用户名: 密码: 验证码:
透射聚光型太阳能集热器牧草干燥应用理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国传统牧草收贮工艺导致牧草在田间干燥期间干物质损失严重和营养成分保有率大幅度降低,收获后的牧草有效营养成分保有率仅为50%,在收获过程中牧草(苜蓿)的干物质损失高达30%其损失十分巨大。由于在牧草收获季节,采用牧草田间干燥法,虽然省钱,但干物质和营养成分损失严重。如果采用高温快速烘干设备,产品质量提高,但成本费用增加,且污染环境。因此,在牧草收获中,牧草干燥已成为生产优质干草最为关键的制备工艺。本文从太阳能牧草干燥湿法收获工艺入手,考虑能耗和营养成分得失,提出了采用透射聚光型太阳能空气集热器干燥牧草的新方法,并从该太阳能集热器在牧草干燥领域中的应用基础理论,光热转换效率、经济性,牧草干燥系统设备设计、干燥工艺等方面展开以下研究工作:
     (1)根据菲涅尔透镜光学原理,建立了透射聚光型菲涅尔透镜的三维模型,通过该模型对透镜的入射角度、焦距误差、追踪误差和加工误差进行了分析计算,得出了这些因素对透镜聚光比和在平板吸收器上聚焦光带能量分布的影响;对菲涅尔透镜加工制作过程进行了原理阐述,并进行了聚光性能和接收角的实验研究。理论分析和实验测试表明:吸收器接受聚焦光线开口尺寸为5cm,开口接收角一般控制在-0.4°~+0.4°之间时可以获得较高的光学效率。
     (2)应用理论分析和实验,对半圆形、圆弧形、三角形和方形四种不同几何形状的聚焦吸收器开展了研究,四种吸收器的光学性能和热力学性能显示,三角形吸收器显示出更好的光学效率和较小的热损失。因此,选择了三角形和方形吸收器进行了结构优化分析,结果表明在采用平板菲涅尔透镜作为聚光器时,三角形聚焦吸收器接受聚焦光线开口深度在4cm时最好,方形聚焦吸收器的接收聚焦光线开口深度在2cm时最好。根据优化分析结果,试制了长度为6.4m的两种吸收器。
     (3)研制了采光面积25.6m2透射聚焦型太阳能空气集热器,包括集热器箱体、机架支撑和控制传动装置,通过单片机控制系统实现了集热器对太阳的单轴有效追踪。当集热器箱体设计为平板菲涅尔透镜和三角形聚焦吸收器组合时,太阳能集热器的性能最佳,在一个小时内,集热器就可以从环境温度升至最高温度201℃最高温度,其空晒性能参数0.3℃m2/W。在集热器箱体内,流场分布均匀,进风加热箱体内部温度场和气流分布均匀,未出现某一区域数值超高的现象,表明集热器结构合理。
     (4)对固定式和单轴追踪式的集热器进行了阵列排布方式的理论分析,计算了各种阵列排布的最优集热器间隔距离,并建立了理论设计计算公式,对实际工程应用中集热器的阵列排布和设计计算提供设计计算方法。
     (5)试制了透射聚光型太阳能草捆干燥特性试验台,并进行了苜蓿草捆干燥特性试验,试验结果显示草捆内部苜蓿的表面温度分布和含水率的变化与干燥气流的分布有很大的关系,草捆内部干燥具有不均匀性;通过对太阳能草捆干燥设备的性能试验,得出牧草湿法收获工艺可减少干物质损失近30%,牧草的有效营养成分如粗蛋白、粗脂肪等保有率由50%提高到了90%以上。
According to traditional forage storage process in our country, during drying forage dry matter loss. Forage nutrient retention rate is low in the field. Post harvest forage effective nutrient retention rate is only50%. In the process of harvesting forage (alfalfa) dry matter loss reached30%.The annual forage loss is large. In the forage harvesting season,the natural drying although saving money, but the quality of the products is low and the waste is rich in nutrition. By means of high temperature fast drying equipment on forage drying, the quality of the products is high, but the cost is high and the environment is polluted. Therefore in the forage harvesting, the drying process to produce high quality hay grass has become the most important preparation process. Starting from the solar energy forage drying wet harvest technology, the consumption of energy and nutrients losses are mainly considered.This paper presents a new method using the transmission type solar air collector dry forage. In the solar energy collector applied to forage drying field, from the application of basic theory, the photothermal conversion efficiency, economy and forage drying equipment design, drying process, the following research works are carried out:
     (1) According to the Finel lens optical principle,3D models transmission focus Finel lens is established. Through the lens model, incident angle, focal length error, tracking error and machining error are calculated. Effects of these factors on the ratio of lens and energy distribution of focusing light on the plate absorber is drawn. Finel lens fabrication process is described. And the experiments are carried out to study the optical performance and receiving angle. Theoretical analysis and experimental results show that:When the absorber openings size is5cm and openings receiving angle is within±0.4°, absorber can obtain higher optical efficiency.
