用户名: 密码: 验证码:
rhEPO-Fc融合蛋白抗贫血作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重组人促红细胞生成素(rhEPO)是最早用于临床的重组基因工程药物之一,目前已广泛用于各种贫血患者的治疗,包括肾性贫血、肿瘤放、化疗所致的贫血等,但由于其半衰期较短,需要频繁给药,从而限制了其临床应用。长效重组人促红细胞生成素融合蛋白rhEPO-Fc是由rhEPO与IgG的Fc片段融合而成,这种新型的rhEPO-Fc融合蛋白表现为血浆半衰期延长,生物活性增加,因此在治疗贫血时可以减少用药量并减少注射的频率。
     本研究采用C57小鼠γ-辐射后骨髓抑制性贫血模型、SD大鼠肾切除后肾性贫血模型、及猕猴环磷酰胺所致骨髓抑制性贫血模型,研究rhEPO-Fc对动物不同贫血模型的长效治疗作用及量效关系,并确定rhEPO-Fc长期使用是否会产生抗体。同时在整体动物实验基础上进行体外研究,采用人骨髓来源的UT-7/EPO细胞株,用CCK-8、流式细胞仪、光镜、透射电镜等方法观察rhEPO-Fc抑制γ-射线辐射诱导UT-7/EPO细胞凋亡的作用,用免疫荧光、western blotting等技术研究rhEPO-Fc抑制γ-射线辐射诱导UT-7/EPO细胞凋亡时凋亡相关蛋白Bcl-2、Bax及caspase3表达水平的变化,以探讨rhEPO-Fc抑制γ-射线辐射所诱导UT-7/EPO细胞凋亡的分子机制。
     第一部分rhEPO-Fc对不同动物贫血模型治疗作用的研究
     1 rhEPO-Fc对γ辐射所致C57小鼠骨髓抑制性贫血的影响
     C57小鼠70只,经137Csγ-射线4Gy单次全身辐射,造成骨髓抑制性贫血,于辐射前及辐射后不同时间采血,测定红细胞计数、血红蛋白量、红细胞压积及网织红细胞计数等,小鼠随机分为5组,分别为溶媒对照组,rhEPO-Fc 3个剂量组(剂量分别为7.5,15,30μg·kg-1,每周给药1次)和rhEPO组(阳性对照组,剂量为7.5μg·kg-1,每周给药3次),均为皮下注射给药,连续给药25天,停药后观察5天。结果显示rhEPO组每周3次、rhEPO-Fc 7.5,15,30μg·kg-1组每周1次皮下注射,C57小鼠红细胞计数、血红蛋白量、红细胞压积从给药后第11天到25天与溶媒对照组比较明显升高(p<0.01),rhEPO-Fc 30μg·kg-1组每周1次皮下注射,C57小鼠从给药后第7天开始到停药后5天,rhEPO组每周3次皮下注射,C57小鼠在药后第18及25天网织红细胞计数均明显升高,与溶媒对照组比较差别有显著意义(p<0.01)。rhEPO-Fc 7.5,15,30μg·kg-1组每周1次皮下注射,C57小鼠脾脏重量和脾脏系数与对照组比较无明显差异(p>0.05)。其中rhEPO-Fc 7.5,15,30μg·kg-1三个剂量组在升高红细胞计数、血红蛋白量、红细胞压积及网织红细胞计数时呈现剂量依赖性。结果提示rhEPO-Fc能有效治疗γ-辐射所致C57小鼠骨髓抑制性贫血,rhEPO-Fc 15、30μg·kg-1每周1次皮下注射疗效与rhEPO 7.5μg·kg-1每周3次皮下注射疗效相似,而且rhEPO-Fc 7.5、15、30μg·kg-1三个剂量组之间存在剂量依赖关系。
     2 rhEPO-Fc对部分肾切除所致SD大鼠肾性贫血的影响
     SD大鼠70只,经2次手术后切除5/6肾脏,造成肾性贫血模型,于肾切除前及切除后不同时间采血,测定红细胞计数、血红蛋白量、红细胞压积、网织红细胞计数及血尿素氮等。SD大鼠随机分为6组,分别为模型组、假手术组、rhEPO-Fc3个剂量组(剂量分别为5.4、10.7、21.4μg·kg-1,每周1次给药)和rhEPO组(阳性对照组,剂量为5.4μg·kg-1,每周3次给药),均为皮下注射,连续用药4周,停药后观察2周。结果显示rhEPO组(药后第1周到停药后1周)、rhEPO-Fc5.4μg·kg-1组(药后第1周到药后第2周)、10.7μg·kg-1组(药后第1周到药后第4周)、21.4μg·kg-1组(药后第1周到停药后2周)红细胞计数、血红蛋白量、红细胞压积及网织红细胞计数(用药后1周)与模型组比较明显升高,差别有显著意义(p<0.01)。肾切除后的模型组、rhEPO-Fc5.4、10.7、21.4μg·kg-1组及rhEPO组血尿素氮在整个实验过程中均维持在较高水平,与假手术组比较,差异均有显著意义(P<0.01)。其中rhEPO-Fc 5.4、10.7、21.4μg·kg-1三个剂量组在治疗部分肾切除所致SD大鼠肾性贫血时呈现剂量依赖关系。结果提示rhEPO-Fc能有效治疗部分肾切除所致SD大鼠肾性贫血,rhEPO-Fc 10.7、21.4μg·kg-1每周1次与rhEPO5.4μg·kg-1每周3次皮下注射疗效相似,而且rhEPO-Fc5.4、10.7、21.4μg·kg-1三个剂量组之间存在剂量依赖关系。
     3 rhEPO-Fc对环磷酰胺所致猕猴骨髓抑制性贫血的影响
     猕猴16只(雌9雄7),静脉注射环磷酰胺50mg·kg-1×2天造成骨髓抑制,在用环磷酰胺前及以后不同时间采血,测定红细胞计数、血红蛋白量、红细胞压积、网织红细胞计数、白细胞计数及血小板计数等。猕猴分为4组,每组4只,分别为溶媒对照组、2个rhEPO-Fc治疗组(剂量分别为5、10μg·kg-1,每周1次给药)、rhEPO组(剂量为2.5μg·kg-1,每周3次给药),均为皮下注射,连续用药49天,停药后观察35天。结果显示rhEPO组、rhEPO-Fc10μg·kg-1组药后42及49天猕猴红细胞计数、红细胞压积、血红蛋白量(药后35天到49天)、网织红细胞计数(药后49天)与溶媒对照组比较明显升高,差别有显著意义(p<0.01)。rhEPO组、rhEPO-Fc10μg·kg-1组从药后第28天到停药后21天猕猴红细胞计数、血红蛋白量(药后第28天到停药后14天)、红细胞压积(药后第28天到药后49天)、网织红细胞计数(药后49天)与实验前比较明显升高,差别有显著意义(p<0.01)。rhEPO-Fc5μg·kg-1组(药后第12及14天)、rhEPO-Fc 10μg·kg-1组(药后第14、16、42天)猕猴血小板明显升高,与溶媒对照组比较差别有显著意义(p<0.05);rhEPO组、rhEPO-Fc5、10μg·kg-1组猕猴的外周血白细胞计数在整个实验过程中与溶媒对照组及实验前比较,差别无显著意义(p>0.05)。结果提示皮下注射rhEPO-Fc能有效治疗由环磷酰胺所致猕猴骨髓抑制性贫血,rhEPO-Fc10μg·kg-1每周1次与rhEPO2.5μg·kg-1每周3次皮下注射疗效相似。
     4 Elisa法检测猕猴rhEPO-Fc抗体
     用药前各只猕猴血清中均未检测到抗体,并且rhEPO-Fc小、大剂量(5μg·kg-1、10μg·kg-1,1次·周-1sc.)在连续使用49天及停药后35天内均未检测到rhEPO-Fc抗体;而rhEPO组一只猕猴用药后12天开始产生rhEPO抗体,直至停药后21天血清中仍有抗体存在。提示rhEPO-Fc与rhEPO不同,长期使用不易产生抗体。第二部分rhEPO-Fc抑制γ-辐射诱导UT-7/EPO细胞凋亡的作用及机制研究1 rhEPO-Fc抑制γ-辐射诱导UT-7/EPO细胞凋亡的作用
     UT-7/EPO细胞用8Gyγ-射线照射后,用细胞因子治疗或不治疗,并把细胞分为5组:对照组(不加rhEPO)、rhEPO-Fc 0.7U/ml组、rhEPO-Fc 7U/ml组、rhEPO-Fc 70U/ml组、rhEPO 7U/ml组。各组细胞用CCK-8、流式细胞仪、光镜、透射电镜等方法观察rhEPO-Fc抑制γ-射线辐射诱导UT-7/EPO细胞凋亡的作用。结果显示γ-辐射后分别给予rhEPO-Fc 0.7、7、70U/ml及rhEPO 7U/ml能显著提高UT-7/EPO细胞存活率,明显抑制凋亡率,在24h、48h、72h与辐射对照组细胞比较有显著性差异;且rhEPO-Fc 0.7、7、70U/ml及rhEPO 7U/ml明显减少γ-辐射后G0/G1期细胞数,增加G2/M期、S期的细胞数,在24h与辐射对照组比较有显著性差异;细胞形态学观察可见γ-辐射后的UT-7/EPO细胞体积变小,核碎裂,核染色质浓缩,聚集于周边形成新月状,呈现出细胞凋亡典型的变化,γ-辐射后分别给予rhEPO-Fc 0.7、7、70U/ml及rhEPO 7U/ml的UT-7/EPO细胞表现出正常形态,未见凋亡典型特征。结果提示rhEPO-Fc 0.7、7、70U/ml可抑制γ-射线辐射诱导UT-7/EPO细胞凋亡
     2 rhEPO-Fc抑制γ-辐射诱导UT-7/EPO细胞凋亡的机制
