用户名: 密码: 验证码:
IL-15基因联合肿瘤抗原修饰树突状细胞抗前列腺癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.构建携带mouseIL-15基因的复制缺陷型腺病毒载体(Ad-GFP-mIL-15)并大量制备。
     2.建立从小鼠骨髓前体细胞中分离、培养和扩增树突状细胞(dendritic cell,DC)的方法;将Ad-GFP-mIL-15和RM-1小鼠前列腺癌细胞裂解产物上清(Lysate)共同修饰DC,构建新型前列腺癌DC疫苗(IL-15/lysate-DC),评价其免疫生物学特性
     3.通过体外、体内实验证实IL-15/lysate-DC疫苗抗前列腺癌免疫治疗作用,为以DC为基础的前列腺癌免疫治疗和基因转染治疗提供新的策略。
     方法:
     1.以小鼠肾脏cDNA为模板,用pfx DNA ploymerase扩增mIL-15目的基因,扩增得到的目的基因片段克隆到pGEM-T Easy Vector上,得到mIL-15-T克隆载体;从mIL-15-T克隆载体上EcoRI双酶切得到mIL-15基因,连接到pShuttle-GFP-CMV载体上,得到pShuttle-GFP-mIL-15;将pShuttle-GFP-mIL-15转移到pAdxsi载体上,得到Ad-GFP-mIL-15病毒质粒,并完成了腺病毒的大量扩增和纯化。
     2.从小鼠骨髓分离DC前体细胞,在细胞因子GM-CSF和IL-4联合作用下,大量制备骨髓源性DC(bone marrow derived DC,BM-DC)。采用形态学(光镜)、免疫细胞化学和免疫生物学等方法研究DC的免疫生物学特性。将Ad-GFP-mIL-15病毒转染联合RM-1小鼠前列腺癌细胞的裂解产物上清(Lysate)共同修饰DC,制备IL-15/lysate-DC前列腺癌疫苗。
     3.体外实验检测IL-15/lysate-DC刺激同基因型T细胞增殖能力、刺激T淋巴细胞亚群表型分析,刺激同基因型小鼠T细胞增殖反应中淋巴细胞培养上清IFN-γ、IL-10水平,诱导CTL能力及杀伤活性。
     4.建立RM-1前列腺癌细胞荷瘤小鼠动物模型,观察IL-15/lysate-DC疫苗对荷瘤小鼠的免疫治疗作用,并分析其可能的作用机制;ELISA方法检测荷瘤小鼠治疗后血清中IFN-γ和IL-10表达水平。
     结果:
     1.所构建的Ad-GFP-mIL-15病毒质粒,经酶切电泳、测序及RT-PCR鉴定,证实重组腺病毒载体构建正确,插入片段包含mIL-15基因序列。
     2.在细胞因子GM-CSF和IL-4诱导下,体外培养5天后,可从每只小鼠骨髓DC前体细胞中获得5~10×106个DC。早期未成熟DC表达很低的表面共刺激分子、黏附分子和MHC分子,刺激T细胞增殖能力极弱;5天的DC在转染Ad-GFP-mIL-15 48小时后,表面共刺激分子、黏附分子和MHC分子明显上调,混合淋巴细胞反应(mixed lymphocyte reaction,MLR)强烈;将Ad-GFP-mIL-15联合RM-1小鼠前列腺癌细胞的裂解产物上清(Lysate)共同修饰DC,制备IL-15/lysate-DC前列腺癌疫苗,流式细胞仪(flow cytometry,FCM)检测其表面共刺激分子、黏附分子和MHC分子明显上调。
     3. IL-15/lysate-DC前列腺癌疫苗刺激同基因型小鼠脾脏T淋巴细胞增殖能力明显升高;刺激同基因型小鼠脾脏T淋巴细胞亚群表型分析,证实IL-15/lysate-DC可使T淋巴细胞中CD8+T亚群比例细胞明显升高;刺激同基因型小鼠T细胞增殖反应中淋巴细胞培养上清IFN-γ、IL-10的检测,证实IL-15/lysate-DC组淋巴细胞上清中IFN-γ水平明显增高,IL-10水平最低;在诱导CTL能力及杀伤活性检测实验中,四氮唑蓝(methyl thiazolyl tetrazolium ,MTT)还原法显示IL-15/lysate-DC组对RM-1前列腺癌细胞的特异性细胞杀伤率最高;上述实验中,IL-15/lysate-DC组与GFP/lysate-DC组、Lysate-DC组相比,差异有显著性意义(P<0.05)。
     4. RM-1细胞前列腺癌荷瘤小鼠模型构建成功,成瘤率100%。IL-15/lysate-DC治疗组荷瘤生长减缓,生存期延长。接种RM-1前列腺癌细胞10周后,IL-15/lysate-DC组仍有50%的小鼠存活,上述实验中,IL-15/lysate-DC组与GFP/lysate-DC组、Lysate-DC组、PBS组相比,差异有显著性意义(P<0.05)。
     5. ELISA检测显示,荷瘤小鼠经免疫治疗2次后,IL-15/lysate-DC组血清IFN-γ水平明显增高,IL-10水平最低,与GFP/lysate-DC组、Lysate-DC组、PBS组相比,差异有显著性意义(P<0.05);组织学检查发现,IL-15/lysate-DC治疗组的荷瘤鼠,瘤体内、瘤周有大量炎性细胞(淋巴、单核细胞)浸润,肿瘤组织局部坏死明显。GFP/lysate-DC组、Lysate-DC组也可见瘤体内部分组织坏死及炎性细胞浸润,但明显少于IL-15/lysate-DC组,PBS组几乎无肿瘤坏死及炎性细胞浸润。
     结论:
     1.成功构建了Ad-GFP-mIL-15病毒质粒。
     2.在细胞因子GM-CSF和IL-4诱导下,可从小鼠骨髓前体细胞中获得足够数量DC;转染Ad-GFP-mIL-15能促进DC成熟、上调MHC-Ⅱ类分子、表面共刺激分子和黏附分子的表达,MLR检测示刺激T细胞增殖能力明显提高。
     3.IL-15/lysate-DC疫苗能激发同基因型T淋巴细胞增殖,诱导IFN-γ因子分泌能力强,使T淋巴细胞中CD8+T细胞亚群比例明显升高;所诱导的特异性CTL对RM-1前列腺癌细胞有显著的杀伤作用。
     4.观察IL-15/lysate-DC疫苗治疗荷瘤小鼠,发现有明显的抗肿瘤作用,能减缓肿瘤生长速度,使荷瘤小鼠生存期延长;治疗后血清IFN-γ水平明显增高,肿瘤组织出现明显坏死和淋巴细胞浸润,能诱导强烈的全身和局部肿瘤免疫应答。
Objective:
