocytes: Origins, Distribution, and Function. Immunology, 1998, 18(3): 237-254.
    11 Ebert EC, Roberts AI, Brolin RE, et al. Jejunal intraepithelial lymphocytes (IEL): An examination of their low proliferative capacity. Gastroenterology, 1986, 65(1): 148-157.
    12 Somosy Z, Horvath G, Telbisz A, et al. Morphological aspects of ionizing radiation response of small intestine. Micron, 2002, 33(2): 167-178.
    13 徐辉,程天民,粟永萍等.小鼠全身辐射后对小肠上皮内淋巴细胞形态及功能的影响.第三军医大学学报,1998,20(4):281-284.
    14 Van Houten N, Blake SF, Li EJ, et al. Elevated expression of Bcl-2 and Bcl-X by intestinalintraepithelial lymphocytes: resistance to apoptosis by glucocorticoids and irradiation. Int Immunol, 1997,9(7): 945-953.
    
    15 Hale ML, McCarthy KF. Effect of sublethal ionizing radiation on rat Peyer's patch lymphocytes. Radiat Res, 1984,99(1): 151-164.
    
    16 Nagy G, Gacsi M, Rehak M, et al. Gamma irradiation-induced apoptosis in murine pre-B cells prevents the condensation of fibrillar chromatin in early S phase. Apoptosis. 2004, 9(6): 765-776.
    
    17 Carr KE, Hume SP, Nelson AC, et al. Morphological profiles of neutron and X-irradiated small intestine. J Radiat Res, 1996,37(1): 38-48.
    
    18 Paris F, Fuks Z, Kang A, et al. Endothelial apopsis as the primary lesion initiating intestinal radiation damage in mice. Science, 2001,293(5528): 293-297.
    
    19 Carr KE, Hamlet R, Nias AHW, et al. Morphological differences in the response of mouse small intestine to radiobiologically equivalent doses of X and neutron irradiation. Scanning Electron Microsc, 1984, (Pt 1): 445-454.
    
    20 Nandchahal K. Crypt cell population changes in the mouse jejunum during injury and repair after whole-body gamma irradiation. Radiobiol Radiother (Berl), 1990,31 (4): 337-339.
    
    21 Samarth RM, Saini MR, Maharwal J, et al. Mentha piperita (Linn) leaf extract provides protection against radiation induced alterations in intestinal mucosa of Swiss albino mice. Indian J Exp Biol, 2002,40(11): 1245-1249.
    
    22 Gunter-Smith PJ. Gamma radiation affects active electrolyte transport by rabbit ileum. II. Correlation of alanine and theophylline response with morphology. Radiat Res, 1989, 117(3): 419-432.
    
    23 Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol, 1995, 146(1): 3-15.
    
    24 Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfudion injury. Gastroenterology, 2003, 125(4): 1246-1257.
    
    25 Nieminen AL, Gores GJ, Wray BE, et al. Calcium dependence for bleb formation and cell death in hepatocytes. Cell Calcium, 1988, 9(5-6): 237-246
    
    26 Herman B, Nieminen AL, Gores GJ, et al. Irreversible injury in anoxic hepatocytes precipitated by an abrupt increase in plasma membrane permeability. FASEB J, 1988,2(2): 146-151.
    
    27 Nicotera P, Leist M, Ferrando-May E. Intracellular ATP, a switch in the decision between apoptosis.Toxicol Lett, 1998, 10(102-103): 139-142.
    
    28 Lemasters JJ. Dying a thousand deaths: redundant pathways from different organdies to apoptosis and necrosis. Gastroenterology, 2005, 129(1): 351-360.
    
    29 Qian T, Herman B, Lemaster JJ. The mitochondrial permeability transition mediates both necrotic and apoptotic death of hepatocytes exposed to Br-A23187. Toxicol Appl Pharmacol, 1999,154(2): 117-125.
    