     经不同处理的各组UT-7/EPO细胞用免疫荧光及western blotting技术观察凋亡相关蛋白Bcl-2、Bax及caspase 3表达。免疫荧光结果显示UT-7/EPO细胞γ-辐射后24h抗凋亡蛋白Bcl-2表达较弱,γ-辐射后分别给予rhEPO-Fc0.7、7、70U/ml及rhEPO 7U/ml则Bcl-2表达增强,各组细胞促凋亡蛋白Bax表达未见差异。western blotting结果显示γ-辐射后24h及48h的UT-7/EPO细胞,抗凋亡蛋白Bcl-2表达基本消失,相对Bcl-2/Bax蛋白比值较低,caspase 3前体(pro-caspase 3)表达较弱,caspase 3活性片段p17和p12被诱导;而γ-辐射后分别给予rhEPO-Fc0.7、7、70U/ml,及rhEPO 7U/ml,与辐射对照组比较,抗凋亡蛋白Bcl-2表达增强,Bcl-2/Bax蛋白比值与辐射对照组比较明显增加(p<0.01),caspase 3的表达也与正常培养的细胞接近,未见活性片段被诱导,促凋亡蛋白Bax的表达在各组细胞之间无显著差异。结果提示rhEPO-Fc可能通过增加抗凋亡蛋白Bcl-2的表达、增加Bcl-2/Bax蛋白比值及抑制caspase 3的激活而对抗γ-辐射所诱导的UT-7/EPO细胞凋亡。
     结论:
     1. rhEPO-Fc每周1次皮下注射在纠正γ-辐射所导致的C57小鼠骨髓抑制性贫血、5/6肾切除所导致的SD大鼠肾性贫血及环磷酰胺所诱导的猕猴骨髓抑制性贫血时与rhEPO每周3次皮下注射等效。
     2. rhEPO-Fc每周1次皮下注射,在连续使用49天及停药后35天内未检测到猕猴血清中抗rhEPO-Fc抗体。
     3. rhEPO-Fc可能通过增加抗凋亡蛋白Bcl-2的表达、增加Bcl-2/Bax蛋白比值及抑制caspase 3的激活而对抗γ-辐射所诱导的UT-7/EPO细胞凋亡
Recombinant human erythropoietin (rhEPO) has been extensively used in the treatment of anemia associated with chronic renal failure, cancer chemotherapy and radiotherapy. However, rhEPO has a shorter serum half-life and the treatment often requires frequent injections, which results in limitation of this treatment. The long-acting recombinant human rhEPO-Fc fusion proteins consist of rhEPO and the Fc part of a human IgG molecule, which prolonged serum half-life time and increased biological activity, allowing for reduced dosing frequency in the treatment of anemia.
     In present studies, we first investigated the long-acting effect and dose-effect relationship of rhEPO-Fc on anemia of myelosuppression induced byγirradiation in C57 mice, anemia in partially nephrectomized rats, and anemia of myelosuppression induced by cyclophosphamide in rhesus monkeys, and Elisa assay was performed to detect the rhEPO-Fc antibody in rhesus monkey serum. Furthermore, we employed UT-7/EPO cell line which was derived from a patient's bone marrow with leukemia to observe the inhibitive effect of rhEPO-Fc on apoptosis induced byγirradiation with CCK-8 assay, flow cytometry, light microscopy and transmission electron microscopy. Immunofluorescence and western blotting were used to detect the changes of expression of apoptosis-related proteins Bcl-2, Bax and caspase 3 to investigate the molecular mechanisms of rhEPO-Fc inhibiting apoptosis induced byγirradiation in human UT-7/EPO cells.
     PartⅠEffect of rhEPO-Fc on anemia in different animal models
     1. Effect of rhEPO-Fc on anemia of myelosuppression induced byγirradiation in C57 mice.
     The anemia was induced by total body irradiation with a single 4Gy dose using a 137Csγ-rays source in C57 mice. The blood samples were collected before irradiation and different indicated periods after irradiation. The RBCs, hemoglobin hematocrit and reticulocyte were determined. C57 mice were randomly divided into five groups: solvent control group, rhEPO-Fc three dose groups (7.5,15,30μg·kg-1 once weekly sc.), and rhEPO group(7.5μg·kg-1 three times weekly sc.). All drugs were successively given for 25 days, and the experiment was continued until the 5th day of post-treatment. It was observed the increase in RBCs, hemoglobin, and hematocrit, they were significantly higher (p<0.01) in rhEPO, rhEPO-Fc 7.5,15,30μg·kg-1 groups than that in control group on the 11th~25th day of treatment, and reticulocyte were significantly higher (p<0.01) in rhEPO-Fc 30μg·kg-1 group from the 7th day of treatment to the end of experiment, and rhEPO group on the 18th~25th day of treatment than that in control group. There was no significant difference in spleen weight and spleen index among rhEPO-Fc 7.5,15,30μg·kg-1 groups and control group (p>0.05). Furthermore, rhEPO-Fc 7.5,15,30μg·kg-1 promote the increase in RBCs, hemoglobin, hematocrit and reticulocyte in dosing-dependent manner. Our results indicated that rhEPO-Fc could effectively correct the anemia of myelosuppression induced byγirradiation in C57 mice. The effects of rhEPO-Fc 15μg·kg-1 and 30μg·kg-1 once weekly sc.were the same as the effect of 7.5μg·kg-1 three times weekly sc. There is a dose-dependent relationship among rhEPO-Fc 7.5,15,30μg·kg-1.
