用户名: 密码: 验证码:
1,25-(OH)_2D_3及复方丹参对大鼠异基因骨髓移植后免疫耐受和造血重建的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本课题从基础研究入手,在建立大鼠异基因骨髓移植急性移植物抗宿主病(aGVHD)模型的基础上,用1,25-(OH)2D3及复方丹参作为干预方案,观察移植后大鼠aGVHD发生的严重程度、病理变化、造血恢复时间及T细胞亚群和细胞因子在体内的变化,探讨这种变化与相应事件之间的关系,并分析T淋巴细胞亚群和细胞因子对aGVHD的诊断价值及药物干预对其的影响。
     方法:本研究分三部分;第一部分建立稳定的大鼠异基因骨髓移植急性移植物抗宿主病动物模型;第二部分1,25-(OH)2D3及复方丹参作为干预因素,对大鼠异基因骨髓移植后急性移植物抗宿主病和造血重建的影响;第三部分异基因骨髓移植后T细胞亚群和细胞因子的变化与免疫状态的关系。本研究采用随机对照研究、动态检测的方式来观察aGVHD组和干预组在大鼠异基因骨髓移植后aGVHD的程度、病理变化、造血恢复时间、体内细胞因子(IL-2和IFN-γ;IL-4和IL-10)以及T细胞亚群(CD4+、CD8+)的变化,用原位杂交的实验原理,在受鼠体内检测供鼠的Y染色体,以证实移植成功;用成熟的生物学方法(ELISA法)检测细胞因子,用免疫细胞学技术(流式细胞仪)检测T淋巴细胞亚群。
     结果:第一部分结果显示:建立一个稳定的异基因骨髓移植急性移植物抗宿主病动物模型,需要加入脾细胞,骨髓细胞与脾细胞按1∶1及1∶1.5混合,大鼠aGVHD的发病时间相对集中于移植后的2~3周,中位生存时间分别为18.5天及16.5天,且全部出现较典型的aGVHD临床及病理表现。第二部分结果表明1,25-(OH)2D3组大鼠外周血白细胞、血红蛋白、血小板在不同时间点(第7,14,21天)的变化均高于aGVHD组,在移植后第21天白细胞、血红蛋白值均达到正常,血小板计数虽明显高于aGVHD组,差异有统计学意义(P<0.05),但仍未恢复正常;丹参组变化趋势与1,25-(OH)2D3组一致,且1,25-(OH)2D3组及复方丹参组组间比均无差异,联合组疗效并不优于单药组。本实验观察到尽管aGVHD组及干预组大鼠在50天观察期内全部死亡,但干预组与aGVHD组相比,其aGVHD的发病时间延迟,临床aGVHD评分降低,平均生存时间明显延长,差异有统计学意义(P<0.05),干预组大鼠的aGVHD的病理表现较aGVHD组轻。第三部分结果显示:aGVHD组CD4+值在移植后明显增加,与移植前相比差异有统计学意义(P<0.05),以第14天增高最为明显,第21天其数值接近移植前水平;CD8+的走势与CD4+相似, aGVHD组CD4+/CD8+的数值变化亦以第14天增高较为明显,T细胞亚群的变化与发生aGVHD的时间相一致;经干预处理后CD4+、CD8+增高的幅度较aGVHD组降低,差异有统计学意义(P<0.05),以CD4+更为明显,各干预组CD4+/CD8+的比值以第21天增高较为明显。
     aGVHD组所测得的细胞因子IL-2、IFN-γ在移植后呈上升趋势,IL-10呈下降趋势,均以第14天为明显变化点,与第0天相比差异有统计学意义(P<0.05);第21天各指标接近移植前水平;IL-4在移植后各时间点其数值变化呈下降趋势;IL-2、IL-10、IFN-γ变化趋势与其在移植后第14天发生aGVHD相一致。
     各干预组细胞因子IL-2、IFN-γ在移植后呈下降趋势,21天略有升高;IL-10则呈上升趋势,21天有所下降,与第0天相比均有统计学差异(P<0.05);IL-4各干预组在各时间点其数值变化呈上升趋势,变化幅度较小。各干预组经各自不同的干预方案预处理后,发生aGVHD的时间在21天左右,程度轻,IL-2、IL-10、IFN-γ的变化趋势与其一致。细胞因子在各时间点与aGVHD组比较差异有统计学意义。
     结论:本研究成功建立全疆首个大鼠异基因骨髓移植aGVHD动物模型,骨髓细胞与脾细胞按1∶1及1∶1.5混合可以作为异基因骨髓移植后aGVHD研究的理想模型。将1,25-(OH)2D3及复方丹参作为干预因素,在大鼠异基因骨髓移植后能够促进造血重建并有预防aGVHD的作用;且干预方案能够明显降低CD4+T淋巴细胞的数量,调节Thl/Th2平衡,抑制Thl亚群(IL-2、IFN-γ)的增殖及功能发挥,促进Th2亚群(IL-10)的增殖,发挥免疫耐受的作用。细胞因子IL-4在本研究变化不显著,提示联合多个细胞因子和T细胞亚群的检测有助于免疫状态的判定。
Objective: The study began with fundamental research set up acute graft-versus-host disease(aGVHD) rat models of allogenic bone marrow transplantation, aimed to 1,25-(OH)2D3 and salvia miltiorrhiza as the interventional measures, to observe changes of aGVHD severity, physiology, hematopoietic recovery time, T cell subgroups and cytokines in rats after transplantation, to investigate the relationship between these changes and corresponding events and also to analyze the significance of T lymphocyte subgroups and cytokines to aGVHD diagnosis and influence of drug intervention.
     Methods: The study consisted of three parts: firstly, establishing aGVHD animal models of allogenic bone marrow transplantation with rats; secondly, observing influence of 1,25-(OH)2D3 and salvia miltiorrhiza on aGVHD and hematopoietic reconstitution of rats after allogenic bone marrow transplantation; and thirdly, observing influence of drugs on immune state of bodies. Random control studies and dynamic detection were adopted to observe aGVHD severity, physiological