     To construct the replication-deficient adenovirus vector encoding mouse IL-15 gene (Ad-GFP-mIL-15) and prepare a lot. To establish the methods of isolation, purification and propagation of mouse bone marrow-derived dendritic cells(DC), investigate the changes of morphological structure and bio-immunological characteristics of DC during its development, differentiation and maturation, study the related factors involved in proliferation and polarization of DC. To construct the DC vaccine modified with mouse IL-15 gene and cell lysate on mice with prostate cancer. To detect and analyze the specific antitumor activity and immunotherapeutic effect of DC vaccine(IL-15/lysate-DC)both in vitro and in vivo.
     Methods:
     Mouse kidney cDNA as a template, by using pfx DNA ploymerase amplified mIL-15 gene. Amplified target gene fragment was cloned into pGEM-T Easy Vector. mIL-15 gene recevied from the mIL-15-T cloning vector EcoRI digestion and connected to the pShuttle-GFP-CMV vector.Ad-GFP-mIL-15 virus plasmid was received by pShuttle-GFP-mIL-15 transfer to pAdxsi vector. The correct adenovirus plasmid was substantially amplified and purified. The mouse bone marrow progenitors were isolated andcultured with cytokines of mrGM-CSF plus mrIL-4, and a large amount of BM-DC were harvested after selection and culture for 5 or 7days. The bio-immunological features and functions of DC in different stages were studied by using methods of light- microscopy, mixed leucocyte reaction(MLR), flow cytometry(FCM), and so on. Mouse bone marrow DC were transfected with the recombinant adenovirus vector encoding mIL-15 gene and pulsed with cell lysate from RM-1 mouse prostate cancer cell line. The ability of stimulating syngeneic T cells, T-lymphocyte subsets analysis, IFN-γ, IL-10 level of lymphocyte culture supernatant and the effect of inducing specific kill activity of IL-15/lysate-DC vaccine were detected. The immunotherapeutic effect IL-15/lysate-DC vaccine and IFN-γ, IL-10 level of serum on mice with prostate cancer was assessed.
     Results:
     1.By digestion, electrophoresis, sequencing and RT-PCR identification, we successfully constructed the recombinant adenovirus vector encoding mIL-15 gene.
     2.About 5~10×106 DC were havested from bone marrow progenitors per mouse followed culturing the cells with rmGM-CSF plus rmIL-4 for 5 days. In early stage, DC expressed very low level of costimulatory molecules, adhesion molecules and MHC molecules and failed to stimulate allogeneic T cell proliferation. Cultured DC transfected with Ad-GFP-IL-15 on 5 days, they expressed very high level of costimulatory molecules, adhesion molecules and MHC molecules and stronger activity of stimulating T cell proliferation on 7 days. IL-15/lysate-DC vaccine was contructed by transfected with the recombinant adenovirus vector encoding mIL-15 gene and pulsed with cell lysate from RM-1 mouse prostate cancer cell line.