     2. Effect of rhEPO-Fc on anemia caused by partially nephrectomy in rats
     Anemia was caused by a two-step 5/6 nephrectomy in rats. The blood samples were collected before nephrectomy and different indicated periods after nephrectomy. The RBCs, hemoglobin, hematocrit, reticulocyte and BUN were determined. SD rats were randomly divided into six groups:model group, sham operated group, rhEPO-Fc three dose groups (5.4,10.7,21.4μg·kg-1 once weekly sc.), and rhEPO group(5.4μg·kg-1 three times weekly sc.). All drugs were successively given for 4 weeks, and the experiment was continued until the 2nd week of post-treatment. It was observed the increase in RBCs, hemoglobin and hematocrit, they were significantly higher (p<0.01) in rhEPO group (on the 1st~4th week of treatment), rhEPO-Fc 5.4μg·kg-1 group (on the 1st and 2nd week of treatment), rhEPO-Fc 10.7μg·kg-1 group(on the 1st~3rd week of treatment) and rhEPO-Fc 21.4μg·kg-1 group(on the 1st~4th week of treatment) than that in model group, and reticulocyte were significantly higher (p<0.01) in rhEPO-Fc three dose groups and rhEPO group (on the 1st week of treatment) than that in model group. The levels of BUN were significantly higher in model group, rhEPO-Fc 5.4,10.7,21.4μg·kg-1 groups, and rhEPO group than that in sham operated group. Furthermore, rhEPO-Fc 5.4,10.7,21.4μg·kg-1 promote the increase in RBCs, hemoglobin, hematocrit and reticulocyte in dosing-dependent manner. These results indicated that rhEPO-Fc could effectively correct the anemia caused by partially nephrectomy in rats. The effects of rhEPO-Fc 10.7 and 21.4μg·kg-1 once weekly sc.were the same as the effect of rhEPO 5.4μg·kg-1 three times weekly sc. There is a dose-dependent relationship among rhEPO-Fc 5.4,10.7,21.4μg·kg-1.
     3. Effect of rhEPO-Fc on anemia of myelosuppression induced by cyclophosphamide in rhesus monkeys.
     Anemia of myelosuppression was induced by administration of 50mg·kg-1 cyclophosphamide iv. for successive 2 days in rhesus monkeys. The blood samples were collected before administration of cyclophosphamide and different indicated periods after administration of cyclophosphamide. The RBCs, hemoglobin, hematocrit, reticulocyte, platelets and WBCs were determined. Rhesus monkeys were randomly divided into four groups:solvent control group, rhEPO-Fc two dose groups (5,10μg·kg-1 once weekly sc.), and rhEPO group(2.5μg·kg-1 three times weekly sc.). All drugs were successively given for 49 days, the experiment was continued until the 35th day of post-treatment. It was observed the increase in RBCs, hemoglobin, and hematocrit, they were significantly higher (p<0.01) in rhEPO group and rhEPO-Fc 10μg·kg-1 group (on the 35th-49th day of treatment) than that in control group, and reticulocyte were significantly higher (p<0.01) in rhEPO-Fc 10μg·kg-1 group and rhEPO group (on the 49th day of treatment) than that in model group. Furthermore, an increase in RBCs (from the 28th day of treatment to the 21th day of post-treatment), hemoglobin (from the 28th day of treatment to the 14th day of post-treatment), hematocrit (on the 28th~49th day of treatment and the 49th day of treatment) were significantly increased (p<0.01) in rhEPO group and rhEPO-Fc 10μg·kg-1 group, comparing with baseline. The increase in platelet counts were significantly higher (p<0.05) in rhEPO-Fc 5μg·kg-1 group (on the 12th and the 14th day of treatment) and rhEPO-Fc 10μg·kg-1 group (on the 14th,16th,42th day of treatment). There was no significant difference in WBCs among rhEPO-Fc 5, 10μg·kg-1, rhEPO and group. These results showed that rhEPO-Fc could effectively correct the anemia of myelosuppression induced by cyclophosphamide in rhesus monkeys. The effects of rhEPO-Fc 10μg·kg-1 once weekly sc. were the same as the effect of rhEPO 2.5μg·kg-1 three times weekly sc.
     4 The detection of rhEPO-Fc antibody by Elisa assay in serum of rhesus monkeys.
     It was observed that no rhEPO-Fc antibodies in serum of rhesus monkeys could be detected by Elisa assay before treatment, and in rhEPO-Fc 5 and 10μg·kg-1 group, and there were no rhEPO-Fc antibodies in serum of rhesus monkeys to be detected by Elisa assay throughout the study period. However, rhEPO antibody could be detected by Elisa assay in serum of one rhesus monkey in rhEPO group throughout the study period.
     PartⅡThe inhibitive effect and mechanism of rhEPO-Fc on apoptosis induced byγirradiation in human UT-7/EPO cell line
     1. The effect of rhEPO-Fc on apoptosis induced byγirradiation in UT-7/EPO cells
     UT-7/EPO cells were irradiated with a single 8Gy dose using a 137Csγ-rays source. Irradiated UT-7/EPO cells were treated with or without cytokines and randomly divided into five groups:irradiation control group, rhEPO-Fc 0.7U/ml group, rhEPO-Fc 7U/ml group, rhEPO-Fc 70U/ml group and rhEPO group. The effect of rhEPO-Fc on apoptosis induced byγirradiation in UT-7/EPO cells were observed by CCK-8 assay, flow cytometry, light microscopy and transmission electron microscopy. Results showed that 24h,48h and 72h afterγirradiation, the cell viabilities were significantly increased (p<0.01) and apoptotic rates of irradiated UT-7/EPO cells were significantly decreased (p<0.01) in rhEPO-Fc 0.7,7,70U/ml and rhEPO 7 U/ml group, compared with irradiation control group, and 24h afterγirradiation, the percent of UT-7/EPO cells in G0/G1 phase were significantly decreased (p<0.01) and the percent of UT-7/EPO cells in G2/M and S phase were significantly increased (p<0.01) in rhEPO-Fc 0.7,7,70U/ml and rhEPO 7 U/ml group compared to irradiation control group. Furthermore, the irradiated UT-7/EPO cells exhibited characteristic morphology of apoptosis, including cell shrunk, nucleus fragmented, chromatin condensation and margination forming the shape of crescents or lump, cytoplasmic vacuolization, on the contrary, the irradiated UT-7/EPO cells appeared morphologically normal and showed no sign of apoptosis in rhEPO-Fc 0.7,7,70U/ml and rhEPO 7 U/ml group. These results indicated that rhEPO-Fc 0.7,7,70U/ml could inhibit the apoptosis induced byγirradiation in UT-7/EPO cells.
