用户名: 密码: 验证码:
H5亚型AIV HA1基因与鸡IL-18成熟蛋白基因重组杆状病毒表达载体的构建其表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白细胞介素-18(interleukin-18,IL-18)是Okamura等(1995)从小鼠肝脏中克隆获得的。Nakamori等(2003)研究发现,IL-18在抗肿瘤、抗感染及免疫调节等方面有着重要的作用,具有免疫治疗免疫佐剂的作用,有潜在的应用前景。同时,随着畜牧业的发展,禽病特别是禽流感呈上升趋势,迫切需要新型疫苗与疫苗佐剂的研发,而禽流感病毒的主要抗原决定簇位于HA1基因,故HA1蛋白是研制基因工程亚单位苗的理想候选抗原。鉴于此,本实验室对鸡白介素18成熟蛋白基因(mature Chicken interleukin-18,mChIL-18)与HA1基因进行了真核双表达,旨在探索利用mChIL-18能促进机体免疫功能的特性,将其应用于禽流感的预防临床治疗。本试验针对如何获得高效表达且具有生物学活性的mChIL-18蛋白这些问题进行了探讨,主要包括以下两部分:
     试验一H5亚型AIV HA1基因与鸡IL-18成熟蛋白基因的杆状病毒共表达载体的构建
     参考GenBank上发表的H5亚型禽流感(AIV)血凝素(HA)基因序列鸡白细胞介素18成熟蛋白(mChIL-18)的cDNA基因序列,分别设计了HA1和mChIL-18的cDNA的两对引物。然后分别以pMD18-T-HA质粒和pGEX-mChIL-18质粒为模板,扩增出了H5亚型AIV的HA1基因和mChIL-18的cDNA片段。再以杆状病毒pFastBacTM dual为载体,将H5亚型AIV HA中的HA1基因和mChIL-18基因分别插入到双表达载体pFastBacTM dual的p10启动子(P_(P10))和多角体蛋白启动子(P_(PH))的下游,构建携带HA1基因和mChIL-18基因的重组pFastBac~(TM) dual-HA1-mChIL-18真核表达质粒。最后将构建的真核表达质粒转座入大肠杆菌DH10Bac,为下一步进行昆虫细胞的转染奠定了基础。这个重组载体的构建为考察mChIL-18作为免疫增强剂的作用下一步AIV疫苗的研究奠定了坚实的基础。
     试验二H5亚型AIVHA1基因与鸡IL-18成熟蛋白基因在昆虫杆状病毒表达载体中的表达
     将试验一构建好的pFastBac~(TM) dual-IL-18-HA1质粒转化DH10Bac感受态细胞,将转化混合物涂到LB琼脂平板上,用小量法从培养物中提取质粒DNA,在此基础上通过一对通用引物M13(该引物扩增重组质粒Bacmid LacZα互补区域内的mini-attTn7位点两端的片段,任何外源性基因片段插入pFastBac~(TM) dual质粒内都会使PCR产物增大)进行PCR扩增,鉴定pFastBac~(TM) dual-IL-18-HA1质粒克隆到杆状病毒表达载体,通过转染昆虫细胞sf9,收获重组杆状病毒,得到了共表达IL-18和HA1的高效表达产物。
The gene encoding interleukin-18 (IL-18) was firstly cloned by Okamura in 1995. IL-18 plays important roles in antitumor, anti-infection and immunoloregulation. And it has potential prospect in immunologic therapy and adjuvant. With the development of prologue industry in China, the poultry’s disease especially Avian Influenza (AI) is becoming severity. So a newly vaccine and its adjuvant are urgently demand to research. And major antigen determinants of AIV lie in HA1 gene, so HA1 protein is the ideal electing antigen of studying gene engineering subunit vaccine. The gene encoding mature Chicken IL-18(mChIL-18) was cloned and expressed in our laboratory in order to prevent and therapy the poultry’s diseases. In the present study, the efficiently expressed mChIL-18 protein with biological activity was obtained. It was included two parts as following:
     Experiment 1: Construction of Recombinant Baculovirus Vetor Coexpressing HA1 Gene from Subtype H5 of Avian Influenza Virus and Mature Chicken Interleukin-18 Gene
     The hemagglutinin(HA) gene of Avian Influenza Virus(AIV) subtype H5 and mature chicken interleukin-18(mChIL-18) gene were amplified by designing two pairs of primers according to the sequence published on GenBank.Recombinant baculovirus coexpressing HA1 gene from AIV subtype H5 plus chicken interleukin-18 gene were constructed by inserting cDNA copy of HA gene and cDNA copy of mChIL-18 gene into the baculovirus expression plasmid pFast Bac~(TM)Dual,furthermore cDNAs respectively inserted into the downstreams of P10 promoter and PH promoter.Finally,the constructing eukaryotic expression plasmid pFastBac~(TM) dual-HA1-mChIL-18 was transposited into Bacterium Coli DH10Bac,which is based of next step insect cell’s transfection.The construction of this recombinant plasmid is benefic to investigate the effect of mChIL-18’s immunologic enhancement and study a new AIV recombinant vaccine.
