用户名: 密码: 验证码:
几类高选择性整体柱的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高效液相色谱仪器微型化的发展,作为色谱分离的核心,色谱柱的微型化也逐渐受到人们的关注。毛细管整体柱是微柱的典型代表,由于制备方法简单、渗透性好、表面改性多样、流动相消耗少、传质效率高及分离性能好,日益受到研究者们的重视。整体柱发展至今,出现了大量不同功能的整体柱,应用范围基本覆盖所有的色谱分离模式。但是,在生物及环境等复杂样品的分离分析中,缺少拥有较高选择性和针对性的整体柱材料。基于这一现状,本文选取几种特殊的单体,分别制备了几种选择性高、针对性强的整体柱,主要内容如下:
     首先,我们用活性更好的3-(甲基丙烯酰氧)丙基三甲氧基硅烷(γ-MAPS)代替传统的四甲氧基硅烷(TMOS)和乙烯基三甲氧基硅烷(VTMS)组合作为前驱体,以甲基丙烯酸十二氟庚酯(DFHMA)为功能单体,在非水溶剂中(正丙醇、正辛醇和正十二醇),经一步热处理的“一锅法”合成了γ-MAPS-DFHMA杂化整体柱。详细考察了单体比例、致孔剂组成对整体柱结构的影响。研究了不同氟链的全氟羧酸和全氟磺酸化合物在γ-MAPS-DFHMA杂化整体柱上的吸附差异,发现此类含氟化合物在整体柱上吸附能力的随着氟链的增长而增强。最后以持久性有机污染物(PoPs)全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)为主要研究对象,以辛烷磺酸钠(SOS)为对照,考察了γ-MAPS-DFHMA杂化整体柱对PFOA和PFOS的吸附容量,及PFOA和PFOS在该整体柱上的富集效率。结果表明γ-MAPS-DFHMA杂化整体柱对PFOA和PFOS的吸附容量分别达到0.257和0.513μg/mg,而对SOS基本不吸附,并且γ-MAPS-DFHMA杂化整体柱可以将水溶液中微量PFOA和PFOS浓缩160倍。
     甲基丙烯酸酯取代的多面体低聚倍半硅氧烷(POSS-MA)是一种有机无机结合的新型纳米交联剂,日益受到研究者们的关注。本体系中我们选取氟链更长的甲基丙烯酸-1H,1H-全氟代辛酯(PDFOMA)为有机单体,POSS-MA为交联剂,采用自由基聚合的方法制备了一种机械强度高、孔结构均匀、低溶胀的POSS-PDFOMA杂化整体柱。色谱表征表明该整体柱能基于反相机理基线分离烷基苯系和苯胺类化合物。由于POSS结构中没有残余硅羟基,分离苯胺类物质时,流动相中无需添加改性剂。以乙腈水为流动相,在此整体柱上实现了一系列全氟链甲基丙烯酸酯化合物的基线分离,全氟链甲基丙烯酸酯化合物按照氟链长度从短到长依次出峰并且峰型对称,分离效果远远好于C18修饰的硅胶整体柱,这是氟氟亲和作用的结果。最后,用POSS-PDFOMA杂化整体柱在线分离全氟磺酸盐。由于流动相中无需加入铵盐,且在高有机相条件下洗脱,在质谱分析时,大大降低了离子抑制作用,获得了很好的质谱响应,为准确监测全氟磺酸盐类物质提供了很好的途径。
     由于POSS结构中没有残余硅羟基,且全氟单体的聚合物对不含氟的物质低吸附作用,因此我们进一步将POSS-PDFOMA杂化整体柱应用于大分子蛋白质的体积排阻色谱中。我们在原有整体柱合成体系上,通过改变三元致孔剂(甲苯、Brij58P和正十二醇)的组成比例,重新优化了POSS-PDFOMA杂化整体柱的孔结构。色谱表征结果显示过氧化氢酶(CAT)、牛血清白蛋白(BSA)、胰蛋白酶抑制剂(STI)和马脲酰组氨酰亮氨酸(HHL)等三种蛋白质和多肽在该整体柱上按照分子量从大到小的顺序先后被洗脱,说明该整体柱具有体积排阻的能力。逆体积排阻色谱结果得出该整体柱含有71%的总孔隙率和10%的中孔体积。
     聚乙二醇是一种生物相容性的聚合物,广泛应用在很多生物及化学领域,本体系选取四甲氧基硅烷(TMOS)和乙烯基三甲氧基硅烷(VTMS)为前驱体,聚乙二醇二丙烯酸酯(PEGDA, Mn-700)为有机功能单体,基于“一锅法”制备了PEG-硅胶杂化整体柱。相比已经报道的纯PEG基质有机聚合物整体柱,在保留其生物兼容性同时大大提高了整体柱的机械稳定性。进一步的色谱表征结果表明该整体柱具有亲水和疏水两种保留机理,在疏水作用模式下,能分离细胞色素C等5种蛋白质。
     多糖是一类由单糖通过糖苷键连接形成的高分子化合物,具有生物兼容性,由于结构特异性广泛应用于分离领域。本体系基于多糖与聚乙二醇的双水相体系,以葡聚糖和PEGDA为功能单体,基于自由基聚合和接枝反应建立了一种一步法合成糖基化多孔材料的新方法,制备了poly(PEGDA)接枝葡聚糖整体柱。整体柱合成过程条件温和,操作简单,PEG骨架的形成和表而接枝葡聚糖一步完成。另外,葡聚糖无需额外修饰即可直接参与反应,对葡聚糖结构没有破坏。葡聚糖本身不仅参与接枝反应,还在相分离过程起到关键作用。经过一系列系统性的考察,得到PEGDA、葡聚糖和水的三元相图及对应组合下合成的整体柱横截面形貌。结果表明只有在PEGDA、葡聚糖和水三者比例适中的条件下才能得到柱床均匀的双连续的整体结构。
     基于PEGDA和葡聚糖双水相接枝共聚的优化条件,分别以葡聚糖和硫酸葡聚糖为单体,制备了poly(PEGDA)接枝葡聚糖整体柱和poly(PEGDA)接枝硫酸葡聚糖整体柱。红外分析和热重分析结果表明葡聚糖和硫酸葡聚糖都是通过化学键合的方式接枝到PEG骨架上,表明该双水相接枝反应具有较好的灵活性,适合水溶性多糖的整体材料的制备。两种整体柱都能基于亲水作用分离5种核苷混合物。此外,poly(PEGDA)接枝葡聚糖整体柱还基于体积排阻色谱分离了BSA和两种多肽。
With the rapid development of nanoscale chromatographic separation systems, micro-column, the heart of chromatography system, is becoming an increasing concern. Among various micro-columns, capillary monolithic columns have been received greatest attention due to easy preparation, good permeability, versatility in surface modification, low solvent consumption, high efficiency of transmission and good separation ability. In the past decades, a great number of monolithic columns with various functionality groups have been studied. However, there is an abysmal lack of monolithic columns with unique affinity or separation ability for some special analytes in environment samples or biomatrix. Based on this situation, we select several special monomers and prepare several monolithic columns, main contents are as follows:
     First, the traditional precursor composition (TMOS and VIMS) are replaced by y-methacryloxypropyltrimethoxysilane (y-MAPS), a monomer with higher activity. The organic-inorganic hybrid fluorous monolithic capillary column was synthesized by the improved "one-pot" approach via the polycondensation of γ-MAPS and in situ copolymerization of1H,1H,7H-dodecafluoroheptyl methacrylate (DFHMA) and vinyl group on the precondensed siloxanes through one-step thermal treatment. The pore properties and permeability could be tuned by the composition of the polymerization mixture. A series of perfluorocarboxylic acids and perfluoroalkyl sulfonates with different C-Fchains were employed to investigate the mechanism of fluorine-fluorine interaction. The results revealed that fluorine-fluorine interaction increased as the C-F chain of fluorous compounds increased. Then the adsoption capacities of y-MAPS-DFHMA hybrid monolithic column for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were examined via the online breakthrough curves of the two compounds. It was found that the adsorption capacities of the monolithic column for PFOA and PFOS were0.257and0.513μg/mg, respectively. In addition, the trace amounts of PFOA and PFOS in water samples can be successfully concentrated about160times to their original concentrations by this monolithic column.