     2. The mechanisms of rhEPO-Fc inhibiting apoptosis induced byγirradiation in human UT-7/EPO cells.
     Immunofluorescence and western blotting were used to detected the changes of expression of apoptosis-related proteins Bcl-2, Bax and caspase 3 in different treated UT-7/EPO cells. The results of immunofluorescence showed that the expression level of anti-apoptotic protein Bcl-2 was lower at 24h followingγirradiation, however, the expression level of Bcl-2 was higher in rhEPO-Fc 0.7,7,70U/ml and rhEPO 7 U/ml group, the expression of the Bax showed no difference among variable. The results of western blotting showed that the expression level of Bcl-2 protein and the relative Bcl-2/Bax protein ratio significantly decreased, the expression levels of pro-caspase 3 significantly reduced and the cleavage of caspase 3 to catalytically active fragments were also induced at 24h and 48h followingγirradiation, however, the expression of the Bcl-2 and caspase 3 in rhEPO-Fc 0.7,7,70U/ml and rhEPO 7 U/ml group showed no significant difference compared with the normal cultured UT-7/EPO cells, the relative Bcl-2/Bax protein ratio significantly increased compared with irradiation control group. But the expression of the Bax protein showed no difference among variable. These results indicate that rhEPO-Fc could exerts anti-apoptotic effect on irradiated human UT-7/EPO cells via increase the expression of Bcl-2 and the relative Bcl-2/Bax ratio, and inhibition the activation of caspase 3.
     Summary
     1. The effects of rhEPO-Fc once weekly sc. exert the same effect as the rhEPO three times weekly sc. on anemia of myelosuppression induced byγirradiation in C57 mice, anemia caused by partially nephrectomy in rats and anemia of myelosuppression induced by cyclophosphamide in rhesus monkeys.
     2. No rhEPO-Fc antibodies in serum of rhesus monkeys could be detected by Elisa assay throughout the study period in rhEPO-Fc 5 and 10μg·kg-1 group.
     3. rhEPO-Fc exerts anti-apoptotic effects on irradiated human UT-7/EPO cells via increase the expression of Bcl-2 and the relative Bcl-2/Bax ratio, and inhibition the activation of caspase 3.
引文
[1]Lappin T. The cellular biology of erythropoietin receptors. Oncologist 2003;8 Suppl 1:15-8.
    [2]Eschbach JW. Current concepts of anemia management in chronic renal failure: impact of NKF-DOQI. Semin Nephrol 2000;20 (4):320-9.
    [3]Cella D, Zagari MJ, Vandoros C, Gagnon DD, Hurtz HJ, Nortier JW. Epoetin alfa treatment results in clinically significant improvements in quality of life in anemic cancer patients when referenced to the general population. J Clin Oncol 2003;21(2):366-73.
    [4]Bohlius J, Wilson J, Seidenfeld J, Piper M, Schwarzer G, Sandercock J, Trelle S, Weingart O, Bayliss S, Djulbegovic B, Bennett CL, Langensiepen S, Hyde C, Engert A. Recombinant human erythropoietins and cancer patients:updated meta-analysis of 57 studies including 9353 patients. J Natl Cancer Inst 2006;98(10):708-14.
    [5]Cersosimo RJ, Jacobson DR. Epoetin alfa versus darbepoetin alfa in chemotherapy-related anemia. Ann Pharmacother 2006;40 (1):58-65; quiz 169-70.
    [6]Macdougall IC. Antibody-mediated pure red cell aplasia (PRCA): epidemiology, immunogenicity and risks. Nephrol Dial Transplant 2005;20 Suppl 4:iv9-15.
    [7]Shinohara K, Mitani N, Miyazaki M, Sakuragi S, Matsuda K, Ogawara S, Saito T, Kaneoka H, Ooji T. Pure red-cell aplasia caused by the antibody to recombinant erythropoietin, epoetin-beta, in a Japanese patient with chronic renal failure. Am J Hematol 2005;78 (1):15-20.
    [8]Nunia V, Goyal PK. Prevention of gamma radiation induced anaemia in mice by diltiazem. J Radiat Res (Tokyo) 2004;45 (1):11-7.
    [9]Henke M, Laszig R, Rube C, Schafer U, Haase KD, Schilcher B, Mose S, Beer KT, Burger U, Dougherty C, Frommhold H. Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy:randomised, double-blind, placebo-controlled trial. Lancet 2003;362 (9392):1255-60.
    [10]Rades D, Schild SE, Yekebas EF, Job H, Schwarz R, Rudat V. Epoetin-alpha during radiotherapy for stage Ⅲ esophageal carcinoma. Cancer 2005; 103 (11):2274-9.
    [11]Scagliotti GV, Novello S. Role of erythropoietin in the treatment of lung cancer associated anaemia. Lung Cancer 2001;34 Suppl 4:S91-4.
    [12]Canman CE, Gilmer TM, Coutts SB, Kastan MB. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev 1995;9 (5):600-11.
    [13]BenJilani KE, Gaillard JP, Petit F, Arnoult D, Roumier AS, Labalette M, Ameisen JC, Estaquier J. A suppressive effect of the adenovirus 5 protein E1B 55K on apoptosis induced by IL-3 deprivation and gamma-irradiation. Biol Cell 2002;94 (2):77-89.
    [14]Burri SH, Kim CN, Fang G, Chang BS, Perkins C, Harris W, Davis LW, Thompson CB, Bhalla KN.'Loop' domain deletional mutant of Bcl-xL is as effective as p29Bcl-xL in inhibiting radiation-induced cytosolic accumulation of cytochrome c (cyt c), caspase-3 activity, and apoptosis. Int J Radiat Oncol Biol Phys 1999;43 (2):423-30.
    [15]Quelle FW, Wang J, Feng J, Wang D, Cleveland JL, Ihle JN, Zambetti GP. Cytokine rescue of p53-dependent apoptosis and cell cycle arrest is mediated by distinct Jak kinase signaling pathways. Genes Dev 1998; 12 (8):1099-107.
    [16]Henry MK, Lynch JT, Eapen AK, Quelle FW. DNA damage-induced cell-cycle arrest of hematopoietic cells is overridden by activation of the PI-3 kinase/Akt signaling pathway. Blood 2001;98 (3):834-41.
    [17]Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13 (15):1899-911.
    [18]Yang E, Korsmeyer SJ. Molecular thanatopsis:a discourse on the BCL2 family and cell death. Blood 1996;88 (2):386-401.
    [19]Eliseev RA, Zuscik MJ, Schwarz EM, O'Keefe RJ, Drissi H, Rosier RN. Increased radiation-induced apoptosis of Saos2 cells via inhibition of NFkappaB:a role for c-Jun N-terminal kinase. J Cell Biochem 2005;96 (6):1262-73.
    [20]Silva M, Grillot D, Benito A, Richard C, Nunez G, Fernandez-Luna JL. Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood 1996;88 (5):1576-82.
    [21]Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002;9 (3):459-70.
    [22]Yu Y, Little JB. p53 is involved in but not required for ionizing radiation-induced caspase-3 activation and apoptosis in human lymphoblast cell lines. Cancer Res 1998;58 (19):4277-81.
    [23]Mori M, Uchida M, Watanabe T, Kirito K, Hatake K, Ozawa K, Komatsu N. Activation of extracellular signal-regulated kinases ERK1 and ERK2 induces Bcl-xL up-regulation via inhibition of caspase activities in erythropoietin signaling. J Cell Physiol 2003;195 (2):290-7.
    [24]Elliott S, Lorenzini T, Asher S, Aoki K, Brankow D, Buck L, Busse L, Chang D, Fuller J, Grant J, Hernday N, Hokum M, Hu S, Knudten A, Levin N, Komorowski R, Martin F, Navarro R, Osslund T, Rogers G, Rogers N, Trail G, Egrie J, editors. Enhancement of therapeutic protein in vivo activities through glycoengineering,2003.