     Experiment 2: Expression of Recombinant Vetor Coexpressing HA1 Gene from Subtype H5 of Avian Influenza Virus and Chicken Interleukin-18 Gene
     After constructing pFastBac~(TM) dual-IL-18-HA1 plasmid ,we make it transformate into DH10Bac competent cells.Then transformations are spreaded on fresh LB plates and the recombinant bacmid DNA is extracted.On the basis of M13 universal primers(The bacmid contains M13 Forward and M13 Reverse priming sites flanking the mini-attTn7 site within the lacZα-complementation region to facilitate PCR analysis),we analyze the recombinant bacmid DNA by PCR.Through transfecting insect cells, trcombinant baculovirus is harvested.Then we gain the high performance expressing product of IL-18 and HA1,which is benefic to investigate the effect of mChIL-18’s immunologic enhancement and study a new AIV recombinant vaccine.
引文
1.曹广力,华刚,贡成良等.应用重组家蚕核多角体病毒在蚕体中表达人丙型肝炎病毒C区E1区基因[J].蚕业科学.2003,25(4):230-236.
    2.曹梅,田夫林,庄文忠.禽流感病毒血凝素分子生物学研究进展[J ] .动物医学进展,2004 ,25 (2) :35~37.
    3.陈伯伦,张泽纪,陈伟斌.禽流感研究:I鸡A型禽流感病毒的分离与血清学初步鉴定,中国兽医杂志,1994, 20 (10 ) : 3-5
    4.陈福勇,夏春.禽流感A/鸡/北京/ 1 /96(H9N2)株核蛋白基因克隆和序列分析[J],中国预防兽医学报,1999, 21(2):130-133
    5.陈化兰,马文军,于康震等.表达禽流感病毒血凝素基因的重组禽痘病毒的构建[J].中国农业科学,2000,39 (5): 86-90
    6.陈化兰,于康震.禽流感其分子生物学研究进展[J].国外兽医学一畜禽传染病,1997,17(1):3-6.
    7.陈开森.IL-18生物学作用研究进展.九江学院学报(自然科学版)2004,4:81~84.
    8.陈全姣,金梅林,陈焕春.禽流感病毒HA部分基因的克隆其表达[J].中国病毒学,2005, 20(1) :87-88
    9.陈一兵,刘岳龙,霍金富.禽流感病毒血凝素糖蛋白(HA)的结构其生物学功能[J].动物医学进展,2004 ,25 (6) :4~6.
    10.崔治中,Lee L F.,.用荧光抗体试验筛选能表达鸡马立克病毒pp38摹因的重组杆状病毒.江苏农学院学报. 1992.13(2): 1-5
    11.崔治中.Lee I. F.,.用杆状病毒为载体在昆虫细胞中表达鸡马立克病毒pp38基因.中国病毒学,1992.7(1): 106-1l2
    12.储瑞银.应用核型多角体病毒载体在家蚕和昆虫细胞中表达乙型肝炎病毒的表面抗原和核心抗原基因的研究,中国农业科学院研究生院博士学位论文,1990.
    13.段宇,汪承亚,赵红等.利用杆状病毒载体高效表达人胰岛素样生长因子-1其纯化的研究[J].中国药科大学学报.2004,35(2):173-177.