     (2) Absorber is designed.Half round, arc, triangle and square four different geometries of the absorber is studied from two aspects of theory and experiment. Optical properties and thermodynamic properties of four kinds of absorber is displayed. Triangle absorber shows better optical efficiency and small heat loss. Therefore the square and triangle absorber was selected for the structure optimization analysis. The optimization results show that the triangular absorber accept focus light opening depth in4cm is best when the flat Finel lens as a condenser. Receive focus light opening depth of square absorber is the best in the2cm. According to the optimization results, two kinds of length6.4m absorber are made.
     (3) Daylighting area25.6m2transmission concentrated solar energy air collector is developed. Solar air collector comprises a heat collector box, frame support and control gear. Through the single-chip microcomputer control system, the collector can be single axis sun tracking accuracy. When the collector box is designed combined plate Finel lens and triangle focusing absorber, the performance of solar collector is the best. In one hour, the collector internal air drying temperature from ambient temperature rise to the highest temperature201℃. Collector air drying performance parameters are0.3℃m2/W. In the heat collector box, flow field distribution is uniform. In the heating box temperature and air flow distribution is uniform. A high numerical regional does not appear. The collector has reasonable structure.
     (4) The collector of fixed and single axis tracking is analyzed array arrangement. Optimal array collector distance is calculated. The theoretical design calculation formula is established. Provide a method to calculate the array to the collector in the practical engineering application and design
     (5) Through the construction of transmission type solar drying bale characteristics test equipment, the drying characteristics of bale was done. The test results show it have a great relationship between distribution of surface temperature distribution inside alfalfa bale and drying air flow. But also distribution changes in moisture content and drying air flow has a very close relationship. Drying is non-uniform in the bale internal. The performance test on the drying equipment show grass wet harvest technology can reduce the loss of dry matter nearly30%. Effective nutrient content of forage such as crude protein, crude fat is saved and preserved rate increased from50%to90%.