    [25]Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 2003;31 (4):290-9.
    [26]Muller RJ, Baribeault D. Extended-dosage-interval regimens of erythropoietic agents in chemotherapy-induced anemia. Am J Health Syst Pharm 2007;64 (24):2547-56.
    [27]Bokemeyer C, Aapro MS, Courdi A, Foubert J, Link H, Osterborg A, Repetto L, Soubeyran P. EORTC guidelines for the use of erythropoietic proteins in anaemic patients with cancer:2006 update. Eur J Cancer 2007;43 (2):258-70.
    [28]Nissenson AR, Swan SK, Lindberg JS, Soroka SD, Beatey R, Wang C, Picarello N, McDermott-Vitak A, Maroni BJ. Randomized, controlled trial of darbepoetin alfa for the treatment of anemia in hemodialysis patients. Am J Kidney Dis 2002;40 (1):110-8.
    [29]Darling RJ, Kuchibhotla U, Glaesner W, Micanovic R, Witcher DR, Beals JM. Glycosylation of erythropoietin affects receptor binding kinetics:role of electrostatic interactions. Biochemistry 2002;41 (49):14524-31.
    [30]Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, Ponting I. Control of rHurhEPO biological activity:the role of carbohydrate. Exp Hematol 2004;32 (12):1146-55.
    [31]Cox GN, Smith DJ, Carlson SJ, Bendele AM, Chlipala EA, Doherty DH. Enhanced circulating half-life and hematopoietic properties of a human granulocyte colony-stimulating factor/immunoglobulin fusion protein. Exp Hematol 2004;32 (5):441-9.
    [32]Jazayeri JA, Carroll GJ. Fc-based cytokines:prospects for engineering superior therapeutics. BioDrugs 2008;22 (1):11-26.
    [33]Ning S, Hartley C, Molineux G, Knox SJ. Darbepoietin alfa potentiates the efficacy of radiation therapy in mice with corrected or uncorrected anemia. Cancer Res 2005;65 (1):284-90.
    [34]Komatsu N, Yamamoto M, Fujita H, Miwa A, Hatake K, Endo T, Okano H, Katsube T, Fukumaki Y, Sassa S, et al. Establishment and characterization of an erythropoietin-dependent subline, UT-7/Epo, derived from human leukemia cell line, UT-7. Blood 1993;82 (2):456-64.
    [35]Abouelella AM, Shahein YE, Tawfik SS, Zahran AM. Phytotherapeutic effects of Echinacea purpurea in gamma-irradiated mice. J Vet Sci 2007;8 (4):341-51.
    [36]Dertinger SD, Tsai Y, Nowak I, Hyrien O, Sun H, Bemis JC, Torous DK, Keng P, Palis J, Chen Y. Reticulocyte and micronucleated reticulocyte responses to gamma irradiation:dose-response and time-course profiles measured by flow cytometry. Mutat Res 2007;634 (1-2):119-25.
    [37]Hosseinimehr SJ, Zakaryaee V, Froughizadeh M. Oral oxymetholone reduces mortality induced by gamma irradiation in mice through stimulation of hematopoietic cells. Mol Cell Biochem 2006;287 (1-2):193-9.
    [38]Anagnostou A, Vercellotti G, Barone J, Fried W. Factors which affect erythropoiesis in partially nephrectomized and sham-operated rats. Blood 1976;48(3):425-33.
    [39]Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase Ⅰ and Ⅱ clinical trial. N Engl J Med 1987;316(2):73-8.
    [40]Abbas EE, Afioni N, Al Wakeel J, Bakr MA, Dham R, Donia A, Droubi N, Khidir E, Mathew CM, Mitwali AH, Naga S, Pingle A, Rashed A, Roshdy A, Shaheen F, Shaibani B, Shaibani FM, Shaker DS, Sheiban A, Solieman M. The new rHurhEPO alpha (epotin) in the management of anemia of end-stage renal disease in patients on maintenance hemodialysis. Transplant Proc 2004;36 (6):1805-11.
    [41]Kaufman JS, Reda DJ, Fye CL, Goldfarb DS, Henderson WG, Kleinman JG, Vaamonde CA. Subcutaneous compared with intravenous epoetin in patients receiving hemodialysis. N Engl J Med 1998;339 (9):578-83.
    [42]Oh TK, Quan GH. Kim HY, Park F, Kim ST. Correction of anemia in uremic rats by intramuscular injection of lentivirus carrying an erythropoietin gene. Am J Nephrol 2006;26 (4):326-34.
    [43]Ataka K, Maruyama H, Neichi T, Miyazaki J, Gejyo F. Effects of erythropoietin-gene electrotransfer in rats with adenine-induced renal failure. Am J Nephrol 2003;23 (5):315-23.
    [44]Lam TT, Hausen B, Squiers E, Cozzi E, Morris RE. Cyclophosphamide-induced postoperative anemia in cynomolgus monkey recipients of hDAF-transgenic pig organ xenografts. Transplant Proc 2002;34 (5):1451-2.
    [45]Storb R, Buckner CD, Dillingham LA, Thomas ED. Cyclophosphamide regimens in rhesus monkey with and without marrow infusion. Cancer Res 1970;30(8):2195-203.
    [46]Littlewood TJ, Bajetta E, Nortier JW, Vercammen E, Rapoport B. Effects of epoetin alfa on hematologic parameters and quality of life in cancer patients receiving nonplatinum chemotherapy:results of a randomized, double-blind, placebo-controlled trial. J Clin Oncol 2001;19 (11):2865-74.
    [47]Shasha D, George MJ, Harrison LB. Once-weekly dosing of epoetin-alpha increases hemoglobin and improves quality of life in anemic cancer patients receiving radiation therapy either concomitantly or sequentially with chemotherapy. Cancer 2003;98 (5):1072-9.
    [48]Melosky BL. Erythropoiesis-stimulating agents:benefits and risks in supportive care of cancer. Curr Oncol 2008;15 (Supplement 1):S10-5.
    [49]Pirker R, Minar W. Application and safety of erythropoietin in cancer management. Ann Oncol 2005; 16 Suppl 2:ii47-52.
    [50]Morita Y, Naka T, Kawazoe Y, Fujimoto M, Narazaki M, Nakagawa R, Fukuyama H, Nagata S, Kishimoto T. Signals transducers and activators of transcription (STAT)-induced STAT inhibitor-1 (SSI-1)/suppressor of cytokine signaling-1 (SOCS-1) suppresses tumor necrosis factor alpha-induced cell death in fibroblasts. Proc Natl Acad Sci U S A 2000;97 (10):5405-10.
    [51]Yang SR, Wen L, Lu YQ, Gong QY, Yu R, Yao MH. Effects of GM-CSF, IL-3, and GM-CSF/IL-3 fusion protein on apoptosis of human myeloid leukemic cell line Tf-1 induced by irradiation. Acta Pharmacol Sin 2004;25 (1):68-75.
    [52]Silva M, Benito A, Sanz C, Prosper F, Ekhterae D, Nunez G, Fernandez-Luna JL. Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem 1999;274 (32):22165-9.
    [53]Katavetin P, Tungsanga K, Eiam-Ong S, Nangaku M. Antioxidative effects of erythropoietin. Kidney Int Suppl 2007 (107):S10-5.