    30 Kim JS, Qian T, Lemasters JJ. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology, 2003, 124(2): 494-503.
    
    31 rnelissen M, Thierens H, De Ridder L. Interphase death in human peripheral blood lymphocytesafter moderate and high doses of low and high LET radiation: an electron microscopic approach. Anticancer Res, 2002, 22(1A): 241-245.
    32 Woodside KJ, Spies M, Wu XW, et al. Decreased lymphocyte apoptosis by anti-tumor necrosis factor antibody in Peyer's patches after severe burn. Shock, 2003, 20(1): 70-73.
    33 Lisova S, Ehrmann J, Kolek A, et al. Immunohistochemical study of the apoptotic and proliferative mechanisms in the intestinal mucosa during coeliac disease. Cesk Patol, 2005, 41(3): 85-93.
    34 Gault N, Poncy JL, Lefaix JL. Radiation-induced apoptosis: a new approach using infrared microspectroscopy. Can J Physiol Pharmacol, 2004, 82(1): 38-49.
    35 Fujikawa K, Hasegawa Y, Matsuzawa S, et al. Dose and dose-rate effects of X rays and fission neutrons on lymphocyte_apoptosis in p53~(+/+) and p53~(-/-) mice. J Radiat Res, 2000, 41(2): 113-127.
    36 Rzeszowska-Wolny J, Polanska J, Pietrowska M, et al. Influence of polymorphisms in DNA repair genes XPD, XRCC1 and MGMT on DNA damage induced by gamma radiation and its repair in lymphocytes in vitro. Radiat Res, 2005, 164(2): 132-140.
    37 Korol BA, Umanskii SR. Internuclesomal fragmentation of nuclear DNA in the mucosa of the small intestine and in bone marrow cells of irradiated rats. Radiobiologiia, 1984, 24(5): 646-649.
    38 Mathieu J, Richard S, Ballester B, et al. Apoptosis and gamma rays. Ann Pharm Fr, 1999, 57(4): 314-323.
    39 崔玉芳,张莹,柳晓兰,等.γ辐射诱发的人AHH-1 T淋巴细胞凋亡及其调控机制.细胞与分子免疫学杂志,2004,20(1):39-41.
    40 Guidos CS, Williams CJ, Graadal I, et al. V (D) J recombination activates a p53-dependent DNA damage checkpoint in scid lymphocyte precursors. Genes Dev, 1996, 10(16): 2038-2054.
    41 Fischer B, Benzina S, Jeannequin P, et al. Fast neutrons-induced apoptosis is Fas-independent in lymphoblastoid cells. Biochem Biophys Res Commun, 2005, 334(2): 533-542.
    42 Erlacher M, Michalak EM, Kelly PN, et al. BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood, 2005, 106(13): 4131-4138.
    43 Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene, 2005, 24(17): 2899-2908.
    44 Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. Apotential role in apoptotic signaling. J Biol Chem, 2000, 275(21): 16202-16212.
    45 Schuler M, Green DR. Transcription, apoptosis and p53: catch22. Trends Genet, 2005, 21(3): 182-187.
    46 Villunger A, Michalak EM, Coultas L, et al. p53- and Drug-Induced Apoptotic Responses Mediated by BH3-Only Proteins Puma and Noxa. Science, 2003, 302(5647): 1036-1038.
    47 Nieoletti VG, Stella AM. Role of PARP under stress conditions: cell death of protection? Neurochem Res, 2003, 28(2): 187-194.
    48 Huang HL, Fang LW, Lu SP, et al. DNA-damaging reagents induce apoptosis through reactiveoxygen species-dependent Fas aggregation. Oncogene, 2003, 22(50): 8168-8177.
    49 Surh CD, Sprent J. T-Cell apoptosis detected in situ during positive and negative selection in the thymus. Nature, 1994, 372(6501): 100-103.
    50 Tseng J. Induction of indigenous immunoglobulin-containing cells by gamma-irradiation and lymphoid cell transfer in mice. J Immunol, 1981, 127(5): 2140-2146.
    51 Schmitz A, Bayer J, Dechamps N, et al. Intrinsic susceptibility to radiation-induced apoptosis of human lymphocyte subpopulations. Int J Radiat Oncol Biol Phys, 2003, 57(3): 769-778.
    52 Olson GB, Anderson RE, Barrels PH. Computer analysis of defined populations of lymphocytes irradiated in vitro. Ⅲ. Evaluation of human T and B cells of peripheral blood origin. Hum Pathol, 1979, 10(2): 179-190.
    53 Vral A, Louagie H, Thierens H, et al. Micronucleus frequencies in cytokinesis-blocked human B lymphocytes after low dose gamma-irradiation. Int J Radiat Biol, 1998, 73(5): 549-555.
    54 Mori M, Benotmane MA, Tirone I, et al. Transcriptional response to ionizing radiation in lymphocyte subsets. Cell Mol Life Sci, 2005, 62(13): 1489-1501.
    55 Sakata K, Matsumoto Y, Tauchi H, et al. Expression of genes involved in repair of DNA double-strand breaks in normal and tumor tissues. Int J Radiat Oncol Biol Phys, 2001, 49(1): 161-167.
    56 Jackson SP. DNA-depondent protein kinase. Int J Biochern Cell Biol, 1997, 29(7): 935-938.
    57 Nussenzweig A, Sokol K, Burgman P, et al. Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: the effects of ionizing radiation on growth, survival, and development. Proc Natl Acad Sci USA, 1997, 94(25): 13588-13593.
    58 Galant SP. Immunobiology of the gastrointestinal tract. Compr Ther, 1976, 2(6):35-39.
    59 Beschorner WE, Yardley JH, Tutschka PJ, et al. Deficiency of intestinal immunity with graft-vs-host disease in humans. Infect Dis, 1981, 144(1): 38-46.
    60 Order SE. The effects of therapeutic irradiation on lymphocytes and immunity. Cancer, 1977, 39(2 Suppl): 737-743.
    61 Abraham E, Chang YH. Hemorrhage in mice produces alterations in intestinal B cell repertoires. Cell Immunol, 1990, 128(1): 165-174.
    62 Robinson A, Abraham E. Effects of haemorrhage on bacterial antigen specific pulmonary plasma cellfunction. Clin Exp Immunol, 1992, 88(1): 124-128.
    63 白晓东,肖光夏,田学功.烧伤后肠相关淋巴组织调控因子基因表达与IgA浆细胞变化.中华烧伤杂志,2000,16(2):108-110.
    64 Miller JJ, Cole LJ. The radiation resistance of long-lived lymphocytes and plasma cells in mouse and rat lymph nodes. J Immunol, 1967, 98(5): 982-990.
    65 Bazin H, Maldague P, Heremans JE The metabolism of different immunoglobulin classes in irradiated mice. Ⅱ. Role of the gut. Immunology, 1970, 18(3): 361-368.
    66 Johannsen U, Mehlhom G, Koch F, et al. Pathomorphology of radiation injury in pigs exposed to high doses of whole body x-irradiation. Arch Exp Veterinarmed, 1971, 25(3): 428-458.
    1 蔡文琴,王伯云编著.实用免疫细胞化学与核酸分子杂交技术.成都:四川科学技术出版社,1994:72-89.
    2 J.萨姆布鲁克,E.F弗里奇,T.曼尼阿蒂斯主编,金冬雁,黎孟枫等译.分子克隆实验指南.北京:科学出版社,2002:878-898.
    3 Zinov'ev AS, Kononov AV. Chronic inflammation of mucous membranes: integration of immunity and regeneration. Arkh Patol, 1997, 59(3): 18-24.
    4 Leon F, Sanchez L, Camarero C, et al. Cytokine production by intestinal intraepithelial lymphocyte subsets in celiac disease. Dig Dis Sci, 2005, 50(3): 593-600.
    5 Wildhaber BE, Yang H, Spencer AU, et al. Lack of enteral nutrition-effects on the intestinal immune system. J Surg Res, 2005, 123(1): 8-16.
    6 Shibahara T, Miyazaki K, Sato D, et al. Alteration of intestinal epithelial function by intraepithelial lymphocyte homing. J Gastroenterol, 2005, 40(9): 878-886.
    7 Guk SM, Yong TS, Chai JY. Role of murine intestinal intraepithelial lymphocytes and lamina propria lymphocytes against primary and challenge infections with Cryptosporidium parvum. J Parasitol, 2003, 89(2): 270-275.
    8 Ebert EC. Interleukin-12 up-regulates perforin- and Fas-mediated lymphokine-activated killeractivity by intestinal intraepithelial lymphocytes. Clin Exp Immunol, 2004, 138(2): 259-265.
    9 Tamauchi H, Yoshida Y, Sato T, et al. Oral antigen induces antigen-specific activation of intraepithelial CD_4~+ lymphocytes but suppresses their activation in spleen. Immunobiology, 2005, 210(9): 709-721.
    10 Miura N, Yamamoto M, Fukutake M, et al. Anti-CD_3 induces bi-phasie apoptosis in murine intestinal epithelial cells: possible involvement of the Fas/Fas ligand system in different T cell compartments. Int Immunol, 2005, 17(5): 513-522.