     3.The ability of stimulating T cells proliferation, CD8+T cells proportion in T-lymphocyte subsets and IFN-γlevel of lymphocyte culture supernatant were significantly increased by IL-15/lysate-DC stimulating with the allogeneic of mouse spleen T lymphocyte proliferation reaction. The mice immunized with DC pulsed with RM-1 cell lysate (Lysate-DC) exhibited a specific CTL response, but the highest CTL activity against RM-1 cells was induced by immunization with IL-15/lysate-DC(P<0.05).
     4.In the mice model with pre-established subcutaneous RM-1 prostate cancer cell, vaccination with Lysate-DC and GFP/lysate-DC vaccine could inhibit tumor growth, but the immunization of IL-15/lysate-DC vaccine inhibit the tumor growth most significantly when compared with Lysate-DC and GFP/lysate-DC(P < 0.05). The survival time of the mice treated with IL-15/lysate-DC Vaccine was also greatly extended(P<0.05).
     5.Histological examination showed that the most obvious tumor necrosis and infiltration of inflammatory cells was present inside and around the tumor of the tumor-bearing mice immunized with IL-15/lysate-DC Vaccine when compared with Lysate-DC and GFP/lysate-DC(P<0.05). Immunotherapy of tumor-bearing mice with IL-15/lysate-DC vaccine could increase the the production of IFN-γby serum test when compared with Lysate-DC and GFP/lysate-DC(P<0.05).
     Couclusions:
     1.The recombinant adenovirus vector encoding mIL-15 gene was constructed successfully.
     2. A sufficient number of functional DC were havested from bone marrow progenitors mouse followed culturing the cells with rmGM-CSF plus rmIL-4. After DC were transfected with Ad-GFP-IL-15, they expressed very high level of costimulatory molecules, adhesion molecules and MHC molecules and stronger activity of stimulating T cell proliferation.
     3.The ability of stimulating T cells proliferationand and IFN-γlevel of lymphocyte culture supernatant were significantly increased by IL-15/lysate-DC stimulating with the allogeneic of mouse spleen T lymphocyte proliferation reaction. The highest CTL activity against RM-1 cells was induced by immunization with IL-15/lysate-DC.
     4.IL-15/lysate-DC might elicit significant antitumor effects through efficient induction of systemic and local immune responses against prostate cancer.
引文
1.Fong L, Engleman EG. Dendritic cells in cancer immunotherapy[J]. Annu Rev Immunol, 2000, 18: 245-273.
    2.Schreurs MW, Eggert AA, Punt CJ, et al. Dendritic cell-based vaccines: from mouse models to clinical cancer immunotherapy[J]. Crit Rev Oncog, 2000, 11(1): 1-17.
    3.Hernando JJ, Park TW, Kuhn WC. Dendritic cell-based vaccines in breast and gynaecol- ogic cancer[J]. Anticancer Res, 2003, 23(5b): 4293-4303.
    4.Elkord E, Williams PE, Kynaston H, et al. Differential CTLs specific for prostate-specif- ic antigen in healthy donors and patients with prostate cancer[J]. Int Immunol, 2005, 17(10): 1315-1325.
    5.罗荣诚,尤长宣.基因修饰树突状细胞介导肿瘤治疗的进展与展望[J].临床肿瘤学杂志, 2006, 11(6): 401-405.
    6.陈慰峰.医学免疫学[M].北京:人民卫生出版社, 2006: 136-139.
    7.Grabstein KH, Eisenman J, Shanebeck K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin receptor[J]. Science, 1994, 264(5161): 965-968.
    8.Burton JD, Bamford RN, Peters C, et al. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells[J]. Proc Nat Acade USA, 1994, 91(11): 4935-4939.
    9.Cardozo AK, Proost P, Gysemans C, et al. IL-1 beta and IFN-gamma induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from prediabetic NOD mice[J]. Diabetologia, 2003, 46(2): 255-266.
    10.Tourkova IL, Yurkovetsky ZR, Gambotto A, et al. Increased function and survival of IL-15-transduced human dendritic cells are mediated by up-regulation of IL-15Ralpha and Bcl-2[J]. J Leukocyte Biology, 2002, 72(5): 1037-1045.
    11.Basler M, Groettrup M. Advances in prostate cancer immunotherapies[J]. Drugs & Aging, 2007, 24(3): 197-221.
    12.那彦群.中国泌尿外科疾病诊断治疗指南[M].北京:人民卫生出版社, 2007: 30- 93.
    13.Partin AW, Pound CR, Clemens JQ, et al. Serum PSA after anatomic radical prostatecto- my: The Johns Hopkins experience after 10 years[J]. Urol Clin North Am, 1993, 20(4): 713-725.
    14.邹青,须霆,杨尔炘,等.两种前列腺多肽负载的树突状细胞治疗晚期前列腺癌的临床初步研究[J].临床泌尿外科杂志, 2008, 23(9): 649-652.
    15.Tacken PJ, de Vries IJ, Torensma R, et a1. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting[J]. Nat Rev Immunol, 2007, 7(10): 790-802.