    [54]Dolznig H, Habermann B, Stangl K, Deiner EM, Moriggl R, Beug H, Mullner EW. Apoptosis protection by the Epo target Bcl-X(L) allows factor-independent differentiation of primary erythroblasts. Curr Biol 2002; 12 (13):1076-85.
    [55]Wang J, Tang ZY, Ka W, Sun D, Yao W, Wen Z, Chien S. Synergistic effect of cytokines rhEPO, IL-3 and SCF on the proliferation, differentiation and apoptosis of erythroid progenitor cells. Clin Hemorheol Microcirc 2007;37 (4):291-9.
    [56]Syljuasen RG, Krolewski B, Little JB. Molecular events in radiation transformation. Radiat Res 2001;155 (1 Pt 2):215-21.
    [57]Wieler S, Gagne JP, Vaziri H, Poirier GG, Benchimol S. Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J Biol Chem 2003;278 (21):18914-21.
    [58]Offer H, Zurer I, Banfalvi G, Reha'k M, Falcovitz A, Milyavsky M, Goldfinger N, Rotter V. p53 modulates base excision repair activity in a cell cycle-specific manner after genotoxic stress. Cancer Res 2001;61 (1):88-96.
    [59]Banfalvi G, Klaisz M, Ujvarosi K, Trencsenyi G, Rozsa D, Nagy G. Gamma irradiation induced apoptotic changes in the chromatin structure of human erythroleukemia K562 cells. Apoptosis 2007;12 (12):2271-83.
    [60]Guo HR, Chen CH, Ho SY, Ho YS, Chen RJ, Wang YJ. Staurosporine modulates radiosensitivity and radiation-induced apoptosis in U937 cells. Int J Radiat Biol 2006;82 (2):97-109.
    [61]Skorski T. BCR/ABL regulates response to DNA damage:the role in resistance to genotoxic treatment and in genomic instability. Oncogene 2002;21 (56):8591-604.
    [62]Vermeulen K, Berneman ZN, Van Bockstaele DR. Cell cycle and apoptosis. Cell Prolif 2003;36 (3):165-75.
    [63]Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene 2001;20(15):1803-15.
    [64]Chen Q, Chai YC, Mazumder S, Jiang C, Macklis RM, Chisolm GM, Almasan A. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ 2003;10 (3):323-34.
    [65]Kim KY, Seol JY, Jeon GA, Nam MJ. The combined treatment of aspirin and radiation induces apoptosis by the regulation of bcl-2 and caspase-3 in human cervical cancer cell. Cancer Lett 2003;189 (2):157-66.
    [66]Reed JC. Bcl-2 family proteins. Oncogene 1998; 17 (25):3225-36.
    [67]Domen J. The role of apoptosis in regulating hematopoiesis and hematopoietic stem cells. Immunol Res 2000;22 (2-3):83-94.
    [68]Vaskivuo TE, Stenback F, Tapanainen JS. Apoptosis and apoptosis-related factors Bcl-2, Bax, tumor necrosis factor-alpha, and NF-kappaB in human endometrial hyperplasia and carcinoma. Cancer 2002;95 (7):1463-71.
    [69]Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90 (3):405-13.
    [70]Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 1993;75 (4):653-60.
    [71]Zapata JM, Takahashi R, Salvesen GS, Reed JC. Granzyme release and caspase activation in activated human T-lymphocytes. J Biol Chem 1998;273 (12):6916-20.
    [72]Gregoli PA, Bondurant MC. Function of caspases in regulating apoptosis caused by erythropoietin deprivation in erythroid progenitors. J Cell Physiol 1999;178(2):133-43.
    [73]Jelkmann W. The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP. Eur J Haematol 2002;69 (5-6):265-74.
    [74]Misaizu T, Matsuki S, Strickland TW, Takeuchi M, Kobata A, Takasaki S. Role of antennary structure of N-linked sugar chains in renal handling of recombinant human erythropoietin. Blood 1995;86 (11):4097-104.
    [75]Gross AW, Lodish HF. Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem 2006;281 (4):2024-32.
    [1]Fisher JW. Erythropoietin:physiology and pharmacology update[J]. Exp Biol Med 2003; 228:1-14.
    [2]Lappin T. The cellular biology of erythropoietin receptors [J]. The Oncologist 2003; 8 suppl 1:15-18.
    [3]Jelkman W. Erythropoietin:structure, control of production and function[J]. Physiol Rev.1992; 72:449-89.
    [4]Krantz SB.Erythropoietin[J].Blood.1991;419-431.
    [5]Lacombe C. Biology of erythropoietin[J]. Haematologica.1998; 83(8):724-732.
    [6]Inoue N, Takeuchi M, Ohashi H, et al. The production of recombinant human erythropoietin[J]. Biotechnology Annual Review.1995;1:297-313.
    [7]Ng T, Marx G, Littlewood T, et al. Recombinant erythropoietin in clinical practice[J]. Postgrad Med J.2003; 79; 367-376.
    [8]Udupa KB. Functional significance of erythropoietin receptor on tumor cells[J]. World J Gastroenterol.2006; 12(46):7460-7462.
    [9]Macdougall IC. An overview of the efficacy and safety of novel erythropoiesis stimulating protein (NESP)[J]. Nephrol Dial Transplant 2001; 16(suppl 3):4-21.
    [10]Elliott S, Lorenzini T, Asher S, et al., Enhancement of therapeutic protein in vivo activities through glycoengineering[J]. Nat Biotechnol,2003; 21(4):414-21.
    [11]Egrie JC, Dwyer JC, Browne JK, et al. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin[J]. Exp Hematol,2003; 31(4):290-9.
    [12]Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP)[J]. Br J Cancer,2001; 84(suppl 1):3-10.
    [13]Darling RJ, Kuchibhotla U, Glaesner W, et al. Glycosylation of erythropoietin affects receptor binding kinetics:role of electrostatic interactions[J]. Biochemistry, 2002; 41:14524-14531.
    [14]Elliott S, Egrie J, Browne J, et al. Control of rHurhEPO biological activity:the role of carbohydrate[J]. Exp Hematol,2004; 32:1146-1155.
    [15]Locatelli F, Olivares J, Walker R, et al. Novel erythropoiesis stimulating protein for the treatment of anaemia in chronic renal insufficiency [J]. Kidney Int.2001; 60(2): 741-747.
    [16]Glaspy J, Jadeja JS, Justice G, et al. A dose-finding and safety study of novel erythropoiesis stimulating protein(NESP) for the treatment of anaemia in patients receiving multicycle chemotherapy[J]. Br J Cancer.2001; 84(suppl1):17-23.
    [17]Smith RE Jr, Jaiyesimi IA, Meza LA, et al. Novel erythropoietic stimulating protein(NESP) for the treatment of anaemia of chronic disease associated with cancer[J]. Br J Cancer,2001;84(suppl1):24-30.
    [18]Fisher JW. A quest for erythropoietin over nine decades [J]. Annu Rev Pharmacol Toxicol,1998; 38:1-20.
    [19]Livnah O, Stura EA, Middleton SA, et al. Crystallographic evidence for preformed dimmers of erythropoietin receptor before ligand activation[J]. Science, 1999; 283:987-990.
    [20]Witthuhn BA. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin[J]. Cell,1993; 74:227-236.
    [21]Silva M, Benito A, Sanz C, et al. Erythropoietin can induce the expression of bcl-xL through Stat5 in erythropoietin-dependent progenitor cell lines[J]. J Biol Chem, 1999; 274:22165-22169.