    11 Ericsson A, Svensson M, Arya A, et al. CCL25/CCR9 promotes the induction and function of CD103 on intestinal intraepithelial lymphocytes. Eur J Immunol, 2004, 34(10): 2720-2729.
    12 Forest V, Pierre F, Bassonga E, et al. Apc~+/Min colonic epithelial cells express TNF receptors and ICAM-1 when they are co-cultured with large intestine intra-epithelial lymphocytes. Cell Immunol, 2003, 223(1): 70-76.
    13 Hue S, Mention JJ, Monteiro RC, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity, 2004, 21(3): 367-377.
    14 Ebert EC. IL-15 converts human intestinal intraepithelial lymphocytes to CD_(94) producers of IFN-gamma and IL-10, the latter promoting Fas ligand-mediated cytotoxieity. Immunology, 2005, 115(1): 118-126.
    15 Yang H, Fan Y, Teitelbaum DH. Intraepithelial lymphocyte-derived interferon-gamma evokes enterocyte apoptosis with parenteral nutrition in mice. Am J Physiol Gastrointest Liver Physiol, 2003, 284(4): G629-637.
    16 Yang H, Antony PA, Wildhaber BE, et al. Intestinal intraepithelial lymphocyte gamma delta-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. J Immunol, 2004, 172(7): 4151-4158.
    17 Hauet-Broere F, Unger WW, Garssen J, et al. Functional CD_(25)~-and CD_(25)~+ mucosal regulatory T cells are induced in gut-draining lymphoid tissue within 48 h after oral antigen application. Eur J Immunol, 2003, 33(10): 2801-2810.
    18 Sood S, Rishi P, Vohra H, et al. Cellular immune response induced by Salmonella enterica serotype Typhi iron-regulated outer-membrane proteins at peripheral and mucosal levels. J Med Microbiol, 2005, 54(Pt 9): 815-821.
    19 Frossard CP, Hauser C, Eigenmann PA. Antigen-specific secretory IgA antibodies in the gut are decreased in a mouse model of food allergy. J Allergy Clin Immunol, 2004, 114(2): 377-382.
    20 Baey A, Mende I, Baretton G, et al. A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha. J Immunol, 2003, 170(10): 5089-5094.
    21 Castellaneta A, Abe M, Morelli AE, et al. Identification and characterization of intestinal Peyer's patch interferon-alpha producing (plasmaeytoid) dendritic cells. Hum Immunol, 2004, 65(2): 104-113.
    22 Hosono A, Ozawa A, Kato R, et al. Dietary fructooligosaccharides induce immunoregulation of intestinal IgA secretion by murine Peyer's patch cells. Biosci Biotechnol Biochem, 2003, 67(4): 758-764.
    23 Sato A, Hashiguchi M, Toda E, et al. CD_(11b)~+ Peyer's patch dendritic cells secrete IL-6 and induce IgA secretion from naive B calls. J Immunol, 2003, 171(7): 3684-3690.
    24 Austin AS, Haas KM, Naugler SM, et al. Identification and characterization of a novel regulatory factor: IgA-inducing protein. J Immunol, 2003, 171(3): 1336-1342.
    25 Monteleone G, Holloway J, Salvati VM, et al. Activated STAT4 and a functional role for IL-12 in human Peyer's patches. J Immunol, 2003, 170(1): 300-307.
    26 Chen J, Tsang LL, Ho LS, et al. Modulation of human enteric epithelial barrier and ion transport function by Peyer's patch lymphocytes. World J Gastroenterol, 2004, 10(11): 1594-1599.
    27 Schwartz S, Beaulieu JF, Ruernmele FM. Interleukin-17 is a potent immuno-modulator and regulator of normal human intestinal epithelial cell growth. Biochem Biophys Res Commun, 2005, 337(2): 505-509.
    28 Heller F, Florian P, Bojarski C, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 2005, 129(2): 550-564.
    29 Francoeur C, Escaffit F, Vachon PH, et al. Proinflammatory cytokines TNF-alpha and IFN-gamma alter laminin expression under an apoptosis-independent mechanism in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol, 2004, 287(3): G592-598.
    30 Mithani SK, Balch GC, Shiou SR, et al. Smad3 has a critical role in TGF-beta-mediated growth inhibition and apoptosis in colonic epithelial cells. J Surg Res, 2004, 117(2): 296-305.
    31 Mosmann TR, Coffiman RI. Th_1 and Th_2 cells: defferent patterns ofarclymphokine xecretion lead to different function proterties. Annu Rev Immunol, 1990, 79(3): 145-174.
    32 Sharma M, Vohra H, Bhasin D. Enhanced pro-inflammatory chemokine/cytokine response triggered by pathogenic Entamoeba histolytica : basis of invasive disease. Parasitology, 2005, 131(Pt 6): 783-796.
    33 温忠慧,欧阳钦,张虎,等.IL-18在结肠炎小鼠结肠粘膜中的表达及作用探讨.四川大学学报医学版,2005,36(5):676-678.
    34 Snoeck V, Goddeeris B, Cox E. The role of enterocytes in the intestinal barrier function and antigen uptake. Microbes Infect, 2005, 7(7-8): 997-1004.
    35 Westendorf AM, Templin M, Geffers R, et al. CD_4~+ T cell mediated intestinal immunity: chronic inflammation versus immune regulation. Gut, 2005, 54(1): 60-69.
    36 Kaneko M, Mizunuma T, Takimoto H, et al. Development of TCR alpha beta CD_8 alpha alpha intestinal intraepithelial lymphocytes is promoted by interleukin-15-producing epithelial cells constitutively stimulated by gram-negative bacteria via TLR_4. Biol Pharm Bull, 2004, 27(6):883-889.
    37 Yilmaz ZB, Weih DS, Sivakumar V, et al. Relb is required for Peyer's patch development: differential regulation of p52-Relb by lymphotoxin and TNE EMBO J, 2003, 22(1): 121-130.
    38 Scofield VL, Montufar-Solis D, Cheng E, et al. Intestinal TSH production is localized in crypt enterocytes and in villus 'hotblocks' and is coupled to IL-7 production: evidence for involvement of TSH during acute enteric virus infection. Immunol Lett, 2005, 99(1): 36-44.
    39 Lamm ME. Interaction of antigens and antibodies at mucosal surfaces. Annu Rev Microbiol, 1997, 51(3): 311-340.
    40 Hansen GH, Niels-Christiansen LL, Immerdal L, et al. Antibodies in the small intestine: Mucosal synthesis and deposition of anti-glycosyl IgA, IgM and IgG in the enterocyte brush border. Am J Physiol Gastrointest Liver Physiol, 2006, 24: [Epub ahead of print]
    41 Mazanec MB, Nedrud JG, Kaetzel CS, et al. A three-tiered view of the role of IgA in mucosal defense. Immunol Today, 1993, 14(9): 430-435.
    42 白晓东,肖光夏,田学功.烧伤后肠相关淋巴组织调控因子基因表达与IgA浆细胞变化.中华烧伤杂志,2000,16(2):108-110.
    43 Vriesendorp HM, Halliwell RE, Johnson PM, et al. Immunoglobulin levels in dogs after total-body irradiation and bone marrow transplantation. Transplantation, 1985, 39(6): 583-588.
    44 艾国平,粟永萍,刘晓宏,等.放烧复合伤小鼠小肠粘膜免疫变化与肠源性感染关系的研究.中华放射医学与防护杂志,1999,19(1):15-17.
    45 古春雷,古德全,粟永萍,等.放射损伤、烧伤和放烧复合伤小鼠小肠IgA浆细胞的变化.细胞与分子免疫学杂志,1997,13(4):69-71.
    46 Fallon PG, Jolin HE, Smith P, et al. IL-4 induces characteristic Th_2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity, 2002, 17(1): 7-17.
    47 Hess DJ, Henry-Stanley MJ, Erickson EA, et al. Effect of tumor necrosis factor alpha, interferon gamma, and interleukin-4 on bacteria-enterocyte interactions. J Surg Res, 2002, 104(2): 88-94.
    48 Fort M, Lesley R, Davidson N, et al. IL-4 exacerbates disease in a Th_1 cell transfer model of colitis. J Immunol, 2001, 166(4): 2793-2800.
    49 Ackermann LW, Denning GM. Nuclear factor-kappa B contributes to interleukin-4 and interferon-dependent polymeric immunoglobulin receptor expression in human intestinal epithelial cells. Immunology, 2004, 111(1): 75-85.
    50 Blanchard C, Durual S, Estienne M, et al. Eotaxin-3/CCL26 gene expression in intestinal epithelial cells is up-regulated by interleukin-4 and interleukin-13 via the signal transducer and activator of transcription 6. Int J Biochem Cell Biol, 2005, 37(12): 2559-2573.
    51 Lugering N, Kucharzik T, Kraft M, et al. Interleukin (IL)-13 and IL-4 are potent inhibitors of IL-8 secretion by human intestinal epithelial cells. Dig Dis Sci, 1999, 44(3): 649-655.