    16.Osada T, Clay TM, Woo CY, et a1. Dendritic cell-based immunotherap[J]. Int RevImmunol, 2006, 25(56): 377-413.
    17.Shu S, Zheng R, Lee WT, et a1. Immunogenicity of dendritic-tumor fusion hybrids and their utility in cancer immunotherapy[J]. Crit Rev Immunol, 2007, 27(5): 463-483.
    18.周勇,王海平,王全立.树突状细胞疫苗设计策略的研究进展[J].解放军医学杂志, 2006, 31(12): 1205-1206.
    1. Grabstein KH, Eisenman J, Shanebeck K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor[J]. Science, 1994, 264(5161): 965-968.
    2.Burton JD, Bamford RN, Peters C, et al. A lymphokine,provisionally designatedinterleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine activated killer cells[J]. Proc Nat Acade USA, 1994, 91(11): 4935-4939.
    3.Rodella L, Zamai L, Rezzani R, et al. Interleukin 2 and interleukin 15 differentially predispose natural killer cells to apoptosis mediated by endothelial and tumour cells[J]. Br J Haematol, 2001, 115(2): 442-450.
    4.Di Carlo E, Comes A, Basso S, et al. The combined action of IL-15 and IL-12 gene transfer can induce tumor cell rejection without T and NK cell involvement [J]. J Immunol, 2000, 165(6): 3111-3118.
    5.Tourkova IL, Yurkovetsky ZR, Gambotto A, et al. Increased function and survival of IL-15-transduced human dendritic cells are mediated by up-regulation of IL-15Ralpha and Bcl-2[J]. J Leukocyte Biology, 2002, 72(5): 1037-1045.
    6.Alden TD, Pittman DD, Beres EJ, et al. Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy[J]. J Neuro-surgery, 1999, 90(1 Suppl): 109-114.
    7.Alden TD, Pittman DD, Hankins GR, et al. In vivo endochondral bone formation using a bone morphogenetic protein 2 adenoviral vector[J]. Hum Gene Ther, 1999, 10(13): 2245-2253.
    8.Hernando JJ, Park TW, Kuhn WC. Dendritic cell-based vaccines in breast and gynaecol- ogic cancer[J]. Anticancer Res. 2003, 23(5b): 4293-4303.
    9.Elkord E, Williams PE, Kynaston H, et al. Differential CTLs specific for prostate-specifi- c antigen in healthy donors and patients with prostate cancer[J]. Int Immunol, 2005, 17(10): 1315-1325.
    10.Lehours P, Raher S, Dubois S, et al. Subunit structure of the high and low affinity human interleukin-15 receptors [J]. Eur Cytokine Net, 2000, 11(2): 207-215.
    11.Cardozo AK, Proost P, Gysemans C, et al. IL-1beta and IFN-gamma induce the express- ion of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from prediabetic NOD mice[J]. Diabetologia, 2003, 46(2): 255-266.
    12.Liu Q, Zaiss AK, Colarusso P, et al. The role of capsid-endothelial interactions in theinnate immune response to adenovirus vectors[J]. Hum Gene Ther, 2003, 14(7): 627- 643.
    13.Philpott NJ, Nociari M, Elkon KB, et al. Adenovirus-induced maturation of dendritic cells through a PI3 kinase-mediated TNF-alpha induction pathway[J]. Proc Nat Acade USA, 2004, 101(16): 6200-6205.
    1.Mosca PJ, Lyerly HK, Caly TM, et al. Dendritic cells vaccines[J]. Front Biosci, 2007, 12: 4050-4060.
    2.Hemando JJ, Park TW, Kuhn WC. Dendritic cell-based vaccines in breast and gynaecol- ogic cancer[J]. Anticancer Res, 2003, 23(5b): 4293-4303.
    3.Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony- stimulating factor[J]. J Exp Med, 1992, 176(6): 1693-1702.
    4.Banchereau J, Steinman RM. Dendritic cells and the control of immunity[J]. Nature, 1998, 392(6673): 245-252.
    5.Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells[J]. Annu Rev Immunol, 2000, 18: 767-811.
    6.Berard F, Blanco P, Davoust J, et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells [J]. J Exp Med, 2000, 192(11): 1535-1543.
    7.Nouri-Shirazi M, Banchereau J, Bell D, et al. Dendritic cells capture killed tumor cellsand present their antigens to elicit tumor-specific immune responses[J]. J Immunol, 2000, 165(7): 3797-3803.
    8.Holmes LM, Li J, Sticca RP, et al. A rapid,novel strategy to induce tumor cell- specific cytotoxic T lymphocyte responses using instant dentritomas[J]. J Immunother, 2001, 24(2): 122-129.
    9.Adam C, Mysliwietz J, Mocikat R. Specific targeting of whole lymphoma-cells to dendritic cells ex vivo provides a potent antitumor vaccine[J]. J Transl Med, 2007, 5: 16.