    [22]Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors [J]. Cell,1998; 93:385-395.
    [23]Socolovsky M, Nam H, Fleming MD, et al. Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblast[J]. Blood,2001; 98:3261-3273.
    [24]Motoyama N, Wang F, Roth KA, et al. Massive cell death of immature hematopoietic cell and neurons in Bcl-x-deficient mice[J]. Science,1995; 267:1506-1510.
    [25]Wagner KU, Claudio E, Rucker EB, et al. Conditional deletion of the Bcl-x gene from erythroid cell results in hemolytic anemia and profound splenomegaly [J]. Development,2000; 127:4949-4958.
    [26]Motoyama N, Kimura T, Takahashi T, et al. Bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation[J]. J Exp Med, 1999; 189:1691-1698.
    [27]Dolznig H, Habermann B, Stangl K, et al. Apoptosis protection by the rhEPO target Bcl-xL allows factor-independent differentiation of primary erythroblasts[J]. Curr Biol,2002; 12:1076-1085.
    [28]Cheung JY, Miller BA. Molecular mechanisms of erythropoietin signaling[J]. Nephron,2001; 87:215-222.
    [29]He TC, Jiang N, Zhuang H, et al. Erythropoietin-induced recruitment of She via a receptor phosphotyrosine-independent Jak2-associated pathway[J]. J Biol Chem,1995; 270:11055-11061.
    [30]Koury MJ, Sawyer ST, Brandt SJ. New insights into erythropoiesis[J]. Curr Opin Hematol,2002; 9:93-100
    [31]Damen JE, Cutler RL, Jiao H et al. phosphorylation of tyrosine 503 in the erythropoietin receptor (EpR) is essential for binding the P85 subunit of phosphatidylinositol (PI) 3-kinase and for EpR-associated PI 3-kinase activity[J]. J Biol Chem,1995; 270:23402-23408.
    [32]Ren HY, Komatsu N, Shimizu R, et al. Erythropoietin induces tyrosine phosphorylation and activation of phospholipase C-gamma 1 in a human erythropoietin-independent cell line[J]. J Biol Chem,1994; 269:19633-19638.
    [33]Huddleston H, Tan B, Yang FC, et al. Functional p85a gene is required for normal murine fetal erythropoiesis[J]. Blood,2003; 102:142-145.
    [34]Eckardt KU. Pathophysiology of renal anemia[J]. Clin Nephrol,2000; 53(1 Suppl):S2-8.
    [35]Kessler M. Value of early management of patients with chronic renal failure[J]. Presse Medicale,1997; 26:1340-1342.
    [36]Eschbach JW, Egrie JC, Downing MR, et al. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin[J]. N Engl J Med, 1987; 316:73-78.
    [37]Eschbach JW. Current concepts of anemia management in chronic renal failure: impact of NKF-DOQI[J]. Semin Nephrol,2000; 20:320-329.
    [38]Kaufman JS, Reda DJ, Fye CL, et al. Subcutaneous versus intravenous administration of erythropoietin in hemodialysis patients[J]. N Engl J Med,1998; 339:578-583.
    [39]Egrie JC, Eschbach JW, McGuire T, et al. Pharmacokinetics of recombinant human erythropoietin administered to hemodialysis(HD) patients[J]. Kidney Int,1988; 33:262.
    [40]Eschbach JW, Haley NR, Adamson JW. The use of recombinant erythropoietin in the treatment of the anemia of chronic renal failure[J]. Ann NY Acad Sci.1989; 554:225-230.
    [41]Jacobs C, Horl WH, Macdougal TC, et al. European best practice guidelines 5 target haemoglobin[J]. Nephrol Dial Transplant.2000;15(suppl 4):15-19.
    [42]Murphy ST, Parfrey PS. Erythropoietin therapy in chronic anemia:the impact of normalization of hematocrit[J]. Curr Opin Nephrol Hypertens.1999; 8:573-578.
    [43]Mocks J. Cardiovascular mortality in haemodialysis patients treated with epoetin beta-a retrospective study [J]. Nephron.2000; 86:455-462.
    [44]Rossert J, Fouqueray B, Boffa JJ. Anemia management and the delay of chronic renal failure progression[J]. J Am Soc Nephrol.2003; 14:S173-S177.
    [45]Silverberg DS, Blum M, Agbaria Z, et.al. The effect of iv iron alone or in combination with low-dose erythropoietin in the rapid correction of anemia of chronic renal failure in the predialysis period[J]. Clin Nephrol.2001; 55:212-219.
    [46]Rizzo JD, Seidenfeld J, Piper M, et al.Erythropoietin:a paradigm for the development of practice guidelines [J]. Hematology Am Soc Hematol Educ Program. 2001;10-30.
    [47]Groopman JE, Itri LM. Chemotherapy-induced anemia in adults:incidence and treatment[J]. J Nati Cancer Inst.1999; 91:1616-1634.
    [48]Caro JJ, Salas M, Ward A, et al. Anemia as an independent prognostic factor for survival in patients with cancer:a systematic, quantitative review[J]. Cancer.2001; 91: 2214-2221.
    [49]MacRae R, Shyr Y, Johnson D, et al. Declining hemoglobin during chemoradiotherapy for locally advanced non-small cell lung cancer is significant[J]. Radiother Oncol.2002; 64:37-40.
    [50]Harrison LB, Chadha M, Hill RJ, et al. Impact of tumor hypoxia and anemia on radiation therapy outcomes[J]. The Oncologist.2002; 7:492-508.
    [51]Grogan M, Thomas GM, Melamed I, et al. The importance of hemoglobin levels during radiotherapy for carcinoma of the cervix[J]. Cancer.1999; 86:1528-1536.
    [52]Glaser CM, Millesi W, Kornek GV, et al. Impact of hemoglobin level and use of recombinant erythropoietin on efficacy of preoperative chemoradiation therapy for squamous cell carcinorma of the oral cavity and oropharynx[J]. Int J Radiat Oncol Biol Phys.2001;50:705-715.
    [53]Cella D, Zagari MJ, Vandoros C, et al. Epoetin alfa treatment results in clinically significant improvements in quality of life in anemic cancer patients when referenced to the general population [J]. J Clin Oncol.2003; 21:366-373.
    [54]Bohlius JF, Wilson J, Seidenfeld J, et al. Recombinant human erythropoietins and cancer patients:updates meta-analysis of 57 studies including 9353 patients[J]. J Natl Cancer Inst.2006; 98:708-714.
    [55]Littlewood TJ, Bajetta E, Nortier JW, et al. Effects of epoetin alfa on hematologic parameters and quality of life in cancer patients receiving nonplatinum chemotherapy: results of a randomized, double-blind, placebo-controlled trial[J]. J Clin Oncol.2001; 19:2865-2874.
    [56]Gabrilove JL, Cleeland CS, Livingston RB, et al. Clinical evaluation of once-weekly dosing of epoetin alfa in chemotherapy patients:improvements in hemoglobin and quality of life are similar to three-times-weekly dosing[J]. J Clin Oncol.2001; 19:2875-2882.
    [57]Sloan JA, Witzig T, Silberstein P, et al. Quality of life, blood transfusions, and toxicity, in anemic patients with advanced cancer receiving weekly erythropoietin while on chemotherapy:results from a phase Ⅲ randomized double-blind placebo-controlled study[J]. Proc Am Soc Hematol.2002; 100:287a.