    52 Madden KB, Whitman L, Sullivan C, et al. Role of STAT_6 and mast cells in IL-4 andIL-13-induced alterations in murine intestinal epithelial cell function. J Immunol, 2002, 169(8): 4417-4422.
    53 McGee DW, Vitkus SJ. IL-4 enhances IEC-6 intestinal epithelial cell proliferation yet has no effect on IL-6 secretion. Clin Exp Immunol, 1996, 105(2): 274-277.
    54 Dohi T, Fujihashi K, Koga T, et al. T helper type-2 cells induce ileal villus atrophy, goblet cell metaplasia, and wasting disease in T cell-deficient mice. Gastroenterology, 2003, 124(3): 672-682.
    55 Reinecker HC, Podolsky DK. Human intestinal epithelial cells express functional cytokine receptors sharing the common gamma c chain of the interleukin 2 receptor. Proc Natl Acad Sci USA, 1995, 92(18): 8353-8357.
    56 O'Loughlin EV, Pang GP, Noltorp R, et al. Interleukin 2 modulates ion secretion and cell proliferation in cultured human small intestinal enterocytes. Gut, 2001, 49(5): 636-643.
    57 Dignass AU, Podolsky DK. Interleukin 2 modulates intestinal epithelial cell function in vitro. Exp Cell Res, 1996, 225(2): 422-429.
    58 Indaram AV, Visvalingam V, Locke M, et al. Mucosal cytokine production in radiation-induced proctosigmoiditis compared with inflammatory bowel disease. Am J Gastroenterol, 2000, 95(5): 1221-1225.
    59 Buning J, Schmitz M, Repenning B, et al. Interferon-gamma mediates antigen trafficking to MHC class Ⅱ-positive late endosomes of enterocytes. Eur J Immunol, 2005, 35(3): 831-842.
    60 Alvarado J, Taylor P, Castillo JR, et al. Interferon gamma bound to extracellular matrix changes the hyporesponsiveness to LPS in crypt but not villous intestinal epithelial cells. Immunol Lett, 2005, 99(1): 109-112.
    61 Bruewer M, Luegering A, Kucharzik T, et al. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol, 2003, 171(11): 6164-6172.
    62 Chiba H, Kojima T, Osanai M, et al. The significance of interferon-gamma-triggered internalization of tight-junction proteins in inflammatory bowel disease. Sci STKE, 2006(316): [Epub ahead of print].
    63 Okunieff P, Comelison T, Mester M, et al. Mechanism and modification of gastrointestinal soft tissue response to radiation: role of growth factors. Int J Radiat Oncol Biol Phys, 2005, 62(1): 273-278.
    64 孙卫民,王惠琴主编.细胞因子研究方法学.北京:人民卫生出版社,2000:734-738.
    65 Sakuraba H, Ishignro Y, Yamagata K, et al. Transforming growth factor-beta regulates susceptibility of epithelial apoptosis in murine model of colitis. Ann N Y Acad Sci. 2004, 1029: 382-384.
    66 Spieker-Polet H, Yam PC, Arbieva Z, et al. In vitro induction of the expression of multiple IgA isotype genes in rabbit B cells by TGF-beta and IL-2. J Immunol, 1999, 162(9): 5380-5388.
    67 Jiang Y, McGee DW. Regulation of human lymphocyte IL-4 secretion by intestinal epithelialcell-derived interleukin-7 and transforming growth factor-beta. Clin Immunol Immunopathol, 1998, 88(3): 287-296.
    68 Matagrano LB, Magida JA, McGee DW. Transforming growth factor-betal enhances the secretion ofmonocyte chemoattractant protein-1 by the IEC-18 intestinal epithelial cell line. In Vitro Cell Dev Biol Anita, 2003, 39(3-4): 183-186.
    69 Gebhardt T, Lorentz A, Detmer F, et al. Growth, phenotype, and function of human intestinal mast cells are tightly regulated by transforming growth factor betal. Gut, 2005, 54(7): 928-934.
    70 Mayer L. Review article: Local and systemic regulation of mucosal immunity. Aliment Pharmacol Ther, 1997, 11(Suppl 3): 81-88.
    71 Lindfors K, Viiri KM, Niittynen M, et al. TGF-beta induces the expression of SAP_(30L), a novel nuclear protein. BMC Genomics, 2003, 4(1):53-60.
    72 Howe KL, Reardon C, Wang A, et al. Transforming growth factor-beta regulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic Escherichia coli O157: H7-induced increased permeability. Am J Pathol, 2005, 167(6): 1587-1597.
    73 Richter KK, Langberg CW, Sung CC, et al. Increased transforming growth factor beta (TGF-beta) immunoreactivity is independently associated with chronic injury in both consequential and primary radiation enteropathy. Int J Radiat Oncol Biol Phys, 1997, 39(1): 187-195.
    74 Wang J, Zheng H, Qiu X, et al. Modulation of the intestinal response to ionizing radiation by anticoagulant and non-anticoagulant heparins. Thromb Haemost, 2005, 94(5): 1054-1059.
    75 Wang J, Zheng H, Sung CC, et al. Cellular sources of transforming growth factor-beta isoforms in early and chronic radiation enteropathy. Am J Pathol, 1998, 153(5): 1531-1540.
    76 Haner-Jensen M, Richter KK, Wang J, et al. Changes in transforming growth factor beta1 gene expression and immunoreactivity levels during development of chronic radiation enteropathy. Radiat Res, 1998, 150(6): 673-680.
    77 Wang J, Albertson CM, Zheng H, et al. Short-term inhibition of ADP-induced platelet aggregation by clopidogrel ameliorates radiation-induced toxicity in rat small intestine. Thromb Haemost, 2002, 87(1): 122-128.
    78 Alexakis C, Guettoufi A, Mestries P, et al. Heparan mimetic regulates collagen expression and TGF-betal distribution in gamma-irradiated human intestinal smooth muscle cells. FASEB J, 2001, 15(9): 1546-1554.
    79 徐辉,程天民,粟永萍,等.全身辐射对小鼠小肠上皮内淋巴细胞功能影响的实验研究.中华放射医学与防护杂志,1999,19(1):18-21.
    80 Ruifrok AC, Mason KA, Lozano G, et al. Spatial and temporal patterns of expression of epidermal growth factor, transforming growth factor alpha and transforming growth factor beta 1-3 and their receptors in mouse jejunum after radiation treatment. Radiat Res, 1997, 147(1): 1-12.
    81 Potten CS, Booth D, Haley JD. Pretreatment with transforming growth factor beta-3 protects small intestinal stem cells against radiation damage in vivo. Br J Cancer, 1997, 75(10): 1454-1459.
    82 Booth D, Haley JD, Bruskin AM, et al. Transforming growth factor-β_3 protects murine small intestinal crypt stem cells and animal survival after irradiation, possibly by reducing stem-cell cycling. Int J Cancer, 2000, 86(1): 53-59.
    83 Pinkoski MJ, Droin NM, Green DR. Tumor necrosis factor alpha up-regulates non-lymphoid Fas-ligand following superantigen-induced peripheral lymphocyte activation. J Biol Chem, 2002, 277(44): 42380-42385.
    84 Bruno ME, Kaetzel CS. Long-term exposure of the HT-29 human intestinal epithelial cell line to TNF causes sustained up-regulation of the polymeric Ig receptor and proinflammatory genes through transcriptional and posttranscriptional mechanisms. J Immunol, 2005, 174(11): 7278-7284.
    85 Belliard AM, Lacour B, Farinotti R, et al. Effect of tumor necrosis factor-alpha and interferon-gamma on intestinal P-glycoprotein expression, activity, and localization in Caco-2 cells. J Pharm Sci, 2004, 93(6): 1524-1536.
    86 Ruemmele FM, Beaulieu JF, Dionne S, et al. Lipopolysaccharide modulation of normal enterocyte turnover by toll-like receptors is mediated by endogenously produced turnout necrosis factor alpha. Gut, 2002, 51(6): 842-848.
    87 Song HL, Lu S, Liu P. Tumor necrosis factor-alpha induces apoptosis of enterocytes in mice with fulminant hepatic failure. World J Gastroenterol, 2005, 11(24): 3701-3709.
    88 Pedersen G, Saerm ection of interferon-gamma-inducing factor ("interleukin-18") in mouse intestinal epithelial cells. Cell Tissue Res, 1997, 289(3): 499-503.
    89 Prasad S, Mingrino R, Kaukinen K, et al. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest, 2005, 85(9): 1139-1162.
    90 Chakravortty D, Kumar KS. Modulation of barrier function of small intestinal epithelial cells by lamina propria fibroblasts in response to lipopolysaccharide: possible role in TNFalpha in inducing barrier dysfunction. Microbiol Immunol, 1999, 43(6): 527-533.