    14.甘孟侯.禽流感,北京农业大学出版社,1995
    15.黄庚明,辛朝安.禽流感病毒血凝素(HA)基因的研究进展.广东畜牧兽医科技,2001,26(2):3-5
    16.贾立军,彭大新,张艳梅等.H5亚型禽流感重组鸡痘病毒活载体疫苗的构建其遗传稳定性与免疫效力[J].微生物学报,2003,42 (6):722一727
    17.江文正,金宁一,李子健.共表达HIV1中国流行株gp120与IL 18重组鸡痘病毒的构建其免疫原性观察,生物工程学报,2004,20(3):338-341
    18.姜永萍,陈化兰,于康震等.表达H5N1亚型高致病性禽流感病毒HA基因的DNA疫苗可保护SPF鸡抵抗同型病毒的致死性攻击[J].中国预防兽医学报,Zooo,22(suppl)
    19.李贺,于康震,吴东来.禽流感病毒A/PFV/Restock/34(H7N1)HA基因在昆虫/杆状病毒系统中的表达.中国预防兽医学报.2006,28(3):294~297.
    20.卢圣栋.现代分子生物学实验技术,北京:高等教育出版社,1993
    21.卢圣栋.现代分子生物学实验指南(第二版),中国协和医科大学出版社,1999
    22.孙建和,陆苹.禽细胞因子的新功能——免疫治疗和疫苗佐剂,生物工程学报,2003,19(2):141-145
    23.唐秀英,田国斌,赵传删,等,中国禽流感流行株的分离鉴定[J].中国预防兽医学报.1998. 20 (1):1-5.
    24.王询章,谢伟东,龙萦新,等.形成多角体的杆状病毒载体系统的建立.病毒学报. 1991. 7(3):253-261
    25.王询章,谢伟东,龙萦新,等.杆状病毒双基因表达转移质粒的构建.病毒学报. 1992.8(3):283-285
    26.王健伟,姜慧英,屈建国,等.在昆虫细胞中同时表达蓝舌病毒VP3与VP7蛋白可装配成核心样颗粒.病毒学报,2000a.16(2):131-135
    27.王健伟,姜慧英,屈建国,等.同时表达蓝舌病毒四个主要结构蛋白可装配成病毒样颗粒.病毒学报,2000b .16(2):136-140
    28.温纳相,黄青云,陈荣光等.鸡IL 18基因重组真核表达载体的构建其表达产物的生物学活性,中国兽医科技. 2005,35(7): 547-550
    29.吴小锋,曹翠平,许雅香等.BmNPV和AcNPV扩大寄主域杂交重组病毒表达载体的构建和改进[J].中国科学C辑生命科学. 2004, 34 (2): 156~164.
    30.徐耀先,解梦霞,向近敏.病毒命名与分类系统研究进展.病毒学报.1999.14(3) : 190-204
    31.易咏竹,陈寅,张志芳等.宿主域扩大的重组救活昆虫杆状病毒表达载体的构建外源基因的表达[J].蚕业科学.2002;28(4):304-307.
    32.殷震,刘景华.动物病毒学.第二版.科学技术出版社. 1999,736-747
    33.郑其升,张晓勇等. H5N1亚型禽流感病毒血凝素基因的原核表达间接ELISA方法的初步建立.微生物学报. 2005 ,45 (1): 58-61
    34.朱江,姜秀英,曹广力等. 6×His-猪生长激素融合基因在家蚕生物反应器中的表达[J].蚕业科学.2004;30(4)376-382.
    35. Alan R. Davis, Debi P. Nayak. Expression of antigenic determinants of the hemagglutinin gene of a human influenza virus in Escherichia coli. Proc. Natl Acad Sci. USA, 78 (9): 5376-5380
    36. Alexander D J. Control of avain influenza. V eterinary Bullelin. 1982,(52):241-359
    37. Anderson, D., Harris, R., Polayes, D., Ciccarone, V., Donahue, R., Gerard, G., and Jessee, J. Rapid Generation of Recombinant Baculoviruses and Expression of Foreign Genes Using the Bac-To-Bac? Baculovirus Expression System. Focus 17, 1996,53-58.
    38. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience) .1994.
    39. Ayres M D, Howard S C, Kuzio J, et al. The complete DNA sequence of Autographs californica nuclear polyhedrosis virus. Virology, 1994.202:586-605
    40. Beamcs B, Summers M D. Comparison of host cell DNA insertions and altered transcription at the start site of insertions in few polyhedra baculovirus mutants. Virology, 1988. 162:206-220
    41. Belyaev A S, Roy P, Development of baculovirus triple and quadrupleexpression vectors: co-expression of three or four bluetongue virus proteins and the synthesis of bluetongue virus-like particles in insect cells. Nucleic acids Research, 1993.21(5):1219-1223
    42. Barry, G. F. (1988). A Broad Host-Range Shuttle System for Gene Insertion into the Chromosomes of Gram-negative Bacteria. Gene 71, 75-84.