     Polyhedral oligomeric silsesquioxane (POSS) is a type of cagelike silsesquioxane, which embodies a truly inorganic-organic hybrid architecture containing an inner inorganic framework made up of silicon and oxygen. A monolithic column with good mechanical stability, homogenuous porosity, low swelling and high affinity to fluorous compounds was prepared using a polyhedral oligomeric silsesquioxane (POSS) reagent as the cross-linker and pentadecafluorooctyl methacrylate (PDFOMA) as the functionality monomer. The chromatographic evaluation results showed that alkylbenzenes and phenyl amines were separated with good peak shapes on the POSS-PDFOMA hybrid monolithic column based on reversed-phase chromatography mode, respectively. A series of perfluoroalkyl methacrylates were baseline resolved on the optimized monolithic column under isocratic elution of70%acetonitrile aqueous solution. Such a resolution could not be achieved on a silica-based C18monolithic column. In addition, several perfluoroalkyl sulfonates were also baseline separated on the fluorous monolith applying0.1%(v/v) acetic acid aqueous solution containing75%acetonitrile as mobile phase without the addition of ammonium. This advantage is very significant for the LC-MS high sensitive analysis of perfluoroalkyl sulfonates because the ion suppression can be decreased effectively.
     Due to the combination of merits of POSS and fluorous phase with no residual silanols and low interaction with nonfluorinated compounds, the POSS-PDFOMA hybrid monolithic column was supposed to have low nonspecific interaction with biomacromolecules. The pore properties and permeability were retuned by the composition of the ternary porogenic solvent. The monolithic columns provided size separation of three proteins in the range of MWs from20000to250000in water. The pore size distributions were examined using inverse size-exclusion chromatography (ISEC) of a series of proteins and peptides covering a wide MW range. It was found that the best monolith had relatively large fractions of mesopores (10%), which is important for size-exclusion separation of peptides and proteins.
     A PEG-silica hybrid monolithic column was synthesized via one-pot approach using tetramethoxysilane (TMOS) and vinyl trimethoxysilane (VTMS) as precursor and polyethylene glycol diacrylate (PEGDA, Mn-700) as organic monomer. The obtained PEG-silica hybrid monolithic column owned better mechanical stability over previously reported pure PEG-based organic polymer monolithic columns. The characterization and evaluation results demonstrated that the obtained PEG-silica hybrid monolithic columns provided hydrophilic interaction as well as hydrophobic interaction. The optimized PEG-silica hybrid monolithic column provided hydrophobic interaction chromatography of five proteins.
     A novel, facile process was developed for the preparation of surface-glycosylated porous monolithic columns via aqueous two phase graft copolymerization of polyethylene glycol diacrylate (PEGDA) and dextran. In this method, porous poly(PEGDA) skeletons and surface glycosylation were synthesized via one-step process without perturbing the backbone structure of dextran. In addition, dextran not only took part in the graft copolymerization, but also played an important role in the phase separation process. The pore properties and skeletons could be tuned by the composition of the polymer mixtures.Ternary phase diagrams and SEM images of the corresponding monolithic columns were obtained after systematical investigations. The results exhibited that the bicontinuous porous structure could be formed by moderate proportion of the three conditions.
     On the basis of the optimal conditions of graft copolymerization of PEGDA and dextran, poly (PEGDA) grafted-dextran monolithic column and poly (PEGDA) grafted-dextran sulfate monolithic column were synthesized. FI-IR and thermal gravimetric analysis proved that polysaccharides were chemically bonded to the PEG skeletons. These results revealed this novel approach showed high versatility for preparation of series of surface-glycosylated porous monolithic columns with water-soluble polysacchrides. The obtained monolithic columns provided typical hydrophilic interaction chromatography of five nucleosides. In addition, poly (PEGDA) grafted-dextran monolithic column provided size-exclusion of BSA and several peptides.
引文
[1]Jorgenson J W, Lukacs K D. Zone electrophoresis in open-tubular glass capillaries[J]. Anal. Chem., 1981,53:(8) 1298-1302.
    [2]Hjerten S. High-performance electrophoresis: the electrophoretic counterpart of high-performance liquid chromatography[J]. J. chromatogr. A,1983,270,1-6.
    [3]Gebauer P, Mala Z, Bocek P. Recent progress in analytical capillary isotachophoresis[J]. Electrophoresis, 2011,32:(1) 83-89.
    [4]Schmerr M J, Cutlip R C, Jenny A. Capillary isoelectric focusing of the scrapie prion protein[J]. J. Chromatogr. A,1998,802:(1) 135-141.
    [5]Wang D, Yang G, Engelhardt H, et al. Micellar electrokinetic capillary chromatography of psoralen and isopsoralen[J]. Electrophoresis,1999,20:(9) 1895-1899.
    [6]Miksik I, Sedlakova P, Mikulikova K, et al. Matrices for capillary gel electrophoresis--a brief overview of uncommon gels[J]. Biomed. Chromatogr,2006,20:(6-7) 458-465.
    [7]Peters E C, Petro M, Svec F, et al. Molded rigid polymer monoliths as separation media for capillary electrochromatography[J]. Anal. Chem.,1997,69:(17) 3646-3649.
    [8]Colon L A, Burgos G, Maloney T D, et al. Recent progress in capillary electrochromatography[J]. Electrophoresis,2000,21:(18) 3965-3993.
    [9]Coon J J, Zurbig P, Dakna M, et al. CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics[J]. Proteomics-Clinical Applications,2008,2:(7-8) 964-973.
    [10]Dakna M, He Z, Yu W C, et al. Technical, bioinformatical and statistical aspects of liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) based clinical proteomics:A critical assessment[J]. J. Chromatogr. B,2009,877:(13) 1250-1258.
    [11]Yan X, Essaka D C, Sun L, et al. Bottom-up proteome analysis of E. coli using capillary zone electrophoresis-tandem mass spectrometry with an electrokinetic sheath-flow electrospray interface[J]. Proteomics,2013,13:(17) 2546-2551.
    [12]Ramautar R, Somsen G W, de Jong G J. CE-MS for metabolomics:developments and applications in the period 2010-2012[J]. Electrophoresis,2013,34:(1) 86-98.