    91 Linard C, Marquette C, Mathien J, et al. Acute induction of inflammatory cytokine expression after gamma-irradiation in the rat: effect of an NF-kappa B inhibitor. Int J Radiat Oncol Biol Phys, 2004, 58(2): 427-434.
    92 Wu X, Woodside KJ, Song J, et al. Burn-induced gut mucosal homeostasis in TCR delta receptor-deficient mice. Shock, 2004, 21(1): 52-57.
    93 Taylor CT. Regulation of intestinal epithelial gene expression in hypoxia. Kidney Int, 2004, 66(2): 528-531.
    94 Takeuchi M, NishizakiY, Sano O, et al. Immunohistochemical and immunal electronic microscopic det
    95 Reuter BK, Pizarro TT. Commentary: the role of the IL-18 system and other members of the IL-1R/TLR superfamily in innate mucosal immunity and the pathogenesis of inflammatory bowel disease: friend or foe? Eur J Immunol, 2004, 34(9): 2347-2355.
    96 Pizarro TT, Michie MH, Bentz M, et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn's disease: expression and localization in intestinal mucosal cells. J Immunol, 1999, 162(11): 6829-6835.
    97 Hwang SY, Jung JS, Kim TH, et al. Ionizing radiation induces astrocyte gliosis through microglia activation. Neurobiol Dis, 2006, 21(3): 457-467.
    98 Cho D, Seung Kang J, Hoon Park J, et al. The enhanced IL-18 production by UVB irradiation requires ROI and AP-1 signaling in human keratinocyte cell line (HaCaT). Biochem Biophys Res Commun, 2002, 298(2): 289-295.
    99 Schwarz A, Maeda A, Stander S, et al. IL-18 reduces ultraviolet radiation-induced DNA damage and thereby affects photoimmunosuppression. J Immunol, 2006, 176(5): 2896-2901.
    100 Takeuchi M, Okura T, Mori T, et al. Intracellular production of interleukin-18 in human epithelial-like cell lines is enhanced by hyperosmotic stress in vitro. Cell Tissue Res, 1999, 297(3): 467-473.
    101 Pages F, Berger A, Henglein B, et al. Modulation of interleukin-18 expression in human colon carcinoma: consequences for tumor immune surveillance. Int J Cancer, 1999, 84(3): 326-330.
    102 Paulukat J, Bosmann M, Nold M, et al. Expression and release of IL-18 binding protein in response to IFN-gamma. J Immunol, 2001, 167(12): 7038-7043.
    103 Okazawa A, Kanai T, Nak Namaru K, et al. Human intestinal epithelial cell-derived interleukin (IL)-18, along with IL-2, IL-7 and IL-15, is a potent synergistic factor for the proliferation of intraepithelial lymphocytes. Clin Exp Immunol, 2004, 136(2): 269-276. ark T, Bendtzen K, et al. Cultures of human colonic epithelial cells isolated from endoscopical biopsies from patients with inflammatory bowel disease. Effect of IFNgamma, TNFalpha and IL-lbeta on viability, butyrate oxidation and IL-8 secretion. Autoimmunity, 2000, 32(4): 255-263.
    1 Xinze R, Yongping S, Yongjiang W, et al. Influencing factors of rat small intestinal epithelial cell cultivation and effects of radiation on cell proliferation. World J Gastroentero, 2001, 7(1): 140-142.
    2 司徒镇强,吴军正主编.细胞培养.西安:世界图书出版公司,2001:82-83.
    3 陈杰,高杰英,曾丽玲,等.Peyer's结淋巴细胞对结肠上皮细胞屏障功能的影响.自然科学进展,2003,13(3):318-320.
    4 司徒镇强,吴军正主编.细胞培养.西安:世界图书出版公司,2001:181-182.
    5 孙卫民,王惠琴主编.细胞因子研究方法学.北京:人民卫生出版社,2001:65-67.
    6 J.萨姆布鲁克,E.F弗里奇,T.曼尼阿蒂斯主编,金冬雁,黎孟枫等译.分子克隆实验指南.北京:科学出版社,2002:304-316.
    7 Yang H, Antony PA, Wildhaber BE, et al. Intestinal intraepithelial lymphocyte gamma delta-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. J Immunol, 2004, 172(7): 4151-4158.
    8 Shibahara T, Miyazaki K, Sato D, et al. Alteration of intestinal epithelial function by intraepithelial lymphocyte homing. J Gastroenterol, 2005, 40(9): 878-886.
    9 徐辉,程天民,粟永萍,等.小鼠全身辐射后对小肠上皮内淋巴细胞形态及功能的影响.第三军医大学学报,1998,20(4):281-284.
    10 Holler F, Florian P, Bojarski C, et al. Interleukin-13 is the key effector Th_2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 2005, 129(2): 550-564.
    11 Booth D, Haley JD, Bruskin AM, et al. Transforming growth factor-β_3 protects murine small intestinal crypt stem cells and animal survival after irradiation, possibly by reducing stem-cell cycling. Int J Cancer, 2000, 86(1): 53-59.
    12 Ciacci C, Mahida YR, Dignass A, et al. Functional interleukin-2 receptors on intestinal epithelial cells. J Clin Invest, 1993, 92(1): 527-532.
    13 Reinecker HC, Podolsky DK. Human intestinal epithelial cells express functional cytokine receptors sharing the common gamma c chain of the interleukin 2 receptor. Proc Natl Acad Sci USA, 1995, 92(18): 8353-8357.
    14 O'Loughlin EV, Pang GP, Noltorp R, et al. Interleukin 2 modulates ion secretion and cell proliferation in cultured human small intestinal enterocytes. Gut, 2001, 49(5): 636-643.
    15 Yang-Snyder JA, Rothenberg EV. Spontaneous expression of interleukin-2 in vivo in specific tissues of young mice. Dev Immunol, 1998, 5(4): 223-245.
    16 Quaroni A, Wands J, Trelstad RL, et al. Epithelial cell cultures from rat small intestine. J Cell Biol, 1979, 80(2): 248-265.
    17 Aymerich I, Foufelle F, Ferre P, et al. Extracellular adenosine activates AMP-dependent protein ldnase (AMPK). J Cell Sci, 2006, 119(Pt 8): 1612-1621.
    18 Shoji H, Oguchi S, Fujinaga S, et al. Effects of human milk and spermine on hydrogen peroxide-induced oxidative damage in IEC-6 cells. J Pediatr Gastroenterol Nutr, 2005, 41(4): 460-465.
    19 Jiang X, Jacamo R, Zhukova E, et al. RNA interference reveals a differential role of FAK and Pyk_2 in cell migration, leading edge formation and increase in focal adhesions induced by LPA in intestinal epithelial cells. J Cell Physiol, 2006, 207(3): 816-828.
    20 Wroblewski R, Jalnas M, Van Decker G, et al. Effects of irradiation on intestinal cells in vivo and in vitro. Histol Histopathol, 2002, 17(1): 165-177.
    21 Potten CS, Booth C, Chadwick CA, et al. A potent stimulator of small intestinal cell proliferation extracted by simple diffusion from intact irradiated intestine: in vitro studies. Growth Factors, 1994, 10(1): 53-61.
    22 Cheeseman CI, Thomson AB, Walker K. The effects of abdominal irradiation on intestinal transport in the rat as assessed with isolated epithelial cells. Radiat Res, 1985, 101(1): 131-143.
    23 Ray RM, McCormack SA, Johnson LR. Polyamine depletion arrests growth of IEC-6 and Caco-2 cells by different mechanisms. Am J Physiol Gastrointest Liver Physiol, 2001, 281(1): G37-43.
    24 Wang JY, McCormack SA, Viar MJ, et al. Decreased expression of protooncogenes c-fos, c-mye, and c-jun followingpolyamine depletion in IEC-6 cells. Am J Physiol, 1993, 265(2 Pt 1): G331-338.
    25 Qian W, Nishikawa M, Haque AM, et al. Mitoehondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol, 2005, 289(6): C1466-1475.
    26 彭曦,汪仕良,尤忠义,等.肠三叶因子对肠上皮细胞增殖的影响及其信号转导机制的实验研究.中华烧伤杂志,2003,19(5):285-288.
    27 Zhang HM, Keledjian KM, Rao JN, et al. Induced focal adhesion kinase expression suppresses apoptosis by activating NF-kappa B signaling in intestinal epithelial cells. Am J Physiol Cell Physiol, 2006, 290(5): C1310-1320.
    28 Bhattacharya S, Ray RM, Johnson LR. Decreased apoptosis in polyamine depleted IEC-6 cells depends on Akt-mediated NF-kappaB activation but not GSK3beta activity. Apoptosis, 2005, 10(4): 759-776.
    29 Hauet-Broere F, Unger WW, Garssen J, et al. Functional CD_(25)~- and CD_(25)~+ mucosal regulatoryT cells are induced in gut-draining lymphoid tissue within 48 h after oral antigen application. Eur J Imraunol, 2003, 33(10): 2801-2810.