    43. Bolye,D.B.,Coupar,B.E.,etal.Construction of recombinant fowlpox viruses as vectors for poultry vaccines. Virus. Res. 1988,10(4): 346-356.
    44. Bossu P, Neumann D, Del Giudice E, IL-18 cDNA vaccination protects mice from spontaneous lupus-like autoimmune disease. Proc Natl Acad Sci U S A. 2003,100(24):14181-6.
    45. Cary L. C, Goebel M, Corsaro B G, et al. Transposon mutagenesis of baculoviruses:analysis of Trichoplusiani transposon IFP2 insertion within the FP-locus of nuclear polyhedrusis virus. Virology, 1989.172:156--169
    46. Ciccarone, V. C., Polayes, D., and Luckow, V. A. Generation of Recombinant Baculovirus DNA in E. coli Using Baculovirus Shuttle Vector, Volume 13, U. Reischt, ed. (Totowa, NJ: Humana Press Inc.). 1997.
    47. Claas, E. C. J., A. D. M. E. Osterhaus, R. Van Beek, J. C. De Jong, G. F Rimmelzwaan, D. A.Senne, S. Krauss, K. F. Shortridge, and R. G. Webster Human influenza A H7N7 virus related to a highly pathogenic avian influenza virus. Lancet 1998,351:472-477
    48. Crawford J, Wilkinson B, Vosnesensky A, et al. Baculovirus-derived hemagglutinin vaccines protect against lethal influenza infections by avian HS and H7 subtypes. Vaccine, 1999.17(/8):2265-2274
    49. Crawford A M, Miler L K. Characterization of an early gene accelerating expression of late genes of the baculovirus Autographa californica nuclear polyhedrosis virus[J].J. Virol.,1988,62:2776.
    50. Crawford J.,Wilkinson B..Baculovirus-derivved hemagglutinin vaccines protect against lethal influenza infections by avian H5 and H7 subtypes. [J]Vaccine. 1999,17: 2265-2274
    51. Degen W G, van Zuilekom H I, Scholtes NC, Potentiation of humoralimmune responses to vaccine antigens by recombinant chicken IL-18 (rChIL-18). Vaccine. 2005, 23(33): 4212-8.
    52. Demis panicali, Stephen W.davis, Randall L.Weinberg et al. Construction of live vaccines by using genetically engineered poxviruses: Biological activity of recombinant vaccine virus expressing Influenza virus hemagglutinin Proc. Natl. Acad. Sci., USA, 1982, 80(17): 5364-5368.
    53. Deoki N. Tripathy and William M. Schnitzlein. Expression of avian influenza virus hemagglutinin by recombinant fowlpox virus,Avian Disease, 1991,35(1): 186-191.
    54. Dorange F, EI Medhaoui S, Pichon C, et al, 2000. Marek's disease virus (MDV) homologues of herpes simplex virus type 1 UL49 (VP22) and UL48 (VP16) genes: high-level expression and characterization of MDV-1 VP22 and VPl6. Journal ojGeneral Virology, 8l(9):22I9}2230
    55. Dybing J K, Jackwood D J. 1998. Antigen and immunogenic properties of baculovirus-expressed infectious bursal disease viral proteins. Avian Diseases, 42(I):80}91
    56. Dupre L, Kre mer L, Wolowczuk I, et al, Immunostimulatory effect of IL-18- encoding plasmid in DNA vaccination against murine Schistosoma mansoni infection. Vaccine. 2001 Jan 8; 19 (11-12):1373-80.
    57. Emery V C, Bishop D H. 1987. The development of multiple expression vectors for high level synthesis eukaryotic proteins: expression of LCMVN and AcMNPV polyhedrin protein by a recombinant baculovirus.Protein Engineering. /:359--366
    58. Errington W, Steward M, Emmerson P T. 1995. A diagnostic immunoassay for Newcastal disease virus based on the nucleocapsid protein cxprcssed by a recombinant baculovirus. Journal ojVirology Methods, 55(3):357-365
    59. Friesen P D, Miller L K. 1987. Divergent transcription of early 35 and 94-kilodalton protein genes encoded by the Hind III-K genomic fragment of the baculovirus Autographa californica nuclear polyhedrosis virus.Journal of Virology, 61 2264-.2272
    60. Geoffery L.Smith, Brian R.murphy and Bernard moss. Construction and characterization of an infectious vaccinia virus recombinant that express the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsers, Proc. Natl. Acad. Sci. ,1983,80(23):7155-7159
    61. Hanahan, D. (1983). Studies on Transformation of Escherichia coli with Plasmids. J. Mol. Biol. 166, 557-580.
    62. Harris, R., and Polayes, D. A New Baculovirus Expression Vector for the Simultaneous Expression of Two Heterologous Proteins in the Same Insect Cell.1997,Focus 19, 6-8.