    [58]Shasha D, George MJ, Harrison LB. Once-weekly dosing of epoetin-a increase hemoglobin and improves quality of life in anemic cancer patients receiving radiation therapy either concomitantly or sequentially with chemotherapy [J]. Cancer.2003; 98;1072-1079.
    [59]Quirt I, Robeson C, Lau CY, et al. Epoetin alfa therapy increase hemoglobin levels and improves quality of life in patients with cancer-related anemia who are not receiving chemotherapy and patients with anemia who are receiving chemotherapy [J]. J Clin Oncol.2001; 19:4126-4134.
    [60]Cleeland CS, Demetri GD, Glaspy J, et al. Identifying hemoglobin level for optimal quality of life:results of an incremental analysis (abstract)[J]. Proc Am Soc Clin Oncol 1999; 18(547a):abst 2215.
    [61]Osterborg A. Randomized, double blind, placebo-controlled trial of recombinant human erythropoietin, epoietin beta, in hematologic malignancies[J]. J Clin Oncol. 2002; 20:2486-2494.
    [62]Auerbach M, Ballard H, Trout JR, et al. intravenous iron optimizes the response to recombinant human erythropoietin in cancer patients with chemotherapy-related anemia:a multicenter, open-label, randomized trial[J]. J Clin Oncol.2004; 22:1301-1307.
    [63]Mittleman M, Neumann D, Peled A, et al. Erythropoietin induces tumor regression and anti-tumor immune responses in murine myeloma models[J]. Proc Natl Acad-Sci USA.2001; 5:5181-5186.
    [64]Leyland-Jones B, Semiglazov V, Pawlicki M, et al. Maintaining normal hemoglobin levels with epoetin alfa in mainly nonanemic patients with metastatic breast cancer receiving first-line chemotherapy:a survival study[J]. J Clin Oncol. 2005; 23:5960-5972.
    [65]Henke M, Laszig R, Rube C, et al. Erythropoietin to treat head and neck cancer patients with anemia undergoing radiotherapy:randomized, double blind, placebo-controlled trial[J]. Lancet.2003; 362:1255-1260.
    [66]Henke M, Mattern D, Pepe M, et al. Do erythropoietin receptors on cancer cells explain unexpected clinical findings?[J]. J Clin Oncol.2006; 24:4708-4713.
    [67]Li F, Chong ZZ, Maiese K. Erythropoietin on a tightrope:balancing neuronal and vascular protection between intrinsic and extrinsic pathways[J]. Neurosignals.2004; 13:265-289.
    [68]Maiese K, Li F, Chong ZZ. New avenues for exploration of erythropoietin [J]. JAMA.2005; 295:90-95.
    [69]Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system[J]. Nat Rev Neurosci.2005; 6:484-494.
    [70]Anagnostou A, Liu Z, Steiner M, et al. Erythropoietin receptor mRNA expression in human endothelial cells[J]. Proc Natl Acad Sci USA.1994; 91:3974-3978.
    [71]Jelkmann W, Wagner K. Beneficial and ominous aspects of the pleiotropic action of erythropoietin[J]. Ann Hematol.2004; 83:673-686.
    [72]Marti HH. Erythropoietin and the hypoxic brain[J]. J Exp Biol.2004; 207:3233-3242.
    [73]Ogilvie M, Yu X, Nicolas-metral V, et al. Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts[J]. J Biol Chem.2000; 275:39754-39761.
    [74]Shingo T, Sorokan ST, Shimazaki T, et al. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells[J]. J Neurosci.2001; 21:9733-9743.
    [75]Morishita E, Masuda S, Nagao M, et al. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death[J].Neuroscience.1997; 76:105-116.
    [76]Lipsic E, Schoemaker RG, Meer P, et al.protective effects of erythropoietin in cardiac ischemia:from bench to bedside[J]. J Am Coll Cardiol.2006; 48:2161-2167.
    [77]Boogaerts M. Pleiotropic effects of erythropoietin in neuronal and vascular systems[J]. Curr Med Res Opin.2006; 22:15-22.
    [78]Lipsic E, Meer P, Voors AA, et al. A single bolus of a long-acting erythropoietin analogue darbepoetin alpha in patients with acute myocardial infarction:a randomized feasibility and safety study[J]. Cardiovasc Drugs Ther.2006; 20:135-141.
    [79]Rafiee P, Shi Y, Su J, et al. Erythropoietin protects the infant heart against ischemia-reperfusion injury by triggering multiple signaling pathways[J]. Basic Res Cardiol.2005; 100:187-197.
    [80]Cai Z, Semenza GL. Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury [J]. Circulation,2004; 109:2050-2053.
    [81]Shi Y, Rafiee P, Su J, et al. Acute cardioprotective effects of erythropoietin in infant rabbits are mediated by activation of protein kinases and potassium channels[J]. Basic Res Cardiol.2004; 99:173-182.
    [82]Celik M, Gokman N, Erbayraktar S, et al. Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury[J]. Proc Natl Acad Sci USA.2002; 99:2258-2263.
    [83]Keswani SC, Buldanlioglu U, Fischer A, et al. A novel endogenous erythropoietin mediated pathway prevents axonal degeneration[J]. Ann Neurol.2004; 56:815-824.
    [84]Shingo T, Sorokan ST, Shimazaki T, et al. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells[J]. J Neurosci.2001; 21:9733-9743.
    [85]Siren AL, Fratelli M, Brines M, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress[J]. Proc Natl Acad Sci USA.2001; 98:4044-4049.
    [86]Brines ML, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury [J]. Proc Natl Acad Sci USA.2000; 97:10526-10531.
    [87]Yatsiv I, Grigoriadis N, Simeonidou C, et al. Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury[J]. FASEB J.2005; 19:1701-1703.
    [88]Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats[J]. Stroke.2004; 35:1732-1737.
    [89]Ehrenreich H, Hasselblatt M, Dembowski C, et al. Erythropoietin therapy for acute stroke is both safe and beneficial[J]. Mol Med.2002; 8:495-505.
    [90]Ehrenreich H, Hinze-Selch D, Stawicki S, et al. Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin[J]. Mol Psychiatry.2007; 12:206-220.
    [91]Ehrenreich H, Fischer B, Norra C, et al. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis[J]. Brain.2007; 1-12.
    [92]Buemi M, Cavallaro E, Floccari F, et al. The pleiotropic effects of erythropoietin in the central nervous system[J]. J Neuropathol Exp Neurol.2003; 62:228-236.
    [93]Siren AL, Knerlich F, Poser W, et al. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain[J]. Acta Neuropathol.2001; 101:271-276.
    [94]Renzi MJ, Thirumalai N, Jolliffe LK, et al. Erythropoietin down regulates SHP1 and induces a sustained activation of ERK1/ERK2 in primary cortical neurons[J]. Proc Am Soc Hematol.2001; 100:77a.
    [95]Lipton SA. Erythropoietin for neurologic protection and diabetic neuropathy [J]. N Engl J Med.2004; 350:2516-2517.
    [96]Digicaylioglu M, Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signaling cascades[J]. Nature,2001; 412:641-647.
    [97]Wang TC, Sadamoto Y, Tanaka J, et al. Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by up-regulating Bcl-xl expression [J]. J Neurosci Res,2002; 67:795-803.
    [98]Gorio A, Gokmen N, Erbayraktar S, et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma[J]. Proc Natl Acad Sci USA.2002; 99:9450-9455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700