    30 Sood S, Rishi P, Vohra H, et al. Cellular immune response induced by salmonella enterica serotype typhi iron-regulated outer-membrane proteins at peripheral and mucosal levels. J Med Microbiol, 2005, 54(Pt9): 815-821.
    31 Frossard CP, Hauser C, Eigenmann PA. Antigen-specific secretory IgA antibodies in the gut are decreased in a mouse model of food allergy. J Allergy Clin Immunol, 2004, 114(2): 377-382.
    32 Baey A, Mende I, Baretton G, et al. A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha. J Immunol, 2003, 170(10): 5089-5094.
    33 Castellaneta A, Abe M, Morelli AE, et al. Identification and characterization of intestinal Peyer's patch interferon-alpha producing (plasmacytoid) dendritic cells. Hum Immunol, 2004, 65(2): 104-113.
    34 Hosono A, Ozawa A, Kato R, et al. Dietary fructooligosaccharides induce immunoregulation of intestinal IgA secretion by murine Peyer's patch cells. Biosci Biotechnol Biochem, 2003, 67(4): 758-764.
    35 Chen J, Tsang LL, Ho LS, et al. Modulation of human enteric epithelial barrier and ion transport function by Peyer's patch lymphocytes. World J Gastroenterol, 2004, 10(11): 1594-1599.
    36 Catherine B, Christopher S. P. Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest, 2000, 105(11): 1493-1499.
    37 Konopliannikova OA, Konopliannikov AG, Vacek A. Radiobiological aspects of increased radioresistance of murine epithelial stem cells from patches of Peyer. Radiats Biol Radioecol, 1994, 34(4-5): 514-519.
    38 McGee DW, Vitkus SJ. IL-4 enhances IEC-6 intestinal epithelial cell proliferation yet has no effect on IL-6 secretion. Clin Exp Immunol, 1996, 105(2): 274-277.
    39 Schwartz S, Beaulieu JF, Ruemmele FM. Interlenkin-17 is a potent immuno-modulator and regulator of normal human intestinal epithelial cell growth. Biochem Biophys Res Commun, 2005, 337(2): 505-509.
    40 Diguass AU, Podolsky DK. Cytokine modulation of intestinal epithelial cell restitution: central role of transforming growth factor beta. Gastroenterology, 1993, 105(5): 1323-1332.
    41 Pedersen G, Saermark T, Bendtzen K, et al. Cultures of human colonic epithelial cells isolated from endoscopical biopsies from patients with inflammatory bowel disease. Effect of IFNgamma, TNFalpha and IL-lbeta on viability, butyrate oxidation and IL-8 secretion. Autoimmunity, 2000, 32(4): 255-263.
    42 Dignass AU, Podolsky DK. Interlenkin 2 modulates intestinal epithelial cell function in vitro. Exp Cell Res, 1996, 225(2): 422-429.
    43 Deng W, Viar MJ, Johnson LR. Polyamine depletion inhibits irradiation-induced apoptosis in intestinal epithelia. Am J Physiol Gastrointest Liver Physiol, 2005, 289(3): G599-606.
    44 Deng W, Balazs L, Wang DA, et al. Lysophosphatidic acid protects and rescues intestinal epithelial cells from radiation- and chemotherapy-induced apoptosis. Gastroenterology, 2002, 123(1): 206-216.
    45 Booth C, Booth D, Williamson S, et al. Teduglutide ([Gly2]GLP-2) protects small intestinal stem cells from radiation damage. Cell Prolif, 2004, 37(6): 385-400.
    46 Hendry JH, Potten CS, Merdtt A. Apoptosis induced by high- and low-LET radiations. Radiat Environ Biophys, 1995,34(1):59-62.
    47 Inagaki-Ohara K, Takamura N, Yada S, et al. Radiation-induced crypt intestinal epithelial cell apoptosis in vivo involves both caspase-3-dependent and -independent pathways. Dig Dis Sci, 2002, 47(12): 2823-2830.
    48 Clarke AR, Gledhill S, Hooper ML, et al. p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following gamma-irradiation. Oncogene, 1994, 9(6): 1767-1773.
    49 Inagaki-Ohara K, Yada S, Takamura N, et al. p53-dependent radiation-induced crypt intestinal epithelial cells apoptosis is mediated in part through TNF-TNFR_1 system. Oncogene, 2001,20(7):812-818.
    50 Zhou Z, Wang X, Igisu H, et al. Radiation-induced activation of the mitogen-activated protein kinase signal transduction pathway in IEC-6 cells. J Radiat Res Radiat Process, 2002, 20(2): 137-145.
    51 Grishin A, Ford H, Wang J, et al. Attenuation of apoptosis in enterocytes by blockade of potassium channels. Am J Physiol Gastrointest Liver Physiol, 2005, 289(5): G815-821.
    52 Marasa BS, Rao JN, Zou T, et al. Induced TRPC_1 expression sensitizes intestinal epithelial cells to apoptosis by ihhi'biting NF-kappa B activation through Ca~(2+) influx. Biochem J, 2006: [Epub ahead of print]
    53 Bo Z, Yongping S, Fengchao W, et al. Proteomics. Identification of differentially expressed proteins of gamma-ray irradiated rat intestinal epithelial IEC-6 cells by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. 2005, 5(2): 426-432.
    54 Fung MM, Rohwer F, McGuire KL. IL-2 activation of a PI_3K-dependent STAT_3 serine phosphorylation pathway in primary human T cells. Cell Signal, 2003, 15(6): 625-636.
    55 Akbar AN, Borthwiek NJ, Wickremasinghe RG, et al. Interlenkin-2 receptor common gamma-chain signaling cytokines regulate activated T cell apoptosis in response to growth factor withdrawal: selective induction of anti-apoptotie (bcl-2, bel-X_L) but not pro-apoptotic (bax, bcl-X_s) gene expression. Eur J Immunol, 1996, 26(2): 294-299.
    1 Garcia-Tunnon I, Ricote M, Ruiz A, et al. Interleukin-2 and its receptor complex (α, β and γ chains) in in situ and infiltrative human breast cancer an immunohistochemical comparative study. Rreast Cancer Res, 2004, 6(1): R1-7.
    2 Gaffen SL, Lai SY, Ha M, et al. Distinct tyrosine residues within the interleukin-2 receptor beta chain drive signal transduction specificity, redundancy, and diversity. J Biol Chem, 1996, 271(35): 21381-21390.
    3 Friedmann MC, Migone TS, Russell SM, et al. Different interleuldn 2 receptor beta-chain tyrosines couple to at least two signaling pathways and synergistically mediate interleukin 2-induced proliferation. Proc Natl Acad Sci USA, 1996, 93(5): 2077-2082.
    4 Migone TS, Rodig S, Cacalano NA, et al. Functional cooperation of the interleukin-2 receptor beta chain and Jak1 in phosphatidylinositol 3-kinase recruitment and phosphorylation. Mol Cell Biol, 1998, 18(11): 6416-6422.
    5 Gaffen, Sarah. Signaling Domains of the Interlcukin 2 Receptor. Cytokine, 2001, 14(2): 63-77.
    6 Delespine-Carmagnat M, Bouvier G, Bertoglio J. Association of STAT_1, STAT_3 and STAT_5 proteins with the IL-2 receptor involves different subdomains of the IL-2 receptor beta chain.Eur J Immunol, 2000, 30(1): 59-68.
    7 Gu H, Maeda H, Moon JJ, et al. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway Mol Cell Biol, 2000, 20(19): 7109-7120.
    8 Ciacci C, Mahida YR, Diguass A, et al. Functional interleukin-2 receptors on intestinal epithelial cells. J Clin Invest, 1993, 92(1): 527-532.
    9 Reinecker HC, Podolsky DK. Human intestinal epithelial cells express functional cytokine receptors sharing the common gamma c chain of the interlenkin 2 receptor. Proc Natl Acad Sci USA, 1995, 92(18): 8353-8357.
    10 O'Loughlin EV, Pang GP, Noltorp R, et al. Interleukin 2 modulates ion secretion and cell proliferation in cultured human small intestinal enterocytes. Gut, 2001, 49(5): 636-643.
    11 Dignass AU, Podolsky DK. Interleukin 2 modulates intestinal epithelial cell function in vitro. Exp Cell Res, 1996, 225(2): 422-429.
    12 Tennissen MB, Sylva-Steenland RM, Bos JD. Effect of low-dose ultraviolet-B radiation on the function of human T lymphocytes in vitro. Clin Exp Immunol, 1993, 94(1): 208-213.
    13 Mohamadzadeh M, McGuire MJ, Dougherty I, et al. Interleukin-15 expression by human endothelial cells: up-regulation by ultraviolet B and psoralen plus ultraviolet A treatment. Photodermatol Photoimmunol Photomed, 1996, 12(1): 17-21.