    10.Vieweg J, Jackson A. Modulation of antitumor responses by denderitic cells [J]. Springer Semin Immunopathol, 2005, 26(3): 329-341.
    11.Dauer M, Schnurr M, Eigler A. Dendritic cell-based cancer vaccination: quo vadis? [J]. Exp Revi Vac, 2008, 7(7): 1041-1053.
    12.Anello R, Cohen S, Atkinson G, et al. Adenovirus mediated cytosine deaminase gene transduction and 5-fluorocytosine therapy sensitizes mouse prostate cancer cells to irradiation[J]. J Urol, 2000, 164(6): 2173-2177.
    13.Gatza E, Okada CY. Tumor cell lysate-pulsed dendritic cells are more effective than TCR Id protein vaccines for active immunotherapy of T cell lymphoma[J]. J Immunol, 2002, 169(9): 5227-5235.
    14.Renk O, Kitty K, Martijn R, et al. Methods in Molecular Medicine vol 109[M]. Totwa, NJ: Humana press Inc, 2007: 83-94.
    15.曹雪涛.树突状细胞的研究热点及其与疾病的防治[J].中华医学杂志, 1999, 79(3): 163-165.
    16.陈慰峰.医学免疫学[M].北京:人民卫生出版社, 2006: 93.
    17.Mare D, Bianca O, Jan H, et al. Mature dendrite cells from human mononcytes within
    48 hours: A novel strategy for dendritic cell diferentiation from blood precursors[J]. J Immunol, 2003, 170(4): 4069-4076.
    18.谢遵江,贾立敏,贺业春,等.体外培养小鼠骨髓树突状细胞的扩增、鉴定及形态学观察[J].解剖科学进展, 2005, 11(3): 240-243.
    19.Muthana M, Fairburn B, Mirza S, et al. Systematic evaluation of the conditions requiredfor the generation of immature rat bone marrow-derived dendritic cells and their phenotypic and functional characterization[J]. J Immunol Met, 2004, 294(1-2): 165-179.
    20.Nishioka Y, Hirao M, Robbins PD, et al. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12[J]. Cancer Research, 1999, 59(16): 4035-4041.
    21.Yamanaka R, Zullo SA, Ramsey J, et al. Marked enhancement of antitumor immune responses in mouse brain tumor models by genetically modified dendritic cells producing Semliki Forest virus-mediated interleukin-12[J]. J Neuro, 2002, 97(3): 611- 618.
    22.Tourkova IL, Yurkovetsky ZR, Gambotto A, et al. Increased function and survival of IL-15-transduced human dendritic cells are mediated by up-regulation of IL-15Ralpha and Bcl-2[J]. J Leukocyte Biology, 2002, 72(5): 1037-1045.
    23.Somersan S, Larsson M, Fonteneau JF, et al. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells[J]. J Immunol, 2001, 167(9): 4844-4852.
    24.Sauter B, Albert ML, Francisco L, et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells[J]. J Exp Med, 2000, 191(3): 423-434.
    25.Singh-Jasuja H, Scherer HU, Hilf N, et al. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor[J]. Eur J Immunol, 2000, 30(8): 2211-2215.
    26.Arthur JF, Butterfield LH, Roth MD, et al. A comparison of gene transfer methods in human dendritic cells[J]. Cancer Gene Ther, 1997, 4(1): 17-25.
    27.Van Tendeloo VF, Snoeck HW, Lardon F, et al. Nonviral transfection of distinct types of human dendritic cells: high-efficiency gene transfer by electroporation into hematopoietic progenitor-but not monocyte-derived dendritic cells[J]. Gene Ther, 1998, 5(5): 700-707.
    28.Ardeshna KM, Pizzey AR, Thomas NS, et al. Monocyte-derived dendritic cells do not proliferate and are not susceptible to retroviral transduction[J]. Br J Haematol, 2000, 108(4): 817-824.
    29.Andersson BU, Tani E. Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: Role of maturation status and intratumoral localization[J]. Clin Cancer Res, 2005, 11(7): 2576-2582.
    30.田蓉,李巍,于继云,等.小鼠树突状细胞的体外培养与鉴定[J].第四军医大学学报, 2006, 27(10): 895-897.
    1.Rini B. Recent clinical development of dendritic cell-based immunotherapy for prostate [J]. Expert Opin Biol Ther, 2004, 4(11): 1729-1734.
    2.周勇,王海平,王全立.树突状细胞疫苗设计策略的研究进展[J].解放军医学杂志, 2006, 31(12): 1205-1206.
    3.Agus DB, Scher HI, Higgins B, et al. Response of prostate cancer to anti-Her-2/neu antibody in androgen-dependent and -independent human xenograft models[J]. Cancer Res, 1999, 59(19): 4761-4764.
    4.Fong L, Brockstedt D, Benike C, et al. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy[J]. J Immunol, 2001, 167(12): 7150-7156.