    [13]Tsuruoka M, Hara J, Hirayama A, et al. CE-MS-based metabolome analysis of serum and saliva from neurodegenerative dementia patients[J]. Electrophoresis,2013,34:(19) 2865-2872.
    [14]Yu L, Jiang C, Huang S, et al. Analysis of urinary metabolites for breast cancer patients receiving chemotherapy by CE-MS coupled with on-line concentration [J]. Clin. Biochem.,2013,46:(12) 1065-1073.
    [15]Li B, Petersen N J, Andersen L H, et al. Easy peak tracking in CE-UV and CE-UV-ESI-MS by incorporating temperature-correlated mobility scaling[J]. Electrophoresis,2013,34:(12) 1787-1795.
    [16]Kohler I, Schappler J, Rudaz S. Highly sensitive capillary electrophoresis-mass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine[J]. Anal. Chim. Acta.,2013,780.101-109.
    [17]Marakova K, Piest'ansky J, Veizerova L, et al. Multidrug analysis of pharmaceutical and urine matrices by on-line coupled capillary electrophoresis and triple quadrupole mass spectrometry[J]. J. Sep. Sci.,2013, 36:(11) 1805-1816.
    [18]Cintron J M, Colon L A. Organo-silica nano-particles used in ultrahigh-pressure liquid chromatography[J]. Analyst,2002,127:(6) 701-704.
    [19]Nagele E, Vollmer M, Horth P. Two-dimensional nano-liquid chromatography-mass spectrometry system for applications in proteomics[J]. J. Chromatogr. A,2003,1009:(1-2) 197-205.
    [20]Fanali S, Camera E, Chankvetadze B, et al. Separation of tocopherols by nano-liquid chromatography[J]. J. Pharm. Biomed. Anal.,2004,35:(2) 331-337.
    [21]Kwon S W. Profiling of soluble proteins in wine by nano-high-performance liquid chromatography/tandem mass spectrometry [J]. J. Agric. Food. Chem.,2004,52:(24) 7258-7263.
    [22]Rogeberg M, Vehus T, Grutle L, et al. Separation optimization of long porous layer open tubular columns for nano-LC-MS of limited proteomic samples[J]. J. Sep. Sci.,2013,36:(17) 2838-2847.
    [23]Fanali S, Rocchi S, Chankvetadze B. Use of novel phenyl-hexyl core-shell particles in nano-LC[J]. Electrophoresis,2013,34:(12) 1737-1742.
    [24]Liu Q, Cobb J S, Johnson J L, et al. Performance Comparisons of Nano-LC Systems, Electrospray Sources and LC-MS-MS Platforms[J]. J. Chromatogr. Sci.,2013.
    [25]Sarg B, Faserl K, Kremser L, et al. Comparing and Combining Capillary Electrophoresis Electrospray Ionization Mass Spectrometry and Nano-Liquid Chromatography Electrospray lonization Mass Spectrometry for the Characterization of Post-translationally Modified Histones[J]. Mol. Cell. Proteomics, 2013,12:(9) 2640-2656.
    [26]Pereira F, Niu X, deMello A J. A nano LC-MALDI mass spectrometry droplet interface for the analysis of complex protein samples[J]. PLoS. One,2013,8:(5) e63087.
    [27]Vissers J P. Recent developments in microcolumn liquid chromatography[J]. J. Chromatogr. A,1999, 856:(1-2) 117-143.
    [28]Unger K K, Skudas R, Schulte M M. Particle packed columns and monolithic columns in high-performance liquid chromatography-comparison and critical appraisal[J]. J. Chromatogr. A,2008, 1184:(1-2) 393-415.
    [29]Ishizuka N, Kobayashi H, Minakuchi H, et al. Monolithic silica columns for high-efficiency separations by high-performance liquid chromatography[J]. J. Chromatogr. A,2002,960:(1-2) 85-96.
    [30]Motokawa M, Kobayashi H, Ishizuka N, et al. Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography [J]. J. Chromatogr. A,2002,961:(1) 53-63.
    [31]Urban J, Skerikova V, Jandera P, et al. Preparation and characterization of polymethacrylate monolithic capillary columns with dual hydrophilic interaction reversed-phase retention mechanism for polar compounds[J]. J. Sep. Sci.,2009,32:(15-16) 2530-2543.
    [32]Li W J, Zhou X, Tong S S, et al. Poly(N-isopropylacrylamide-co-N,N'-methylene bisacrylamide) monolithic column embedded with gamma-alumina nanoparticles microextraction coupled with high-performance liquid chromatography for the determination of synthetic food dyes in soft drink samples[J]. Talanta,2013,105:(386-392.
    [33]Guiochon G. Monolithic columns in high-performance liquid chromatography[J]. J. Chromatogr. A, 2007,1168:(1) 101-168.
    [34]Nakanishi K. Pore structure control of silica gels based on phase separation[J]. J. Porous Materials, 1997,4:(2) 67-112.
    [35]Tanak N, Kobayashi H, Ishizuka N, et al. Monolithic silica columns for high-efficiency chromatographic separations[J]. J. Chromatogr. A,2002,965:(1-2) 35-49.
    [36]Shao H, Deng Q, Lun Z, et al. [Preparation and evaluation of monolithic silica columns for capillary electrochromatography][J]. Se. Pu.,2005,23:(3) 243-246.
    [37]Ye F, Xie Z, Wong K Y. Monolithic silica columns with mixed mode of hydrophilic interaction and weak anion-exchange stationary phase for pressurized capillary electrochromatography[J]. Electrophoresis, 2006,27:(17) 3373-3380.
    [38]Hara T, Kobayashi H, Ikegami T, et al. Performance of monolithic silica capillary columns with increased phase ratios and small-sized domains[J]. Anal. Chem.,2006,78:(22) 7632-7642.
    [39]Lu Z, Zhang P, Jia L. Preparation of chitosan functionalized monolithic silica column for hydrophilic interaction liquid chromatography[J]. J. Chromatogr. A,2010,1217:(30) 4958-4964.
    [40]Wu M, Chen Y, Wu R, et al. The synthesis of chloropropyl-functionalized silica hybrid monolithic column with modification of N,N-dimethyl-N-dodecylamine for capillary electrochromatography separation[J]. J. Chromatogr. A,2010,1217:(26) 4389-4394.
    [41]Ye F, Wang S, Zhao S. Preparation and characterization of mixed-mode monolithic silica column for capillary electrochromatography[J]. J. Chromatogr. A,2009,1216:(51) 8845-8850.
    [42]Nunez O, Ikegami T, Kajiwara W, et al. Preparation of high efficiency and highly retentive monolithic silica capillary columns for reversed-phase chromatography by chemical modification by polymerization of octadecyl methacrylate[J]. J. Chromatogr. A,2007,1156:(1-2) 35-44.
    [43]Qin F, Xie C, Feng S, et al. Monolithic silica capillary column with coated cellulose tris(3,5-dimethylphenylcarbamate) for capillary electrochromatographic separation of enantiomersfJ]. Electrophoresis,2006,27:(5-6) 1050-1059.
    [44]Preinerstorfer B, Lubda D, Lindner W, et al. Monolithic silica-based capillary column with strong chiral cation-exchange type surface modification for enantioselective non-aqueous capillary electrochromatography[J]. J. Chromatogr. A,2006, 2006:(1-2) 94-105.