    14 Xu Y, Greenstock CL, Trivedi A, et al. Occupational levels of radiation exposure induce surface expression of interleukin-2 receptors in stimulated human peripheral blood lymphocytes. Radiat Environ Biophys, 1996, 35(2): 89-93.
    15 Zuniga-Pflucker JC, Kruisbeek AM. Intrathymic radioresistant stem cells follow an IL-2/IL-2R pathway during thymic regeneration after sublethal irradiation. J Immunol, 1990, 144(10): 3736-3740.
    16 Pellegrini S, Dusanter FI. The structure, regulation and function of the Janus kinase (JAKs) and the signal transducers and activators of transcriptions (STATs). Eur J Biochem, 1997, 248(3): 615-633.
    17 Zorzitto J, Galligan CL, Ueng JJ, et al. Characterization of the antiviral effects of interferon-alpha against a SARS-Iike coronoavirus infection in vitro. Cell Res, 2006, 16(2): 220-229.
    18 Shang L, Tomasi TB. The heat shock protein 90-CDC_(37) chaperone complex is required for signaling by types Ⅰ and Ⅱ interferons. J Biol Chem, 2006, 281(4): 1876-1884.
    19 Moscat J, Rennert P, Diaz-Meco MT. PKCzeta at the crossroad of NF-kappa B and Jak_1/Stat_6 signaling pathways. Cell Death Differ, 2006, 13(5): 702-711
    20 Sarcar B, Ghosh AK, Steele R, et al. Hepatitis C virus NSSA mediated STAT_3 activation requires co-operation of Jak1 kinase. Virology, 2004, 322(1): 51-60.
    21 Walters DK, Jelinek DE A role for Janus kinases in crosstalk between ErbB3 and the interferon-alpha signaling complex in myeloma cells. Oncogene, 2004, 23(6): 1197-1205.
    21 Snow JW, Abraham N, Ma MC, et al. Loss of tolerance and autoimmunity affecting multiple organs in STAT_(5a/b)-deficient mice. J Immunol, 2003, 171(10): 5042-5050.
    22 Bunting KD, Bradley HL, Hawley TS, et al. Reduced lymphomyeloid repopulating activityfrom adult bone marrow and fetal liver of mice lacking expression of STATs. Blood, 2002,99(2):479-487.
    23 Davoodi-Semiromi A, Laloraya M, Kumar GP, et al. A mutant STAT_(5b) with weaker DNA binding affinity defines a key defective pathway in nonobese diabetic mice. J Biol Chem, 2004,279(12):11553-11561.
    24 Wang S, Evers BM. Caco-2 cell differentiation is associated with a decrease in STAT protein levels and binding. J Gastrointest Surg, 1999,3(2):200-207.
    25 Pratt SL, Ogle CK, Mao JX, et al. Interleukin-6 signal transduction in human intestinal epithelial cells. Shock, 2000,13(6):435-440.
    26 Hoover RR, Gerlach MJ, Koh EY, et al. Cooperative and redundant effects of STAT_5 and Ras signaling in BCR/ABL transformed hematopoietic cells. Oncogene, 2001,20(41):5826-5835.
    27 Kulms D, Schwarz T. Ultraviolet radiation inhibits interleukin-2-induced tyrosine phosphorylation and the activation of STAT_5 in T lymphocytes. J Biol Chem, 2001,276(16):12849-12855.
    28 郭德煌,董波,罗庆良,等.信号转导和转录激活子5信号转导途径对受辐射KG-1细胞周期的调控作用.辐射研究与辐射工艺学报,2000,18(4):299-303.
    29 Li WQ, Dehnade F, Zafarullah M. Oncostain M-induced matrix metalloproteinase and tissue inhibitor of metalloproteinase-3 genes expression in chondrocytes requires Janus kinase/STAT signaling pathway. J Immunol, 2001,166(5):3491-3498.
    30 Sudbeck EA, Liu XP, Narla RK, et al. Structure-based design of specific inhibitor of Janus kinase as apoptosis inducing antileukemic agents. Clin Cancer Res, 1999,5(6):1569-1582.
    31 Petricoin E, David M, Igarashi K, et al. Inhibition of alpha interferon but not gamma interferon signal transduction by phorbolesters is mediated by a tyrosine phosphatase. Mol Cell Biol, 1996,16(4):1419-1424.
    32 Aoki K, Zubkov AY, Parent AD, et al. Mechanism of ATP-induced (Ca~(2+)) imobilization in rat basilar smooth muscle cells. Stroke, 2000,31(6):1377-1385.
    33 Frank DA, Mahajan S, Ritz J. Fludarabine-induced immunosuppression is associated with inhibition of STAT_1 signaling. Nat Med, 1999,5(4):444-447.
    34 Yokogami K, Wakisaka S, Avruch J, et al. Serine phosphorylation and maximal activation of STAT_3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol, 2000,10(1):47-50.
    35 Manna SK, Aggnrwal BB. Immunosuppressive Leflunomide metabolite (A77-1726) blocks TNF-dependent nuclear factor-κ B activation and gene expression. J Immunol, 1999,162(4):2095-2102.
    36 Elder RT, Xu XL, Williams JW, et al. The immunosuppressive metabolite of Leflunomide, A77-1726, affects murine T cells through two biochemical mechanisms. J Immunol, 1997,159(1):22-27.
    37 Kagami S, Saeki H, Komine M, et al. Interleukin-4 and interleukin-13 enhance CCL26 production in a human keratinocyte cell line, HaCaT cells. Clin Exp Immunol, 2005,141(3):459-466.
    1 毛秉智,陈家佩主编.急性放射病基础与临床.北京:军事医学科学出版社,2002:102-105.
    2 Francois A, Dublineau I, Lebrun F, et al. Modified absorptive and secretory processes in the rat distal colon after neutron irradiation: in vivo and in vitro studies. Radiat Res, 1999,151:468-478.
    3 Somosy Z, Horvath G. Telbisz A, et al. Morphological aspects of ionizing radiation response of small intestine. Micron, 2002,33:167-78.
    4 Carr KE, Hume SP, Nelson AC, et al. Morphological profiles of neutron and X-irradiated small intestine. J Radiat Res (Tokyo), 1996,37:38-48.
    5 彭劲松.关于辐射损伤的生物学指标研究进展.国外医学·遗传学分册,2000,23:197-200.
    6 施勤.p53基因状态与电离辐射效应.国外医学·放射医学核医学分册,1998,22:181-184.
    7 Axel U. Dignass, Daniel K. Podolsky. Interleukin 2 Modulates Intestinal Epithelial Cell Function in Vitro. Experimental Cell Research, 1996,225:422-429.
    8 Denning GM. IL-4 and IFN γ synergistically increase total polymeric IgA receptor levels in h- uman intestinal epithelial cells. J Immunol, 1996,156:4807-4814.
    9 Indaram AV, Visvalingam V, Locke M, et al. Mucosal cytokine production in radiation-induced proctosigrnoiditis compared with inflammatory bowel disease. Am J Gastroentroenterol, 2000,95:1221-1225.
    10 Potten CS. Protection of the small intestinal clonogenic stem cells from radiation-induced damage by pretreatment with interleukin 11 also increases murine survival time. Stem Cells, 1996,14:452-459.
    11 Hsimovitz-Friedman A, Vlodavsky I, Chaudhuri A, et al. Artocrine effects of fibroblast factor in repair of radiation damage in endothelial cells. Cancer Res, 1991,51:2252-2558.
    12 Houchen CW, George RJ, Sturmoski MA, et al. FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury. Am J Physiol, 1999,276:G249-258.
    13 王晓华,周舟,朱光旭,等.角质细胞生长因子对肠上皮细胞辐射损伤的防护作用.第三军医大学学报,2000,22:713-716.
    14 张宇光.生长因子TGFβ_3对小鼠小肠隐窝细胞增殖的抑制.辐射研究与辐射工艺学报,1996,14:116-120.
    15 徐辉,程天民.放射损伤小肠上皮内淋巴细胞的变化及其对肠上皮细胞影响的实验研究.第三军医大学学报,1998,20:68-69.
    16 Griffiths NM, Francois A, Dublineau I, et al. Exposure to either gamma or a mixed neutron/gamma field irradiation modifies vasoactive intestinal peptide receptor characteristics in membranes isolated from pig jejunum. Int J Radiat Biol, 1996,70:361-370.
    17 Morel E, Dublineau I, Lebrun F, et al. Alterations of the VIP-stimulated cAMP pathway in rat distal colon after abdominal irradiation. Am J Physiol Gastrointest Liver Physiol, 2002,282:G835-843.
    18 王宝勤,王珏,谭洪玲,等.细胞因子对中子和γ射线照射小鼠的辐射防护作用及作用机理研究.中华放射医学与防护杂志,1997,17:404-407.
    19 Harari Y, Grossie VB JR, Castro GA. Nutritional support for adaptation to radiationinduced suppression of mucosal immunity in the intestine of the rat. Radiat Res, 1996,145:754-761.
    1. Okazawa A, Kanai T, Nakamaru K, et al. Human intestinal epithelial cell-derived interleukin (IL)-18, along with IL-2, IL-7 and IL-15, is a potent synergistic factor for the proliferation of intraepithelial lymphocytes. [J]. Clin Exp Immunol. 2004, 136(2): 269-276.
    