    5.Heiser A, Maurice MA, Yancey DR, et al. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA[J]. J Immunol, 2001, 166(5): 2953-2960.
    6.Lodge PA, Jones LA, Bader RA, et al. Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a phase II clinical trial[J]. Cancer Res, 2000, 60(4): 829-833.
    7.Chambers CA, Allison JP. CTLA-4-the costimulatory molecule that doesn't: regulation of T-cell responses by inhibition[J]. Cold Spring Harb Symp on Quant Biol, 1999, 64: 303-312.
    8.Chambers CA, Kuhns MS, Egen JG, et al. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy[J]. Annu Rev Immunol, 2001, 19: 565-594.
    9.Xia DJ, Zhang WP, Zheng S. Lymphotactin cotransfection enhances the therapeutic efficacy of dendritic cells genetically modified with melanoma antigen gp100[J]. Gene Ther, 2002, 9(9): 592-601.
    10.Boon T, Van der Bruggen P. Human tumor antigens recognized by T lymphocytes[J]. J Exp Med, 1996, 183(3): 725-729.
    11.Gabrilovich DI, Corak J, Ciernik IF, et al. Decreased antigen presentation by dendritic cells in patients with breast cancer[J]. Clinical Cancer Res, 1997, 3(3): 483-490.
    12.Yu Y, Hagihara M, Ando K, et al. Enhancement of human cord blood CD34+ cell-deriv- ed NK cell cytotoxicity by dendritic cells[J]. J Immunol, 2001, 166(3): 1590-1600.
    13.Hernando JJ, Park TW, Kuhn WC. Dendritic cell-based vaccines in breast andgynaecologic cancer[J]. Anticancer Res, 2003, 23(5b): 4293-4303.
    14.Elkord E, Williams PE, Kynaston H, et al. Differential CTLs specific for prostate-speci- fic antigen in healthy donors and patients with prostate cancer[J]. Int Immunol, 2005, 17(10): 1315-1325.
    15.罗荣诚,尤长宣.基因修饰树突状细胞介导肿瘤治疗的进展与展望[J].临床肿瘤学杂志, 2006, 11(6): 401-405.
    16.Somersan S, Larsson M, Fonteneau JF, et al. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells[J]. J Immun- ol, 2001, 167(9): 4844-4852.
    17.Sauter B, Albert ML, Francisco L, et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells[J]. J Exp Med, 2000, 191(3): 423-434.
    18.Singh-Jasuja H, Scherer HU, Hilf N, et al. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor[J]. Eur J Immunol, 2000, 30(8): 2211-2215.
    19.Steinman RM, Dhodapkar M. Active immunization against cancer with dendritic cells: the near future[J]. Int J Cancer, 2001, 94(4): 459-473.
    20.Qiaohua W, Dajing X, Svein C, et al. Adenovirus-mediated transgene-engineered dendr- itic cell vaccine of cancer[J]. Current Gene Therapy, 2005, 5(2): 237-247.
    21.Tourkova IL, Yurkovetsky ZR, Gambotto A, et al. Increased function andsurvival of IL-15-transduced human dendritic cells are mediated by up-regulation of IL-15Ralpha and Bcl-2[J]. J Leukocyte Biology, 2002, 72(5): 1037-1045.
    22.丁勇,伍欣星,张炜,等.重组人乳头瘤病毒核酸疫苗诱导特异性淋巴细胞增殖[J].中国病毒学, 2002, 17(4): 304-307.
    23.Kanegane H, Tosato G. Activation of naive and memory T cells by interleukin-15[J]. Blood, 1996, 88(1): 230-235.
    1.Hernando JJ, Park TW, Kuhn WC. Dendritic cell-based vaccines in breast and gynaecol- ogic cancer[J]. Anticancer Res, 2003, 23(5b): 4293-4303.
    2.Elkord E, Williams PE, Kynaston H, et al. Differential CTLs specific for prostate-specif- ic antigen in healthy donors and patients with prostate cancer[J]. Int Immunol, 2005, 17(10): 1315-1325.
    3.罗荣诚,尤长宣.基因修饰树突状细胞介导肿瘤治疗的进展与展望[J].临床肿瘤学杂志, 2006, 11(6): 401-405.
    4.Pirtskhalaishvili G, Shurin GV, Gambotto A, et al. Transduction of dendritic cells with Bcl-xL increases their resistance to prostate cancer-induced apoptosis and antitumor effect in mice[J]. J Immunol, 2000, 165(4): 1956-1964.
    5.Xia DJ, Zhang WP, Zheng S, et al. Lymphotactin cotransfection enhances the therapeutic efficacy of dendritic cells genetically modified with melanoma antigen gp100[J]. Gene Ther, 2002, 9(9): 592-601.
    6.邹青,须霆,杨尔炘,等.两种前列腺多肽负载的树突状细胞治疗晚期前列腺癌的临床初步研究[J].临床泌尿外科杂志, 2008, 23(9): 649-652.