    63. Hander A M, O'Brochta A M. Prospects for gene transformation in insects. Annual. Review of Entomology, 1991.36: I59-183
    64. Hartig P C, Cardon M C,Rapid efficient production of baculovirus expression vectors. Journal of Virology Methods, 1992. 38:61-70
    65. Heike L.P, Partick A. B. Expression of Influenza Virus Hemagglutinin Activates Transcription Factor NF-kB[J]. Journal of Virology,1995,69 (3):1480-1484
    66. Hink W F, Thomsen D R, Meyer A L, et al. Expression of three recombinant proteins using baculovirus vectors in 23 insect cell lines [J]. Biotech Prog Press. 1991,7(1): 9-14.
    67. Horimoto T, Kawaoka Y. Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev. 2001,14(1) :129-149
    68. Iinuma H, Okinaga K, Fukushima R, Superior protective and therapeutic effects of IL-12 and IL-18 gene-transduced dendritic neuroblastoma fusion cells on liver metastasis of murine neuroblastoma.J Immunol. 2006,176(6): 3461-9.
    69. Johansson, B. E. Immunization with influenza A virus hemagglutinin and neuraminidase produced in recmbinant baculovirus results in a balanced and broadened immune response superior to conventional vaccine. Vaccine 1999, 17:2073-2080.
    70. J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯等主编,金冬雁,黎孟枫等译.分子克隆实验指南(第二版),科学出版社,1992
    71. J.S.Ematage, W. C. A. Tacon.Influenza antigenic determinants are expressed from haemagglutinin genen cloned in Escherichia coli. Nature. 1980,283:171-176
    72. Kaverin N V,Rudneva I A,Ilyushina N A,et al.Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants[J].Journal of General Virology,2002,83:2497~2505.
    73. Kawaoka Y,estorowicz A,lexander D J,et al.Molecular analyses of the hemagglutinin genes of H5 influenza viruses:Origin of a virulent strain [J].Virology,1987,158:218~227.
    74. Kawaoka Y,Webster R.G., Sequence requirements for cleavage activation of influzenza virus hemagglution expressed in mammalian cells.Proc Natl Acad Sci USA . 1988b,85:324-328
    75. Kim J J, Yang J S, Dang K, Engineering enhancement of immune responses to DNA-based vaccines in a prostate cancer model in rhesus macaques through the use of cytokine gene adjuvants. Clin Cancer Res. 2001,Mar;7(3 Suppl):882s-889s.
    76. King, L. A., and Possee, R. D. (1992). The Baculovirus Expression System: A Laboratory Guide (New York, NY: Chapman and Hall).
    77. Kodihalli S.Type specific avian influenza virus subunit vaccine for turkey:induction of protective immunity to challenge infection.Vaccine,1994,12(15):1467~1472.
    78. Leong K H,Ramsay A J,Boyle D B,et al.Selective induction of immune response by cytokines coexpressed in recombinant fowlpox virus[J].J Virol,1994,68(12):8125~8130.
    79. Luckow, V. A. (1991). In Recombinant DNA Technology and Applications, A. Prokop, R. K. Bajpai and C. Ho,eds. (New York: McGraw-Hill).
    80. Luckow, V. A., Lee, C. S., Barry, G. F., and Olins, P. O. (1993). Efficient Generation of Infectious Recombinant Baculoviruses by Site-Specific Transposon-Mediated Insertion of Foreign Genes into a BaculovirusGenome Propagated in Escherichia coli. J. Virol. 67, 4566-4579.
    81. Marshall DJ, Rudnick KA, McCarthy SG, Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine. Vaccine. 2006,24(3): 244-53
    82. Mingxiao M, Ningyi J, Zhenguo W, Construction and immunogenicity of recombinant fowlpox vaccines coexpressing HA of AIV H5N1 and chicken IL18.Vaccine. 2006,24(20): 4304-11.