    2. Mysorekar IU, Lorenz RG, Gordon JI. A gnotobiotic transgenic mouse model for studying interactions between small intestinal enterocytes and intraepithelial lymphocytes. [J]. J Biol Chem, 2002,277(40) : 37811-37819.
    
    3. Chen Y, Chou K, Fuchs E, et al. Protection of the intestinal mucosa by intraepithelial gamma delta T cells. [J]. Proc Natl Acad Sci U S A, 2002, 99(22): 14338-14343.
    
    4. Matsumoto S, Nanno M, Watanabe N, et al. Physiological roles of gammadelta T-cell receptor intraepithelial lymphocytes in cytoproliferation and differentiation of mouse intestinal epithelial cells. [J]. Immunology, 1999, 97(1): 18-25.
    
    5. Hess DJ, Henry-Stanley MJ, Erickson EA, et al. Effect of tumor necrosis factor alpha, interferon gamma, and interleukin-4 on bacteria-enterocyte interactions. [J]. J Surg Res. 2002, 104(2) : 88-94.
    
    6. Zachrisson K, Neopikhanov V, Samali A, et al. Interleukin-1, interleukin-8, tumoumecrosis factor alpha and interferon gamma stimulate DNA synthesis but have no effect on apoptosis in small-intestinal cell lines. [J]. Eur J Gastroenterol Hepatol, 2001,13(5): 551-559.
    
    7. Bruewer M, Luegering A, Kucharzik T, et al. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. [J]. J Immunol, 2003,171(11): 6164-6172.
    
    8. Dignass AU, Podolsky DK. Cytokine modulation of intestinal epithelial cell restitution: central role of transforming growth factor beta. [J]. Gastroenterology, 199 3,105(5): 1323-1332.
    
    9. Abreu MT, Arnold ET, Thomas LS, et al. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. [J]. J Biol Chem, 2002, 277(23): 20431-20437.
    
    10. Salmenpera P, Hamalainen S, Hukkanen M, et al. Interferon-gamma induces C/EBP beta expression and activity through MEK/ERK and p38 in T84 colon epithelial cells. [J]. Am J Physiol Cell Physiol. 2003, 284(5) : C1133-C1139.
    
    11. O'Loughlin EV, Pang GP, Noltorp R, et al. Interleukin 2 modulates ion secretion andcell proliferation in cultured human small intestinal enterocytes. [J]. Gut, 2001,49(5):636-643.
    12. Dignass AU, Podolsky DK. Interleukin 2 modulates intestinal epithelial cell function in vitro. [J]. Exp Cell Res, 1996,225(2):422-429.
    13. Shea-Donohue T, Sullivan C, Finkelman FD, et al. The role of IL-4 in Heligmosomoides polygyrus-induced alterations in murine intestinal epithelial cell function. [J]. J Immunol, 2001,167(4):2234-2239.
    14. Beck PL, Rosenberg IM, Xavier RJ, et al. Transforming growth factor-beta mediates intestinal healing and susceptibility to injury in vitro and in vivo through epithelial cells. [J]. Am J Pathol, 2003,162(2):597-608.
    15. Booth D, Haley JD, Bruskin AM, et al. Transforming growth factor-β_3 protects murine small intestinal crypt stem cells and animal survival after irradiation, possibly by reducing stem-cell cycling. [J]. Int J Cancer, 2000,86(1):53-59.
    16. Wang H, Xie X, Lu WG, et al. Ovarian carcinoma cells inhibit T cell proliferation: suppression of IL-2 receptor beta and gamma expression and their JAK-STAT signaling pathway. [J]. Life Sci, 2004,74(14):1739-1749.
    17. Yan F, Polk DB. Kinase suppressor of ras is necessary for tumor necrosis factor alpha activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in intestinal epithelial cells. [J]. Cancer Res, 2001,61(3):963-969.
    18.胡为民.细胞因子信号与核定位—JAK-STAT途径新进展.[J].国外医学免疫学分册,2000,23(3):131-134.
    19. Mitchell DJ, Huynh HQ, Ceponis PJ, et al. Helicobacter pylori disrupts STAT1-mediated gamma interferon-induced signal transduction in epithelial cells. [J]. Infect Immun., 2004,72(1):537-545.
    20. Steelman LS, Pohnert SC, Shelton JG, et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. [J]. Leukemia, 2004,18(2):189-218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700