    7.Tacken PJ, De Vries IJ, Torensma R, et a1. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting[J]. Nat Rev Immunol, 2007, 7(10): 790-802.
    8.Osada T, Clay TM, Woo CY, et a1. Dendritic cell-based immunotherapy[J]. Int Rev Im- muol, 2006, 25(56): 377-413.
    9.Shu S, Zheng R, Lee WT, et a1. Immunogenicity of dendritic-tumor fusion hybrids and their utility in cancer immunotherapy[J]. Crit Rev Immunol, 2007, 27(5): 463-483.
    10.Troy A, Davidson P, Atkinson C, et a1. Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer[J]. J Urol, 1998, 160(1): 214- 219.
    11.Pirtskhalaishvili G, Shurin GV, Esche C, et a1. Cytokine-mediated protection of human dendritic cells from prostate cancer-induced apoptosis is regulated by the Bcl-2 familyof proteins[J]. Br J Cancer, 2000, 83(4): 506-513.
    12.Basler M, Groettrup M. Advances in prostate cancer immunotherapies[J]. Drugs & Aging, 2007, 24(3): 197-221.
    13.Somersan S, Larsson M, Fonteneau JF, et al. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells[J]. J Immunol, 2001, 167(9): 4844-4852.
    14.Sauter B, Albert ML, Francisco L, et al. Consequences of cell death: exposure to necrotic tumor cells,but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells[J]. J Exp Med, 2000, 191(3): 423-434.
    15.Singh-Jasuja H, Scherer HU, Hilf N, et al. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor[J]. Eur J Immunol, 2000, 30(8): 2211-2215.
    16.Tannenbaum CS, Tubbs R, Armstrong D, et al. The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor[J]. J Immunol, 1998, 161(2): 927-932.
    17.Fushimi T, Kojima A, Moore MA, et al. Macrophage inflammatory protein 3alpha transgene attracts dendritic cells to established murine tumors and suppresses tumor growth[J]. J Clin Invest, 2000, 105(10): 1383-1393.
    18.Steinman RM, Dhodapkar M. Active immunization against cancer with dendritic cells: the near future[J]. Int J Cancer, 2001, 94(4): 459-473.
    19.Qiaohua W, Dajing X, Svein C, et al. Adenovirus-mediated transgene-engineered dendr- itic cell vaccine of cancer[J]. Current Gene Therapy, 2005, 5: 237-247.
    20.Rodella L, Zamai L, Rezzani R, et al. Interleukin 2 and interleukin 15 differentially predispose natural killer cells to apoptosis mediated by endothelial and tumour cells[J]. Br J Haematol, 2001, 115(2): 442-450.
    21.Di Carlo E, Comes A, Basso S, et al. The combined action of IL-15 and IL-12 gene transfer can induce tumor cell rejection without T and NK cell involvement[J]. J Immunol, 2000, 165(6): 3111-3118.
    22.Tourkova IL, Yurkovetsky ZR, Gambotto A, et al. Increased function and survival of IL-15-transduced human dendritic cells are mediated by up-regulation of IL-15Ralpha and Bcl-2[J]. J Leukocyte Biology, 2002, 72(5): 1037-1045.
    1.陈慰峰.医学免疫学[M].北京:人民卫生出版社, 2006: 136-139.
    2.Rini B. Recent clinical development of dendritic cell-based immunotherapy for prostate cancer[J]. Expert Opin on Biol Ther, 2004, 4(11): 1729-1734.
    3.Fong L, Engleman EG. Dendritic cells in cancer immunotherapy[J]. Annu Rev Immunol, 2000, 18: 245-273.
    4.Schreurs MW, Eggert AA, Punt CJ, et al. Dendritic cell-based vaccines: from mouse models to clinical cancer immunotherapy[J]. Crit Rev Oncog, 2000, 11(1): 1-17.
    5.Basler M, Groettrup M. Advances in prostate cancer immunotherapies[J]. Drugs & Aging, 2007, 24(3): 197-221.
    6.那彦群.中国泌尿外科疾病诊断治疗指南[M].北京:人民卫生出版社, 2007: 30-93.
    7.Partin AW, Pound CR, Clemens JQ, et al. Serum PSA after anatomic radical prostatecto- my: The Johns Hopkins experience after 10 years[J]. Urol Clin North Am, 1993, 20(4): 713-725.
    8.Steinman RM, Dhodapkar M. Active immunization against cancer with dendritic cells: the near future[J]. Int J Cancer, 2001, 94(4): 459-473.
    9.Lipscomb MF, Masten BJ. Dendritic cells: immune regulators in health and disease[J]. Physiol Rev, 2002, 82(1): 97-130.
    10.Bai L, Feuerer M, Beckhove P, et al. Adavantages for clinical application in comparison to peripheral blood monocyte DC[J]. Int J Oncol, 2002, 20(2): 247-253.