changes, hematopoietic recovery time, changes of internal cytokines (IL-2 and IFN-γ; IL-4 and IL-10) and T cell subgroups (CD4+ and CD8+) of rats in the aGVHD group and the intervention groups after allogenic bone marrow transplantation; in-situ hybridization was used to detect Y chromosomes of donor rats in recipient rats to verify the success of transplantation; a mature biological method (ELISA) was employed to detect cytokines and immunocytology technology (flow cytometer) was used to detect T lymphocyte subgroups.
     Results: Results of the first part indicated that spleen cells were required to establish a stable aGVHD animal mode of allogenic bone marrow transplantation. Bone marrow cells and spleen cells were mixed at 1∶1 and 1∶1.5, the attack time of aGVHD in rats was relatively centralized 2~3 weeks after transplantation; the median survival time was respectively 18.5 and 16.5 days and all subjects exhibited typical clinical and pathological manifestations of aGVHD. Results of the second part suggested that in the 1,25-(OH)2D3 group, changes of peripheral white blood cells, hemoglobin and platelets of rats were all higher than in the control group at different time points (the 7th, 14th and 21st day); on the 21st day after transplantation, results of white blood cell and hemoglobin examinations both reached normal, and the platelet count, though obviously higher than in the control group, didn’t return to the normal level. The change trend in the salvia group was consistent with that in the 1,25-(OH)2D3 group with no significant difference in comparison, and the therapeutic efficacy in the combined group was not better than in the single groups. It was found that all rats in the aGVHD group and intervention groups died in the 50-day study period, but the attack time of aGVHD was delayed in the intervention groups compared with that in the aGVHD group, the clinical aGVHD records of rats in the intervention groups were also lower than those of rats in the aGVHD groups, the average survival time was also markedly lengthened compared with that of rats in the aGVHD group with difference of statistical significance (P<0.05), and the pathological manifestation of aGVHD in rats of the intervention groups was milder than in the aGVHD group. Results of the third group showed that CD4+ value of the aGVHD group was significantly increased after transplantation with statistically significant difference in comparison with that before transplantation (P<0.05). The increase peaked on the 14th day and the value of the 21st day approximated to the level before transplantation; the trend of CD8+ was similar to that of CD4+; the CD4+/CD8+ value change of the aGVHD group was also the most notable on the 14th day and confirmed to the aGVHD onset time; after interventional treatment, the increase amplitudes of CD4+ and CD8+, CD4+ in particular, were lower than in the aGVHD group, and the CD4+/CD8+ value of each intervention group increased fairly remarkably on the 21st day.