引文
[1]杜建强,杨世昆,刘贵林,等.太阳能饲草干燥设备中空气集热器改进设计[J].农业机械学报,2012,43:227-230
    [2]Ucar A,Inall M. Thermal and exergy analysis of solar air collectors with passive augmentation techniques[J]. International Communications in Heat and Mass Transfer,2006,33:1281-1290
    [3]Moummi N, Youcef-Ali S, Moummi A, Desmons J Y. Energy analysis of a solar air collector with rows of f ins [J]. Renew Energy,2004,29:2053-2064
    [4]Hachemi A. Thermal performance enhancement of solar air heaters by a fan-blown absorber plate with rectangular fins[J]. International Journal of Energy Research,1995,19:567-577
    [5]Suleyman K. Performance analysis of new-design solar air collectors for drying applications[J]. Renewable Energy,2007,32:1645-1660
    [6]Metwally MN, Abou-Ziyan HZ, EI-Leathy AM. Performance of advanced corrugated-duet solar air collector compared with five conventional designs[J]. Renew Energy,1997,10:519-537
    [7]Karim M A, Hawlader M N A. Development of solar air collectors for drying applications[J]. Energy Conversion Manage,2004,45:329-344
    [8]Kabeel A E, Mejari K. Shape optimization for absorber plates of solar air collectors [J]. Renew Energy,1998,13:121-131
    [9]Karim M, Azharul, Hawlader M N A. Performance evaluation of a v-groove solar air collector for drying applications [J]. Applied Thermal Engineering.2006,26:121-130
    [10]Yeh H M, Lin T T. Efficient improvement of flat-plate solar air heater[J]. Energy 1996,21:435-443
    [11]Yeh H M, Ho C D, Hou J Z. The improvement of collector efficiency in solar air heaters by simultaneously air flow over and under the absorbing plate[J]. Energy 1999,24:857-871
    [12]Abu-Quidis M K, AL-Nimr M A. Theoretical and experimental study on matrix solar air heater under transient condition[J]. International Journal of Sustainable Energy,1996,18:137-146
    [13]KOLB A, WINTER ERF,VISKANTA R. Experimental studies on a solar air collector with metal matrix absorber[J]. Solar Energy,1999,65:91-98
    [14]袁颖利.内插式太阳能真空管空气集热器集热性能研究[D].上海:上海交通大学.2009.2.
    [15]王崇杰,管振忠,薛一冰,等.渗透型太阳能空气集热器集热效率研究[J].太阳能学报,2008,29(1):35-39
    [16]徐显波.抛物槽式太阳能集热系统的应用和研究[D]:硕士学位论文,兰州:兰州大学,2010
    [17]Hassan K., El-Refair M. F. Theoretical performance of cylindrical parabolic solar concentrators [J]. Solar Energy,1973,15:219-244
    [18]Evans D. L. On the performance of cylindrical parabolic solar concentrators with flat absorbers [J]. Solar Energy,1977,19:379-385
    [19]Martinez I., Almanza R., Mazari M.. Gorrea G. Parabolic trough reflector manufact. with aluminum first surface mirrors thermally sagged[J]. Solar Energy Materials & Solar Cells,2000,64:85-96
    [20]Bakos G. C., loannidis I., Tsagas N. F., Seftelis I. Design, optimisation and conversion-efficiency determination of a line-focus parabolic-trough solar-collector (PTC) [J]. Applied Energy,2001,68:43-50
    [21]Arasu A. V., Sornakumar T. Design, manufact. and testing of fiberglass reinforced parabola trough for parabolic trough solar collectors[J]. Solar Energy,2007,81:1273-1279
    [22]Riffelmann K. J., Neumann A., Ulmer S. Performance enhancement of parabolic trough collectors by solar flux meas. ment in the focal region[J]. Solar Energy,2006,80:1303-1313
    [23]Maccari A., Montecchi M. An optical profilometer for the characterisation of parabolic trough solar concentrators [J]. Solar Energy,2007,81:185-194
    [24]Uroshevich M. Solar collectors[M]. U. S:Pat,1981
    [25]Brunotte M., Goetzberger A., Blieske U. Two-stage concentrator permitting concentration factors to 300× with one-axis tracking[J]. Solar Energy,1996,56:285-300
    [26]Omer S. A., Infeld D. G.. Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation[J]. Energy Conversion & Management,2000,41:737-756
    [27]Richter J. L. Optics of a two-trough solar concentrator[J]. Solar Energy,1996, 56:191-198
    [28]Gee R., Cohen G., Greenwood K. Operation and preliminary of the Duke Solar Power Roof: A roof-integrated solar cooling and heating system, Raleigh, NC27604
    [29]Winston R..Principles of solar concentrators of a novel design[J]. Solar Energy,1974,16:89
    [30]Rabl A.. Comparison of solar concentrators[J]. Solar Energy,1976,18:93-111
    [31]Hsieh C. K. Thermal analysis of CPC Collectors[J]. Solar Energy,1981,27:19-29
    [32]McIntire W.Truncation of Non-Imaging Cusp Concentrators[J]. Solar Energy,1979,23:351-355
    [33]Winston R., Hinterberger H. Principles of cylindrical concentrators for solar energy [J]. Solar Energy,1975,17:255-258
    [34]Welford W. T., Winston R. The optics of nonimaging concentrators:light and solar energy[M]. New York:Academic Press,1978
    [35]Rabl A. Optical and thermal properties of compound parabolic concentrators [J]. Solar Energy,1976,18:497-511
    [36]Prapas D. E., Norton B., Probert S.D. Thermal design of compound parabolic concentrating solar energy collectors[J]. Journal of Solar Energy Engineering,1987,109:161-168
    [37]Eames P. C..Norton B. A nonlinear steady-state characteristic performance curve for medium-temperat. solar energy collector[J]. Journal of Solar Energy Engineering,1991,113:164-171
    [38]Eames P. C., Norton B. Detailed parametric analysis of hear transfer in CPC solar energy collectors[J]. Solar Energy,1993,50:321-338
    [39]Fraidenraich N., De Lima De C. F., Tiba C., et al. Simulation model of a CPC collector with temperat-dependent heat loss coefficienct[J]. Solar Energy,1999,65(2):99-110.