    [45]Lubda D, Cabrera K, Nakanishi K, et al. Monolithic silica columns with chemically bonded beta-cyclodextrin as a stationary phase for enantiomer separations of chiral pharmaceuticals[J], Anal. Bioanal. Chem.,2003,377:(5) 892-901.
    [46]Moravcova D, Planeta J, Wiedmer S K. Silica-based monolithic capillary columns modified by liposomes for characterization of analyte-liposome interactions by capillary liquid chromatography [J]. J. Chromatogr. A,2013,1317:(22) 159-166.
    [47]Huang K, Zhou N, Chen B. [Reparation and application of perfluorodecyl modified silica monolithic capillary column in extraction and enrichment of perfluorooctane sulfonates][J]. Se. Pu.,2011,29:(10) 957-961.
    [48]Kositarat S, Smith N W, Nacapricha D, et al. Repeatability in column preparation of a reversed-phase C18 monolith and its application to separation of tocopherol homologues[J]. Talanta,2011,84:(5) 1374-1378.
    [49]Lu J, Ye F, Zhang A, et al. Preparation and characterization of silica monolith modified with bovine serum albumin-gold nanoparticles conjugates and its use as chiral stationary phases for capillary electrochromatography[J]. J. Sep. Sci.,2011,34:(16) 2329-2336.
    [50]Galan-Cano F, Bernabe-Zafon V, Lucena R, et al. Sensitive determination of polycyclic aromatic hydrocarbons in water samples using monolithic capillary solid-phase extraction and on-line thermal desorption prior to gas chromatography-mass spectrometry[J]. J. Chromatogr. A,2011,1218.(14) 1802-1807.
    [51]Soli ven A, Dennis G R, Guiochon G, et al. Cyano bonded silica monolith--development of an in situ modification method for analytical scale columns[J]. J. Chromatogr. A,2010,1217:(39) 6085-6091.
    [52]Huang G, Zeng W, Lian Q, el al. Pressurized CEC of neutral and charged solutes using silica monolithic stationary phases functionalized with 3-(2-aminoethylamino)propyl ligands[J]. J. Sep. Sci., 2008,31:(12) 2244-2251.
    [53]Roux R, Puy G, Demesmay C, et al. Synthesis of propyl-functionalized hybrid monolithic silica capillaries and evaluation of their performances in nano-LC and CEC[J]. J. Sep. Sci.,2007,30:(17) 3035-3042.
    [54]Horie K, Ikegami T, Hosoya K, et al. Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography[J]. J. Chromatogr. A,2007,1164:(l-2) 198-205.
    [55]Mallik R, Hage D S. Development of an affinity silica monolith containing human serum albumin for chiral separations[J]. J. Pharm. Biomed. Anal.,2008,46:(5) 820-830.
    [56]Hosoya K, Hira N, Yamamoto K, et al. High-performance polymer-based monolithic capillary column[J]. Anal. Chem.,2006,78:(16) 5729-5735.
    [57]Ueki Y, Umemura T, Iwashita Y, et al. Preparation of low flow-resistant methacrylate-based monolithic stationary phases of different hydrophobicity and the application to rapid reversed-phase liquid chromatographic separation of alkylbenzenes at high flow rate and elevated temperature[J]. J. Chromatogr. A,2006,1106:(1-2) 106-111.
    [58]Jin W, Fu H, Huang X, et al. Optimized preparation of poly(styrene-co-divinylbenzene-co-methacrylic acid) monolithic capillary column for capillary electrochromatography[J]. Electrophoresis,2003,24:(18) 3172-3180.
    [59]Zhang R, Yang G, Xin P, et al. Preparation of poly(N-isopropylacrylamide)-grafted polymer monolith for hydrophobic interaction chromatography of proteins[J]. J. Chromatogr. A,2009,1216:(12) 2404-2411.
    [60]Hemstrom P, Nordborg A, Irgum K, et al. Polymer-based monolithic microcolumns for hydrophobic interaction chromatography of proteins[J]. J. Sep. Sci.,2006,29:(1) 25-32.
    [61]Sun X, Lin D, He X, et al. A facile and efficient strategy for one-step in situ preparation of hydrophobic organic monolithic stationary phases by click chemistry and its application on protein separation[J]. Talanta,2010,82:(1) 404-408.
    [62]Li Y, Tolley H D, Lee M L. Poly[hydroxyethyl acrylate-co-poly(ethylene glycol) diacrylate] monolithic column for efficient hydrophobic interaction chromatography of proteins[J]. Anal. Chem.,2009, 81:(22) 9416-9424.
    [63]Li Y, Tolley H D, Lee M L. Monoliths from poly(ethylene glycol) diacrylate and dimethacrylate for capillary hydrophobic interaction chromatography of proteins[J]. J. Chromatogr. A,2010,1217:(30) 4934-4945.
    [64]Desire C T, Arrua R D, Talebi M, et al. Poly(ethylene glycol)-based monolithic capillary columns for hydrophobic interaction chromatography of immunoglobulin G subclasses and variants[J]. J. Sep. Sci., 2013,36:(17) 2782-2792.
    [65]Dong J, Ou J, Dong X, et al. Preparation and evaluation of rigid porous polyacrylamide-based strong cation-exchange monolithic columns for capillary electrochromatography[J]. J. Sep. Sci.,2007,30:(17) 2986-2992.
    [66]Talebi M, Arrua R D, Gaspar A, et al. Epoxy-based monoliths for capillary liquid chromatography of small and large molecules[J]. Anal. Bioanal. Chem.,2013,405:(7) 2233-2244.
    [67]Xin P, Shen Y, Qi L, et al. Preparation of poly(N-isopropylacrylamide)-grafted well-controlled 3D skeletal monolith based on E-51 epoxy resin for protein separation[J]. Talanta,2011,85:(2) 1180-1186.
    [68]Lammerhofer M, Svec F, Frechet J M, et al. Capillary electrochromatography in an ion-exchange and normal-phase mode using monolithic stationary phases[J]. J. Chromatogr. A,2001,925:(1-2) 265-277.
    [69]Hoegger D, Freitag R. Investigation of mixed-mode monolithic stationary phases for the analysis of charged amino acids and peptides by capillary electrochromatography[J]. J. Chromatogr. A,2003,1004:(1) 195-208.
    [70]Lin J, Huang G, Lin X, et al. Methacrylate-based monolithic column with mixed-mode hydrophilic interaction/strong cation-exchange stationary phase for capillary liquid chromatography and pressure-assisted CEC[J]. Electrophoresis,2008,29:(19) 4055-4065.
    [71]Lin J, Lin X, Xie Z. Capillary liquid chromatography using a hydrophilic/cation-exchange monolithic column with a dynamically modified cationic surfactant[J]. J. Chromatogr. A,2009,1216:(45) 7728-7731.
    [72]Viklund C, Irgum K. Synthesis of porous zwitterionic sulfobetaine monoliths and characterization of their interaction with proteins[J]. Macromolecules,2000,33:(7) 2539-2544.
    [73]Jiang Z, Smith N W, Ferguson P D, et al. Hydrophilic interaction chromatography using melhacrylate-based monolithic capillary column for the separation of polar analytes[J]. Anal. Chem.,2007, 79:(3) 1243-1250.