    11.周勇,王海平,王全立.树突状细胞疫苗设计策略的研究进展[J].解放军医学杂志, 2006, 31(12): 1205-1206.
    12.Ribas A, Butterfield LH, Glaspy JA, et al. Cancer immunotherapy using gene-modified dendritic cells[J]. Current Gene Therapy, 2002, 2(1): 57-78.
    13.Wu Q, Xia D, Carlsen S, et al. Adenovirus-mediated transgene-engineered dendritic cell vaccine of cancer[J]. Current Gene Therapy, 2005, 5(2): 237-247.
    14.Troy A, Davidson P, Atkinson C, et al. Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer[J]. J Urol, 1998, 160(1): 214-219.
    15.Pirtskhalaishvili G, Shurin GV, Esche C, et al. Cytokine-mediated protection of human dendritic cells from prostate cancer-induced apoptosis is regulated by the Bcl-2 family of proteins[J]. Br J Cancer, 2000, 83(4): 506-513.
    16.Aalamian M, Pirtskhalaishvili G, Nunez A, et al. Human prostate cancer regulates generation and maturation of monocyte-derived dendritic cells[J]. Prostate, 2001, 46(1): 68-75.
    17.Pirtskhalaishvili G, Shurin GV, Gambotto A, et al. Transduction of dendritic cells with Bcl-xL increases their resistance to prostate cancer-induced apoptosis and antitumor effect in mice[J]. J Immuno1, 2000, 65(4): 1956-1964.
    18.Tourkova IL, Yurkovetsky ZR, Gambotto A, et al. Increased function and survival of IL-15-transduced human dendritic cells are mediated by up-regulation of IL-15Ralpha and Bcl-2[J]. J Leukocyte Biology, 2002, 72(5): 1037-1045.
    19.Kiertscher SM, Luo J, Dubinett SM, et al. Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells[J]. J Immunol, 2000, 164(3): 1269-1276.
    20.Basler M, Groettrup M. Advances in prostate cancer immunotherapies[J]. Drugs & Aging, 2007, 24(3): 197-221.
    21.Murphy G, Tjoa B, Ragde H, et al. Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen[J]. Prostate, 1996, 29(6): 371-380.
    22.Murphy GP, Tjoa BA, Simmons SJ, et al. Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease[J]. Prostate, 1999, 38(1): 73-78.
    23.Murphy GP, Tjoa BA, Simmons SJ, et al. Higher-dose and less frequent dendritic cellinfusions with PSMA peptides in hormone-refractory metastatic prostate cancer patients[J]. Prostate, 2000, 43(1): 59-62.
    24.Perambakam S, Hallmeyer S, Reddy S, et al. Induction of specific T cell immunity in patients with prostate cancer by vaccination with PSA146-154 peptide[J]. Cancer Immunol Immunother, 2006, 55(9): 1033-1042.
    25.Fuessel S, Meye A, Schmitz M, et al. Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: results of a phase I clinical trial[J]. Prostate, 2006, 66(8): 811-821.
    26.Waeckerle-Men Y, Uetz-von Allmen E, Fopp M, et al. Dendritic cell-based multi-epito- pe immunotherapy of hormone-refractory prostate carcinoma[J]. Cancer Immunol Immunother, 2006, 55(12): 1524-1533.
    27.Small EJ, Fratesi P, Reese DM, et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells[J]. J Clin Oncol, 2000, 18(23): 3894-3903.
    28.Burch PA, Breen JK, Buckner JC, et al. Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer[J]. Clin Cancer Res, 2000, 6(6): 2175-2182.
    29.Fong L, Brockstedt D, Benike C, et al. Dendritic cells injected via different routes induce immunity in cancer patients[J]. J Immunol, 2001, 166(6): 4254-4259.
    30.Barrou B, Benoit G, Ouldkaci M, et al. Vaccination of prostatectomized prostate cancer patients in biochemical relapse,with autologous dendritic cells pulsed with recombinant human PSA[J]. Cancer Immunol Immunother, 2004, 53(5): 453-460.
    31.Pandha HS, John RJ, Hutchinson J, et al. Dendritic cell immunotherapy for urological cancers using cryopreserved allogeneic tumour lysate-pulsed cells: a phase I/II study[J]. BJU Int, 2004, 94(3): 412-418.
    32.Heiser A, Coleman D, Dannull J, et al.Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors[J]. J Clin Invest, 2002, 109(3): 409-417.
    33.Shay JW, Bacchetti S. A survey of telomerase activity in human cancer[J]. Eur J Cancer,1997, 33(5): 787-791.
    34.Su Z, Dannull J, Benjamin K, et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8(+) and CD4(+) T cell responses in patients with metastatic prostate cancer[J]. J Immunol, 2005, 174(6): 3798-3807.
    35.Mu LJ, Kyte JA, Kvalheim G, et al. Immunotherapy with allotumour mRNA-transfected dendritic cells in androgen-resistant prostate cancer patients[J].Br J Cancer, 2005, 93 (7): 749-756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700