    [40]汪飞,隋成华,叶必卿.关于复合抛物面聚光器设计参数的研究[J].光学仪器,2010(3):68-72
    [41]S. Hatwaambo, H. Hakansso, J. Nilsson, et al. Angular characterization of low concentrating PV-CPC using low-c ost reflectors [J]. Solar Energy Materials and Solar Cells,2008,92 (11):1347-1351
    [42]Winston R., Hinterberger H.Principles of cylindrical concentrators for solar energy [J]. Solar Energy,1975,17:255-258
    [43]Carvalho M. J., Collares-Pereira M. Correia de Oliveira J., Farinha M. J., et al. Optical and thermal testing of a new 1.12×CPC solar collector[J]. Solar Energy Materials & Cells,1995,37:175-190
    [44]Blanco J..Malato J. C., Fernandez P., et al.Compound parabolic concentrator trchnology development to commercial solar detoxification application[J].Solar Energy,1999,67:317-330
    [45]Oommen R., Jayaraman S. Development and performance analysis of compound parabolic solar concentrators with reduced gap losses-oversized reflector[J]. Energy Conversion & Management,2001,42:1379-1399
    [46]Tripannagnostopoulos Y.,Souliutis M.,Nousia T. CPC type integrated collector storage systems[J]. Solar Energy,2002,72:327-350
    [47]Souliotis M., Tripanagnostopoulos Y. Experimental study of CPC type ICS solar systems [J]. Solar Energy,2004,76:389-408
    [48]Souliotis M., Tripanagnostopoulos Y. Study of the distribution of the absorbed solar radiation on the performance of a CPC-type ICS water heater[J]. Renewable Energy,2008,33:846-858
    [49]D. R. Mills, G.Morrison, J.Pye, et al. Multi-tower Line Focus Fresnel Array Project[J]. Journal of solar Energy Engineering,2006,128(1):118.