    [74]Jiang Z, Smith N W, Ferguson P D, et al. Novel highly hydrophilic zwitterionic monolithic column for hydrophilic interaction chromatography[J]. J. Sep. Sci.,2009,32:(15-16) 2544-2555.
    [75]Jiang Z, Reilly J, Everatt B, et al. Novel zwitterionic polyphosphorylcholine monolithic column for hydrophilic interaction chromatography[J]. J. Chromatogr. A,2009,1216:(12) 2439-2448.
    [76]Urban J, Jandera P, Schoenmakers P. Preparation of monolithic columns with target mesopore-size distribution for potential use in size-exclusion chromatography[J]. J. Chromatogr. A,2007, 115O:(1) 279-289.
    [77]Viklund C, Nordstrom A, Irgum K, et al. Preparation of porous poly (styrene-co-divinylbenzene) monoliths with controlled pore size distributions initiated by stable free radicals and their pore surface functionalization by grafting[J]. Macromolecules,2001,34:(13) 4361-4369.
    [78]Lubbad S, Buchmeiser M R. Monolithic High-Performance SEC Supports Prepared by ROMP for High-Throughput Screening of Polymers[J]. Macromol. Rapid Commun.,2002,23:(10-11) 617-621.
    [79]Gu B, Armenta J M, Lee M L. Preparation and evaluation of poly(polyethylene glycol methyl ether acrylate-co-polyethylene glycol diacrylate) monolith for protein analysis[J]. J. Chromatogr. A,2005, 1079:(1-2) 382-391.
    [80]Li Y, Tolley H D, Lee M L. Preparation of polymer monoliths that exhibit size exclusion properties for proteins and peptides[J]. Anal. Chem.,2009,81:(11) 4406-4413.
    [81]Li Y, Tolley H D, Lee M L. Size-exclusion separation of proteins using a biocompatible polymeric monolithic capillary column with mesoporosity[J]. J. Chromatogr. A,2010,1217:(52) 8181-8185.
    [82]Ou J, Hu L, Li X, et al. Determination of phenolic compounds in river water with on-line coupling bisphenol A imprinted monolithic precolumn with high performance liquid chromatography[J]. Talanta, 2006,69.(4) 1001-1006.
    [83]Ou J, Kong L, Pan C, et al. Determination of DL-tetrahydropalmatine in Corydalis yanhusuo by L-tetrahydropalmatine imprinted monolithic column coupling with reversed-phase high performance liquid chromatography[J]. J. Chromatogr. A,2006,1117:(2) 163-169.
    [84]Zheng Y, Wang X, Ji Y. Monoliths with proteins as chiral selectors for enantiomer separation[J]. Talanta,2012,91:(7-17.
    [85]Kumar A P, Park J H. Chiral separation of basic compounds on a cellulose 3,5-dimethylphenylcarbamate-coated zirconia monolithin basic eluents by capillary electrochromatography[J]. J. Chromatogr. A,2011, 1218:(37) 6548-6553.
    [86]Kumar A P, Park J H. Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography[J]. J. Chromatogr. A,2010, 1217:(26) 4494-4500.
    [87]Guerrouache M, Millot M C, Carbonnier B. Functionalization of macroporous organic polymer monolith based on succinimide ester reactivity for chiral capillary chromatography:a cyclodextrin click approach[J]. Macromol. Rapid Commun.,2009,30:(2) 109-113.
    [88]Xu Y L, Liu Z S, Wang H F, et al. Chiral recognition ability of an (S)-naproxen-imprinted monolith by capillary electrochromatography[J]. Electrophoresis,2005,26:(4-5) 804-811.
    [89]Hayes J D, Malik A. Sol-gel monolithic columns with reversed electroosmotic flow for capillary electrochromatography[J]. Anal. Chem.,2000,72:(17) 4090-4099.
    [90]Yan L, Zhang Q, Zhang J, et al. Hybrid organic-inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography[J]. J. Chromatogr. A,2004,1046:(1-2) 255-261.
    [91]Yan L J, Zhang Q H, Feng Y Q, et al. Octyl-functionalized hybrid silica monolithic column for reversed-phase capillary electrochromatography[J]. J. Chromatogr. A,2006,1121:(1) 92-98.
    [92]Xu L, Lee H K. Preparation, characterization and analytical application of a hybrid organic-inorganic silica-based monolith[J]. J. Chromatogr. A,2008,1195:(1-2) 78-84.
    [93]Ma J, Liang Z, Qiao X, et al. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity[J]. Anal. Chem.,2008,80:(8) 2949-2956.
    [94]Tian Y, Zhang L, Zeng Z, et al. Calix[4] open-chain crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography[J]. Electrophoresis,2008,29:(4) 960-970.
    [95]Li Y, Song C, Zhang L, et al. Fabrication and evaluation of chiral monolithic column modified by beta-cyclodextrin derivatives[J]. Talanta,2010,80:(3) 1378-1384.
    [96]Chen Y, Wu M, Wang K, et al. Vinyl functionalized silica hybrid monolith-based trypsin microreactor for on line digestion and separation via thiol-ene "click" strategy[J]. J. Chromatogr. A,2011,1218:(44) 7982-7988.
    [97]Wu M, Wu R, Wang F, et al. "One-pot" process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane[J]. Anal. Chem.,2009,81:(9) 3529-3536.
    [98]Dong M, Wu M, Wang F, et al. Coupling strong anion-exchange monolithic capillary with MALDI-TOF MS for sensitive detection of phosphopeptides in protein digest[J]. Anal. Chem.,2010,82:(7) 2907-2915.
    [99]Zhang Z, Wu M, Wu R, et al. Preparation of perphenylcarbamoylated beta-cyclodextrin-silica hybrid monolithic column with "one-pot" approach for enantioseparation by capillary liquid chromatography[J]. Anal. Chem.,2011,83.(9) 3616-3622.
    [100]Lin H, Ou J, Zhang Z, et al. Facile preparation of zwitterionic organic-silica hybrid monolithic capillary column with an improved "one-pot" approach for hydrophilic-interaction liquid chromatography (HILIC)[J]. Anal. Chem.,2012,84:(6) 2721-2728.
    [101]Lin Z, Pang J, Yang H, et al. One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins[J]. Chem. Commun.,2011,47:(34) 9675-9677.
    [102]Yang F, Mao J, He X W, et al. Synthesis of boronate-silica hybrid affinity monolith via a one-pot process for specific capture of glycoproteins at neutral conditions[J]. Anal. Bioanal. Chem.,2013,405:(21) 6639-6648.
    [103]Chen Y, Wang K, Yang H, et al. Synthesis of sulfo/vinyl biphasic silica hybrid monolithic capillary column and its application to on-column preconcentration for capillary electrochromatography[J]. J. Chromatogr. A,2012,1233:(91-99.
    [104]Wu M, Wu R, Li R, et al. Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic-organic hybrid monolithic columns[J]. Anal. Chem.,2010,82:(13) 5447-5454.
    [105]Ou J, Zhang Z, Lin H, et al. Preparation and application of hydrophobic hybrid monolithic columns containing polyhedral oligomeric silsesquioxanes for capillary electrochromatography[J]. Electrophoresis, 2012,33:(11) 1660-1668.