    83. Mitnaul, L. J., M. Matrosovich, M. R. Castrucci, A. B. Tuzikov, N. V. Bovin,D. Kobasa, and Y. Kawaoka. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus.J. Virol. 2000,74:6015-6020
    84. Nakamura K, Okamura H, Nagata K, et al. Purification of a factor which provides a costimulatory signal for gamma interferon production.Infect Immun. 1993,61(1):64-70.
    85. Okamura H, Nagata K, Komatsu T, et al. A novel costimulatory factor for gamma interferon found in the lives of mice causes endotoxic shock Infect. Immum, 1995,63: 3966-3972
    86. Pereira H G, Tumova B ,Law V G. Animal influenza A virus[J ] . World Health Organization ,1965 ,32 :855~860.
    87. PljusninAZ. Molecular hybridization with DNA probes as a laboratory diagnosis test for influenza viruses: further investigations on the possibilities of the method, Virology, 1989,40(1):38-42
    88. pMD 18-T Simple vector system技术手册(TaKaRa公司)
    89. Robinson HL, Hunt LA, Webster RG, et al. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA[J].Vaccine , 1993, 11(9):957-60.
    90. Rui Peng, Zheyong Yu, Yuhui Zang, et al. High level expression of a mutant (K151E, R154G) of single chain urokinase-type plasminogen activator in silkworm[J].. Biotechnology Letters. 1999,21: 979-985.
    91. Satoko, BoninA L, Freundlieb S, et a1. Inducible gene expression systems for higher eukaryotic cells[J ].urrOpin B iotechnol. 2003, 5(5): 516-520.
    92. Shantba Kodihalli, Hideo Goto, DawynL Kobasa, et al. DNA vaccine encoding hemagglutinin protective immunity against H5N1 influenza virus infection in mice[J]. Journal of Virology,1999,73 (3):2094 -2098
    93. Starick E,Werner O.Detection of H7 Avian Influenza Virus Directly from Poultry Specimens [J].Avian Diseases,2003,47:1187~1189.
    94. Swayue D E, Garcian M,Beck J R, et al. Protection against diverse highly athogenic H7 avian influenza viruses in chickens immunized with recombinant fowlox vaccine containing an H7 avian influenza hemagglutinin gene insert .Vaccine. 2000,18: 1088-1095
    95. Swayne D E, Garcia M, Beck J R, et al. Protection against diverse highly pathogenic H5 avian influenza virus in chickens immunized with a recombinant fowlpox vaccine containing an H5 avian influenza hemagglutinin gene insert [J]. Vaccine, 2000, 18:1088-1095
    96. Ushio S, Namba M, Okura T, et al. cDNA cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli and studies on the biologic activities of the protein. J Immuno, 1996,156: 4274-4279
    97. Valk J M, Klinkenberg F A, Zaal K, et ai. Functional studies on the p10 gene of Autographa californica nuclear polyhedrosis virus using a recombinant expressing a p10-belta-galactosidase fusion gene [J]. J. Gen. Virol. 1988,69:765-776.
    98. Wang F, Zhang C X. Shyam V, Kumar, et al. Influences of chitinase gene deletion from BmNPV on the cell lysis and host liquefaction[J]. Arch Virol .2004:1-10.
    99. Webster,R.G.and Y.Kawaoka. Avian Influenza. Crit.Rev.poultry Biol. 1988,211-246
    100.Wienhold D, Armengol E, Marquardt A, Immunomodulatory effect ofplasmids co-expressing cytokines in classical swine fever virus subunit gp55/E2-DNA vaccination. Vet Res. 2005, Jul-Aug;36(4):571-87.
    101.Wilson I A. Structure of the heamglutinin membrane glycoprotein of influenaa virus at A resolutionJ .Nature . 1981,289:366 -367.
    102.Wu X, Kamei K, Sato H, et al. High-level expression of human acidic fibroblast growth factor and basic fibroblast growth factor in silkworm(Bombyx mori L.) using recombinant baculovirus[J]. Protein Expr. Purif. 2001,21:192–200.
    103.Ya H,Stevens D J,Skehel J J,et al.H5 avian and H9 swine in fluenza subtypes[J].The EMBO Journal,2002,21(5):865~875.
    104.Zhou NN. ,Shortridge KF. ,et al. Rapid evolution of H5N1 influenza viruses in chicken in HongKong〔J〕. J Virol ,1999 ,73 :3366~3374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700