    [50]Krltehman. E. M,Friesem. A. A,Yekutieli. G. Highly concentrating Fresnel lenses [J]. Applied OptieS,1979,18(15):2688-2695
    [51]贾付云,马勉军.柱面菲涅耳太阳聚光透镜的光学设计和光学效率[J].中国空间科学技术,2002,22(6):1-5
    [52]N. Yeh. Optical geometry approach for elliptical Fresnel lens design and chromatic aberration [J]. Solar Energy Materials and Solar Cells,2009,93(8):1309-1317
    [53]Lewandowski A., Simms D. An assessment of linear Fresnel lens concentrators [J]. Energy,1987,12:333-338
    [54]Franc F., Jirka V., Maly M., Nabelek. Concentrating collectors with flat linear Fresnel lenses [J]. Solar & wind technology,1986,3:77-84
    [55]Kritchman E. M., Friessem A. A., Yekutieli G. High concentrating Fresnel lenses [J]. Applied optics,1979,18:2688-2695
    [56]Kritehman E. M. Color-corrected Fresnel lens for solar concentration[J]. Optics letters,1980,5:35-37
    [57]Lorenzo E.,Luque A. Fresnel lens analysis for solar energy application[J]. Applied optics,1981,20:2941-2945
    [58]Lorenzo E. Chromatic aberration effect on solar energy systems using Fresnel lens [J]. Applied optics,1981,20:3729-3732
    [59]Lorenzo E., Luque A. Comparison of Fresnel lenses and parabolic mirrors as solar energy Concentrators[J]. Applied Optics,1982,21(10),1851-1853
    [60]Boyd D. A., Gajewski R., Swift R. A cylindrical blackbody solar energy receiver[J]. Solar Energy,1976,18:395-401
    [61]Franc F., Jirka V., Maly M., et al. Concentrating collectors with flat linear Fresnel lenses[J]. Solar & wind technology,1986,3:77-84
    [62]Lewandowski A., Simms D. An assessment of linear Fresnel lens concentrators [J]. Energy,1987,12:333-338
    [63]Al-Jumaily K. E. J., Al-kaysi M. K. A. The study of the performance and efficiency of flat linear Fresnel lens collector with sun tracking system in lraq[J]. Renewable Energy,1998,14:41-48
    [64]Singh P. L., Ganesan S., Yadav G. C. Performance study of a linear Fresnel concentrating solar Device[J]. Renewable Energy,1999,18:409-416
    [65]Rosell J. I., Vallverdu X., Lechon M. A., et al. Design and simulation of a low concentrating photovoltaic/thermal system[J]. Energy Conversion & Management.2005,46:3034-3046
    [66]Wang J. , Zhang Y. M., Liu D. Y., et al. Development and study on vacuum absorber tube[C].Proc of 2007 Solar World Congress,Beijing,1813-1817 September 2007
    [67]Wang J., Zhang Y. M., Liu D. Y., et al. Development and study on heat-pipe type vacuum absorber tube[C].Proc of 2007 Solar Wrorld Congress, Beijing,1818-1822 September 2007
    [68]Boyd D. A., Gajewski R., Swift R. A cylindrical blackbody solar energy receiver [J]. Solar Energy,1976,18:395-401
    [69]Barra O. A., Franceschi L. The parabolic trough plants using black body receivers:experimental and theorectical analyses [J]. Solar Energy,1982,28:163-171
    [70]俞乔力,徐光,李新秋,等.中温太阳能集热器系统热状态特性数值模拟的三维动态热网络实验验证[J].太阳能学报,1999,20(2):196-199
    [71]俞乔力,葛新石,李业发,程曙霞,刘理江.管簇结构腔体式吸收器热效率所受边界条件的影响[J].太阳能学报.1996,17(1):81-86
    [72]俞乔力,葛新石,程曙霞,等.管簇结构腔体式吸收器热性能的数值分析[J].太阳能学报,1997,:36-38,45
    [73]俞乔力,余光宝,葛新石,等.太阳能集热器长度的优化计算[J].煤气与热力,1996,16(1):21-28
    [74]Li M., Wang L. L. Investigation of evacuated tube heated by solar trough concentrating system [J]. Energy Conversion & Management,2006,47:3591-3601
    [75]S. D. Odeh, G. L. Morrison and M. Behnia. Modelling of parabolic trough direct steam generation solar collectors[J]. Solar Energy,1998,62:395-406
    [76]Minzer U., Bamea D., Taicel Y. Flowrate distribution in evaporating parallel pipes-modeling and experimental[J]. Chemical Engineering Science,2006,61:249-259