    [106]Ou J, Zhang Z, Lin H, et al. Polyhedral oligomeric silsesquioxanes as functional monomer to prepare hybrid monolithic columns for capillary electrochromatography and capillary liquid chromatography[J]. Anal. Chim. Acta.,2013,761:(209-216.
    [107]Lin H, Ou J, Zhang Z, et al. Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well-controlled 3D skeletal hybrid monoliths[J]. Chem. Commun.,2013,49:(3) 231-233.
    [108]Lin H, Ou J, Tang S, et al. Facile preparation of a stable and functionalizable hybrid monolith via ring-opening polymerization for capillary liquid chromatography[J]. J. Chromatogr. A,2013,1301, 131-138.
    [109]Campos L M, Killops K L, Sakai R, et al. Development of Thermal and Photochemical Strategies for Thiol-Ene Click Polymer Functionalization[J]. Macromolecules,2008,41:(19) 7063-7070.
    [110]Campos L M, Meinel I, Guino R G, et al. Highly Versatile and Robust Materials for Soft Imprint Lithography Based on Thiol-ene Click Chemistry[J]. Advan. Mater.,2008,20:(19) 3728-3733.
    [111]Killops K L, Campos L M, Hawker C J. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene "click" chemistry[J]. J. Am. Chem. Soc.,2008,130:(15) 5062-5064.
    [112]Lowe A B. Thiol-ene "click" reactions and recent applications in polymer and materials synthesis[J]. Polym. Chem.,2010, 1:(1) 17-36.
    [113]Warren N J, Muise C, Stephens A, et al. Near-Monodisperse Poly (2-(methacryloyloxy) ethyl phosphorylcholine)-Based Macromonomers Prepared by Atom Transfer Radical Polymerization and Thiol-Ene Click Chemistry:Novel Reactive Steric Stabilizers for Aqueous Emulsion Polymerization[J]. Langmuir,2012,28:(5) 2928-2936.
    [114]Zhang Q, Li G-Z, Becer C R, et al. Cyclodextrin-centred star polymers synthesized via a combination of thiol-ene click and ring opening polymerization[J]. Chem. Commun.,2012,48:(65) 8063-8065.
    [115]Bhairamadgi N S, Gangarapu S, Caipa Campos M A, et al. Efficient Functionalization of Oxide-Free Silicon (111) Surfaces:Thiol-yne versus Thiol-ene Click Chemistry[J]. Langmuir,2013,29:(14) 4535-4542.
    [116]Wu M, Zhang H, Wang Z, et al. "One-pot" fabrication of clickable monoliths for enzyme reactors[J]. Chem. Commun.,2013,49:(14) 1407-1409.
    [117]Wang K, Chen Y, Yang H, et al. Modification of VTMS hybrid monolith via thiol-ene click chemistry for capillary electrochromatography[J]. Talanta,2012,91:(52-59.
    [118]Dao T T H, Guerrouache M, Carbonnier B. Thiol-yne Click Adamantane Monolithic Stationary Phase for Capillary Electrochromatography [J]. Chin. J. Chem.,2012,30:(2281-2284.
    [119]Guerrouache M, Mahouche-Chergui S, Chehimi M M, et al. Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol-yne click photopatterning approach[J]. Chem. Commun.,2012,48:(60) 7486-7488.
    [120]Tijunelyte I, Babinot J, Guerrouache M, et al. Hydrophilic monolith with ethylene glycol-based grafts prepared via surface confined thiol-ene click photoaddition[J]. Polymer,2012,53:(29-36.
    [121]Han H, Wang Q, Liu X, et al. Polymeric ionic liquid modified organic-silica hybrid monolithic column for capillary electrochromatography[J]. J. Chromatogr. A,2012,1246:(9-14.
    [122]Lv Y, Lin Z, Svec F. "Thiol-ene" click chemistry:a facile and versatile route for the functionalization of porous polymer monoliths[J]. Analyst,2012,137:(18) 4114-4118.
    [123]Yang H, Chen Y, Liu Y, et al. One-pot synthesis of (3-sulfopropyl methacrylate potassium)-silica hybrid monolith via thiol-ene click chemistry for CEC[J]. Electrophoresis,2013,34:(4) 510-517.
    [124]Liu Y, Chen Y, Yang H, et al. Cage-like silica nanoparticles-functionalized silica hybrid monolith for high performance capillary electrochromatography via "one-pot" process[J]. J. Chromatogr. A,2013, 1283:(132-139.
    [125]Chen M L, Zhang J, Zhang Z, et al. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry[J]. J. Chromatogr. A,2013, 1284:(118-125.
    [126]Thurman E M, Mills M S. Solid-phase extraction:principles and practice [M]. Wiley New York, 1998.
    [127]Hennion M-C. Solid-phase extraction:method development, sorbents, and coupling with liquid chromatography [J]. J. Chromatogr. A,1999,856:(1) 3-54.
    [128]Poole C F. New trends in solid-phase extraction [J]. TrAC Trends in Analytical Chemistry,2003, 22:(6) 362-373.
    [129]Baryla N E, Toltl N P. On-line preconcentration in capillary electrophoresis using monolithic methacrylate polymers[J]. Analyst,2003,128:(8) 1009-1012.
    [130]Shintani Y, Zhou X, Furuno M, et al. Monolithic silica column for in-tube solid-phase microextraction coupled to high-performance liquid chromatography[J]. J. Chromatogr. A,2003,985:(1-2) 351-357.
    [131]Sakai-Kato K, Kato M, Toyo'oka T. On-line trypsin-encapsulated enzyme reactor by the sol-gel method integrated into capillary electrophoresis[J]. Anal. Chem.,2002,74:(13) 2943-2949.
    [132]Evans M S, Muir D, Lockhart W L, et al. Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic:an overview[J]. Sci. Total. Environ.,2005,351-352:(94-147.
    [133]Yamashita N, Kannan K, Taniyasu S, et al. A global survey of perfluorinated acids in oceans[J]. Mar. Pollut. Bull.,2005,51:(8-12) 658-668.
    [134]Nakata H, Kannan K, Nasu T, et al. Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan:environmental fate of perfluorooctane sulfonate in aquatic ecosystems[J]. Environ. Sci. Technol.,2006,40:(16) 4916-4921.
    [135]Shoeib M, Harner T, Vlahos P. Perfluorinated chemicals in the arctic atmosphere[J]. Environ. Sci. Technol.,2006,40:(24) 7577-7583.
    [136]So M K, Yamashita N, Taniyasu S, et al. Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China[J]. Environ. Sci. Technol.,2006, 40:(9) 2924-2929.
    [137]Kim S K, Kannan K. Perfluorinated acids in air, rain, snow, surface runoff, and lakes:relative importance of pathways to contamination of urban lakes[J]. Environ. Sci. Technol.,2007,41:(24) 8328-8334.
    [138]Ju X, Jin Y, Sasaki K, et al. Perfluorinated surfactants in surface, subsurface water and microlayer from Dalian Coastal waters in China[J]. Environ. Sci. Technol.,2008,42:(10) 3538-3542.
    [139]Tao L, Kannan K, Wong C M, et al. Perfluorinated compounds in human milk from Massachusetts, U.S.A[J]. Environ. Sci. Technol.,2008,42:(8) 3096-3101.