    [77]Taitel Y., Minzer U., Bamea D. A control proced. for the elimination of mal flow rate distribution in evaporating flow in parallel pipes[J].Solar Energy,2008,82:329-335
    [78]Martinez I. Almanza R. Experimental and theoretical analysis of annular two-phase flow regimen in direct steam generation for a low-power system[J]. Solar Energy,2007,81:216-226
    [79]Eck M., Steinmann W. D., Rheinlander J. Maximum temperat. difference in horizontal and tilted absorber pipes with direct steam generation [J]. Energy,2004,29:665-676
    [80]Valenzuela L., Zarza E, Berenguel B, et al. Control concepts for direct steam generation in parabolic troughs [J]. Solar Energy,2005,78:301-311
    [81]Valenzuela L., Zarza E, Berenguel B, et al. Control scheme for direct steam generation in parabolic troughs under recirculation operation mode[J]. Solar Energy,2006,80:1-17
    [82]王军,张耀明,金保生,等.太阳能热发电中的聚光器[J].太阳能,2007:30-34
    [83]Naeeni N., Yaghoubi M. Analysis of wind flow around a parabolic collector(1)fluid flow[J]. Renewable Energy,2007,32:1898-1916
    [84]http://www.solel.com/products/pgeneration/ls2
    [85]Mills D. R., Morrison G. L. Compact linear Fresnel reflector solar thermal powerplants [J]. Solar Energy,2000,68:263-283
    [86]http://www.solarmundo-power.com/
    [87]Henning, H..Solar assisted air conditioning of buildings-an overview[J]. Applied Thermal Engineering,2007,27:1734-1749
    [88]Wolicki Z. System description-SunCooler(two stage). Solel document,2005.
    [89]http://www.broad.com/
    [90]Rivera C.O.,Rivera W.Modeling of an intermittent solar absorption refrigeration system operating with ammonia-lithium nitrate mixt[J]. Solar Energy Matedals & Cells,2003,76:417-427
    [91]Gonzalez M., Rodnguez L. R. Solar powered adsorption refrigerator with CPC collection system:Collector design and experimental test[J]. Energy Conversion & Management,2007,48:2587-2594
    [92]A. EI Fadar, A. Mimet, A. Azzabakh, et al. Study of a new solar adsorption refrigerator powered by a parabolic trough collector[J]. Applied Thermal Energy,2009,29(5a6):1267-1270
    [93]Pollerberg C., Ali A. H. H., Dotsch C. Experimental study on the performance of a solar driven steam jet ejector chiller[J]. Energy Conversion & Management,2008, 49(11)3318-3325.
    [94]Sakuta K., Sawars S., Tanimoto M. Luminescent concentrator module of a practice size[J]. First WCPEC, Hawaii,1994:1115-1118
    [95]Coventry J. S. Performance of a concentrating photovoltaic/thermal solar collector [J]. Solar Energy,2005,78:211-222
    [96]http://www.team.gc.ca/english/pdf/thurs_menova_e.pdf
    [97]http://en.wikipedia.org/wiki/Fresnel_lens#cite_note-11
    [98]An assessment of solar energy conversion technologies and research opportunities. GCEP Energy Assessment Analysis, Summer 2006, http://gcep.stanford.edu
    [99]张明,黄良甫,罗崇泰,等.空间用平板形菲涅尔透镜的设计和光学效率研究[J].光电工程.2001,28(5):18-21
    [100]G. Abetti. The Sun. D. Van Nostrand[M]. Princeton:New Jersey,1938.
    [101]刘彦伯,顾长庚,乌建中,等.下一代使用光刻技术—纳米压印技术[J].机电一体化,2005(6):14-19
    [102]SUN Hong-wen, LIU Jing-quan, CHEN Di, et al. Nanoimprint technology [J]. Electronics Process Technology,2004,3(25):93-98
    [103]CHEN Xian-Zhong, YAO Han-Min, CHEN Xu-Nan, et al. The present and future of nanolithography[J]. Microfabrication Technology,2002,31(12):691-695
    [104]GB/T6495.3-1996中华人民共和国国家标准:光伏器件第3部分:地面用光伏器件的测量原理及标准光谱辐照度数据.
    [105]翟辉.采用腔体吸收器的线聚焦太阳能集热器的理论及实验研究[D].上海:上海交通大学,2009.
    [106]方荣生,项立成,李亭寒,等.太阳能应用技术[M].北京:中国农业机械出版社,1985.9
    [107]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.5
    [108]Green M A, Emery K, King D L, et al. Solar cell efficiency tables (version 22) [J]. Research and Application,2003,11(5):347-352
    [109]郑小年,黄巧燕.太阳跟踪方法及应用[J].能源技术,2003,24(4):149-151
    [110]贺晓雷,于贺军,李建英,等.太阳方位角的公式求解及其应用[J].太阳能学报,2008,29(1):69-73
    [111]王炳忠,汤洁.几种太阳位置计算方法的比较研究[J].太阳能学报,2001,22(4):413-416
    [112]邹建,姬兴,杜海涛.一种新型的太阳自动跟踪系统研究[J].光电子技术,2010,30(3):159-164
    [113]机械设计手册编委会.机械设计手册.第三版[M].北京:机械工业出版社,2004:20-77-20-88
    [114]GB/T4271-2000,中华人民共和国国家标准:平板型太阳能集热器热性能试验方法
    [115]ASHRAE Standard 93-86:1986. Methods of testing to determine the thermal performance of solar collectors, American Society of Heating Refrigerating and Airconditioning Engineers, Atlanta, USA
    [116]GB/T17049-2005,全玻璃真空太阳集热器管
    [117]陈戈.基于太阳能的生态建筑复合能量系统模拟与实验[D].硕士学位论文.上海:上海交通大学,2005
    [118]何月娥,杨孝文,张梧邮.农机试验设计[M].北京:机械工业出版社,1986.
    [119]翟辉,代彦军,吴静怡.基于菲涅尔透镜的聚焦型太阳能集热器的数值计算及性能分析[C].中国工程热物理学会2007年学术年会,中国绍兴.工程热力学与能源利用学术会议论文集:337-344
    [120]Kambiz Va:rai, Javad Ettefagh. The Effects of Sharp Corners on Buoyancy-driven Flows with Particular Emphasis on Outer Boundries[J]. Heat Mass Transfer,1990,33(10):2311-2328
    [121]M. M. Elsayed, W. Chakroun. Effect of Aperture Geometry on Heat Transfer in Tilted Partially Open Cavities[J]. Journal of Heat Transfer,1999,121:819-827
    [122]葛新石,龚堡,陆维德,等.太阳能工程一一原理和应用[M].北京:学术期刊出版社,1988:86-104
    [123]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998,183.
    [124]李明,夏朝风.槽式聚光集热器系统热性加热真空管的特性及应用研究[J].太阳能学报.2006,27(1):90-95
    [125]Duffie J. A., Beckmann W. A. Solar engineering of thermal process [J]. John Wiley & Sons Inc.,1991:342.
    [126]张鹤飞.太阳能热利用原理与计算机模拟[M].西安:西北工业大学出版社.1990:39-41
    [127]陈维,李戬洪.抛物柱面聚焦的几种跟踪方式的光学性能分析[J].太阳能学报,2003,24(4):478-482
    [128]Odeh S. D., Behnia M., Morrison G. L. Performance evaluation of solar thermal electric generation systems[J]. Energy Conversion & Management,2003,44:2425-2433
    [129]罗运俊,何梓年,王长贵.太阳能利用技术[M].北京:化学工业出版社,2005.
    [130]刘天明,刘德福,李造哲.关于中国草原资源可持续利用的几点战略探讨[J].中国草地.2002,24(6):61-65.
    [131]戴天红.太阳能谷物干燥的理论和试验研究[D].硕士学位论文.北京:北京农业工程大学,1991
    [132]杨世昆,苏正范.饲草生产机械与设备[M].北京:中国农业出版社,2009
    [133]杨世昆,刘贵林,杜建强等.太阳能草捆干燥设备:中国,ZL200710300870.0[P].2007-12-29
    [134]JB/T 10906—2008中华人民共和国行业标准:太阳能饲草干燥设备
    [135]何月娥,杨孝文,张梧邮.农机试验设计[M].北京:机械工业出版社,1986
    [136]杨世昆,杜建强.太阳能草捆干燥设备设计与试验[J].农业机械学报,2011,42(4):81-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700