    [140]Herzke D, Nygard T, Berger U, et al. Perfluorinated and other persistent halogenated organic compounds in European shag (Phalacrocorax aristotelis) and common eider (Somateria mollissima) from Norway:a suburban to remote pollutant gradient[J]. Sci. Total. Environ.,2009,408:(2) 340-348.
    [141]Kuklenyik Z, Needham L L, Calafat A M. Measurement of 18 perfluorinated organic acids and amides in human serum using on-line solid-phase extraction[J]. Anal. Chem.,2005,77:(18) 6085-6091.
    [142]Loos R, Locoro G, Huber T, et al. Analysis of perfluorooctanoate (PFOA) and other perfluorinated compounds (PFCs) in the River Po watershed in N-Italy[J]. Chemosphere,2008,71:(2) 306-313.
    [143]Dolman S, Pelzing M. An optimized method for the determination of perfluorooctanoic acid, perfluorooctane sulfonate and other perfluorochemicals in different matrices using liquid chromatography/ion-trap mass spectrometry[J]. J. Chromatogr. B,2011,879:(22) 2043-2050.
    [144]Kadar H, Veyrand B, Barbarossa A, et al. Development of an analytical strategy based on liquid chromatography-high resolution mass spectrometry for measuring perfluorinated compounds in human breast milk:application to the generation of preliminary data regarding perinatal exposure in France[J]. Chemosphere,2011,85:(3) 473-480.
    [145]Moriwaki H, Kitajima S, Shirai K, et al. Application of the powder of porous titanium carbide ceramics to a reusable adsorbent for environmental pollutants[J]. J. Hazardous Mater.,2011,185:(2) 725-731.
    [146]Wang F, Shih K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina:Influence of solution pH and cations[J]. water research,2011,45:(9) 2925-2930.
    [147]Zhang W, Curran D P. Synthetic applications of fluorous solid-phase extraction (F-SPE)[J]. Tetrahedron,2006,62:(51) 11837-11865.
    [148]Curran D P, Hadida S, He M. Thermal allylations of aldehydes with a fluorous allylstannane. Separation of organic and fluorous products by solid phase extraction with fluorous reverse phase silica gel[J]. J. Org. Chem.,1997,62:(20) 6714-6715.
    [149]Curran D P, Luo Z. Fluorous synthesis with fewer fluorines (light fluorous synthesis):separation of tagged from untagged products by solid-phase extraction with fluorous reverse-phase silica gel[J]. J. Am. Chem. Soc,1999,121:(39) 9069-9072.
    [150]Li Y, Zhang J, Xiang R, et al. Preparation and characterization of alkylated polymethacrylate monolithic columns for micro-HPLC of proteins[J]. J. Sep. Sci.,2004,27:(17-18) 1467-1474.
    [151]Premstaller A, Oberacher H, Huber C G. High-performance liquid chromatography-electrospray ionization mass spectrometry of single-and double-stranded nucleic acids using monolithic capillary columns[J]. Anal. Chem.,2000,72:(18) 4386-4393.
    [152]Yurtsever A, Saracoglu B, Tuncel A. CEC with new monolithic stationary phase based on a fluorinated monomer, trifluoroethyl methacrylate[J], Electrophoresis,2009,30:(4) 589-598.
    [153]Daley A B, Oleschuk R D. Development of fluorinated, monolithic columns for improved chromatographic separations of fluorous-tagged analytes[J]. J. Chromatogr. A,2009,1216:(5) 772-780.
    [154]Daley A B, Wright R D, Oleschuk R D. Parallel, fluorous open-tubular chromatography using microstructured fibers[J]. Anal. Chimica Acta.,2011,690:(2) 253-262.
    [155]Daley A B, Xu Z, Oleschuk R D. Fluorous Monolith Specificity:The Effects of Polymer Density and Secondary Interactions on Column Performance and Amenability to Biological Samples[J]. Anal. Chem., 2011,83:(5) 1688-1695.
    [156]Choodum A, Smith N W, Thavarungkul P, et al. Fluorinated monolithic column for CEC[J]. J. Sep. Sci.,2011,34:(16-17) 2264-2270.
    [157]Bedair M, El Rassi Z. Capillary electrochromatography with monolithic stationary phases. Ⅱ. Preparation of cationic stearyl-acrylate monoliths and their electrochromatographic characterization[J]. J. Chromatogr. A,2003,1013:(1-2) 35-45.
    [158]Nevejans F, Verzele M. Swelling propensity (SP factor) of semi-rigid chromatographic packing materials[J]. J. Chromatogr. A,1985,350:(145-150.
    [159]Glatz H, Blay C, Engelhardt H, et al. New fluorous reversed phase silica gels for HPLC separations of perfluorinated compounds[J]. Chromatographia,2004,59:(9-10) 567-570.
    [160]Wang Y, Harrison M, Clark B. Experimental design for a basic mixture on a fluorinated packing:The effect of composition of the mobile phase[J]. J. Chromatogr. A,2006,1105:(1) 77-86.
    [161]Hirayama C, Ihara H, Nagaoka S, et al. Totally organic stationary phase from perfluoroalkyl acrylate for liquid chromatography[J]. J. Chromatogr. A,1989,465:(3) 241-248.
    [162]Hirayama C, Ihara H, Nagaoka S. Immobilization of Highly-Oriented Perfluoroalkyl Polymers onto Porous Silica Gels for High Performance Liquid Chromatography[J]. Polym. J.,1994,26:(4) 499-503.
    [163]Kamiusuki T, Monde T, Yano K, et al. Preparation of branched-polyfluoroalkylsilane-coated silica gel columns and their HPLC separation characteristics[J]. Chromatographia,1999,49:(11-12) 649-656.
    [164]Nichthauser J, Stepnowski P. Retention mechanism of selected ionic liquids on a pentafluorophenylpropyl polar phase:investigation using RP-HPLC[J]. J. Chromatogr. Sci.,2009,47:(3) 247-253.
    [165]Sakaguchi Y, Yoshida H, Todoroki K, et al. Separation-Oriented Derivatization of Native Fluorescent Compounds through Fluorous Labeling Followed by Liquid Chromatography with Fluorous-Phase[J]. Anal. Chem.,2009,81:(12) 5039-5045.
    [166]Sakaguchi Y, Yoshida H, Hayama T, et al. Fluorous derivatization and fluorous-phase separation for fluorometric determination of naproxen and felbinac in human plasma[J]. J. Pharmace. Biomed. Anal., 2011,55:(1) 176-180.
    [167]Hayama T, Sakaguchi Y, Yoshida H, et al. Binary Fluorous Alkylation of Biogenic Primary Amines with Perfluorinated Aldehyde Followed by Fluorous Liquid Chromatography-Tandem Mass Spectrometry Analysis[J]. Anal. Chem.,2012,84:(19) 8407-8414.
    [168]Li Y, Zhang J, Xiang R, et al. Preparation and characterization of alkylated polymethacrylate monolithic columns for micro-HPLC of proteins[J]. J. Sep. Sci.,2004,27:(17-18) 1467-1474.
    [169]Li G Z, Wang L, Toghiani H, et al. Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ladderlike polyphenylsilsesquioxane blends[J]. Macromolecules,2001,34:(25) 8686-8693.
    [170]Li G, Wang L, Ni H, et al. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers:a review[J]. J. Inorg. Org. Polym.,2001,11:(3) 123-154.
    [171]Pielichowski K, Njuguna J, Janowski B, et al. Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers [M]. Supramolecular Polymers Polymeric Betains Oligomers. Springer.2006:225-296.
    [172]Tanaka K, Inafuku K, Adachi S, et al. Tuning of properties of POSS-condensed water-soluble network polymers by modulating the cross-linking ratio between POSS[J]. Macromolecules,2009,42:(10) 3489-3492.
    [173]Zhao F, Huang Y, Liu L, et al. Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites[J]. Carbon,2011,49:(8) 2624-2632.
    [174]Nakanishi K, Shikata H, Ishizuka N, et al. Tailoring mesopores in monolithic macroporous silica for HPLC[J]. Journal of High Resolution Chromatography,2000,23:(1) 106-110.
    [175]A1-Bokari M, Cherrak D, Guiochon G. Determination of the porosities of monolithic columns by inverse size-exclusion chromatography[J]. J. Chromatogr. A,2002,975:(2) 275-284.
    [176]Lubda D, Lindner W, Quaglia M, et al. Comprehensive pore structure characterization of silica monoliths with controlled mesopore size and macropore size by nitrogen sorption, mercury porosimetry, transmission electron microscopy and inverse size exclusion chromatography[J]. J. Chromatogr. A,2005, 1083:(1-2) 14-22.
    [177]Svec F, Frechet J M. Kinetic Control of Pore Formation in Macroporous Polymers. Formation of Molded" Porous Materials with High Flow Characteristics for Separations or Catalysis[J]. Chem. Mater., 1995,7:(4) 707-715.
    [178]Petro M, Svec F, Gitsov I, et al. Molded Monolithic Rod of Macroporous Poly (styrene-co-divinylbenzene) as a Separation Medium for HPLC of Synthetic Polymers:"On-Column" Precipitation-Redissolution Chromatography as an Alternative to Size Exclusion Chromatography of Styrene Oligomers and Polymers[J]. Anal. Chem.,1996,68:(2) 315-321.
    [179]Eeltink S, Herrero-Martinez J M, Rozing G P, et al. Tailoring the morphology of methacrylate ester-based monoliths for optimum efficiency in liquid chromatography[J]. Anal. Chem.,2005,77:(22) 7342-7347.
    [180]Rong L, Lim L W, Takeuchi T. Determination of iodide in seawater samples by ion chromatography with chemically-bonded poly(ethylene glycol) stationary phase[J]. J. Chromatogr. A,2006,1128:(1-2) 68-72.
    [181]Rong L, Takeuchi T. Determination of iodide in seawater and edible salt by microcolumn liquid chromatography with poly(ethylene glycol) stationary phase[J]. J. Chromatogr. A,2004,1042:(1-2) 131-135.
    [182]Gusev I, Huang X, Horvath C. Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography[J]. J. Chromatogr. A, 1999,855:(1) 273-290.
    [183]Hayes J D, Malik A. Sol-gel monolithic columns with reversed electroosmotic flow for capillary electrochromatography[J]. Anal. Chem.,2000,72:(17) 4090-4099.
    [184]Colon H, Zhang X, Murphy J K, et al. Allyl-functionalized hybrid silica monoliths[J]. Chem. Commun.,2005,22,2826-2828.
    [185]Li Y, Lee M L, Jin J, et al. Preparation and characterization of neutral poly(ethylene glycol) methacrylate-based monolith for normal phase liquid chromatography[J]. Talanta,2012,99:(91-98.
    [186]Hirtenstein M, Clark J, Lindgren G, et al. Microcarriers for animal cell culture:a brief review of theory and practice[J]. Dev. Biol. Stand.,1980,46,109-116.
    [187]Sosa J M. Chromatography with Sephadex gels[J]. Anal. Chem.,1980,52:(6) 910-912.
    [188]Autissier A, Le Visage C, Pouzet C, et al. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process[J]. Acta. Biomater.,2010,6:(9) 3640-3648.
    [189]Barbetta A, Carrino A, Costantini M, et al. Polysaccharide based scaffolds obtained by freezing the external phase of gas-in-liquid foams[J]. Soft. Matter.,2010,6:(20) 5213-5224.
    [190]Fricain J C, Schlaubitz S, Le Visage C, et al. A nano-hydroxyapatite-pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering[J]. Biomaterials,2013,34:(12) 2947-2959.
    [191]Samal R K, Sahoo P K, Samantaray H S. GRAFT COPOLYMERIZATION OF CELLULOSE, CELLULOSE DERIVATIVES, AND LIGNOCELLULOSE[J]. J. Macromol. Sci.,1986,26.(1) 81-141.
    [192]Patil D R, Fanta G F. Graft copolymerization of starch with methyl acrylate:An examination of reaction variables[J]. J. Appl. Polym. Sci.,1993,47:(10) 1765-1772.
    [193]Fares M M, El-faqeeh A S, Osman M E. Graft Copolymerization onto Starch-I. Synthesis and Optimization of Starch Grafted with N-tert-Butylacrylamide Copolymer and its Hydrogels[J]. J. Polym. Res.,2003,10.119-125.
    [194]Sun T, Xu P, Liu Q, et al. Graft copolymerization of methacrylic acid onto carboxymethyl chitosan[J]. European Polymer Journal,2003,39:(1) 189-192.
    [195]Zhang J, Yuan Y, Shen J, et al. Synthesis and characterization of chitosan grafted poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium) initiated by ceric (IV) ion[J]. European Polymer Journal,2003,39:(4) 847-850.
    [196]Joshi J M, Sinha V K. Graft copolymerization of 2-hydroxyethylmethacrylate onto carboxymethyl chitosan using CAN as an initiator[J]. Polymer,2006,47:(6) 2198-2204.
    [197]Tang M, Dou H, Sun K. One-step synthesis of dextran-based stable nanoparticles assisted by self-assembly[J]. Polymer,2006,47:(2) 728-734.
    [198]Hansson S, Tischer T, Goldmann A S, et al. Visualization of poly (methyl methacrylate)(PMMA) grafts on cellulose via high-resolution FT-IR microscopy imaging[J]. Polymer Chemistry,2012,3:(2) 307-309.
    [199]Tjerneld F, Berner S, Cajarville A, et al. New aqueous two-phase system based on hydroxypropyl starch useful in enzyme purification[J]. Enzyme and Microbial Technology,1986,8:(7) 417-423.
    [200]Diamond A D, Hsu J T. Aqueous two-phase systems for biomolecule separation[J]. Advances in Biochemical Engineering/Biotechnology 1992,47,89-135.
    [201]Iovine C P, Ray-Chaudhuri D K. Process for the preparation of graft copolymers of a water soluble monomer and polysaccharide employing a two-phase reaction system [M]. Google Patents.1978.
    [202]Cao Y F, Liu Z L, Li Y, et al. Graft Copolymerization of Starch and Acrylamide Initiated by AIBN in Aqueous Two-Phase System[J]. Adva. Mater. Res.,2011,239,1433-1436.
    [203]He C, Hendrickx A, Mangelings D, et al. Monolithic silica capillary columns with immobilized cellulose tris(3,5-dimethylphenylcarbamate) for enantiomer separations in CEC[J]. Electrophoresis,2009, 30:(22) 3796-3803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700