     In the aGVHD group, cytokines including IL-2 and IFN-γshowed increase trend while IL-10 showed decrease trend in examinations after transplantation. All of them displayed marked changes on the 14th day with statistically significant difference compared with the level before transplantation (P<0.05). All indexes approximated the levels before transplantation on the 21st day; after transplantation, the IL-4 value changes at each time point showed a decrease tendency; the change trends of IL-2, IL-10 and IFN-γwere in conformity with the fact that aGVHD occurred on the 14th day after transplantation.
     Cytokines including IL-2 and IFN-γof each intervention group decreased after transplantation with a slight increase on the 21st day, but the IL-10 showed an increase tendency with a slight decrease on the 21st day. All of them had statistical difference in comparison with levels before the transplantation (P<0.05); in each intervention group, the IL-4 value change displayed an increase tendency at each time points, but the change amplitude was low. After pretreatment with different interventional measures, aGVHD occurred on around the 21st day with mild severity and the IL-2, IL-10 and IFN-γchanged in a synchronous tendency. Cytokines at each time point had statistically significant difference in compared with levels in the aGVHD group.
     Conclusion: this study successfully setup the first aGVHD rat models of allogenic bone marrow transplantation in Xinjiang area. An ideal model can be created for studies on aGVHD after allogenic bone marrow transplantation when bone marrow cells and spleen cells are mixed at 1∶1 and 1∶1.5. 1,25-(OH)2D3 and salvia miltiorrhiza, as interventional factors, can promote hematopoietic reconstitution and prevent aGVHD in rats after allogenic bone marrow transplantation. The value of CD4+/CD8+ increases when aGVHD is severe and decreases when aGVHD is alleviated. Cytokines related to Th1, including IL-2 and IFN-γ, showed decrease tendencies generally in each intervention group, and the IL-10, a cytokine related to Th2, is in an increase tendency in general, indicating 1,25-(OH)2D3 and salvia miltiorrhiza have effects of regulating Th1/Th2 balance, inhibiting proliferation and function of Th1 subgroups, promoting proliferation of Th2 subgroups and acting for immune tolerance. No marked changes occurred to IL-4, suggesting detection of more than one cytokines and T cell subgroups is conducive to judgment of immune state.
引文
[1] Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast pre-cursors in normal and irradiated mouse hematopoietic organs[J]. Exp Hematol 1976, 4:267-272
    [2] Mori S, El-Baki H, M ullen CA. Analysis of immunodominance among minor histocom patibility antigens in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2003, 31(10):865-875.
    [3] Kloosterboer FM, van Luxemburg-Heijs SA, van Soest RA, et a1. Direct cloning of leukemia-reactive T cells from patients treated with donor lymphocyte infusion shows a relative dominance of hematopoiesis-restricted minor histocompatibility antigen HA-1 and HA-2 specific T cells. Leukemia, 2004, l8(4):798-808.
    [4] M utis T, Verdi R, Schrama E, et a1. Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system restricted minor histocompatibility antigens. Blood, 1999, 93(7):2336-2341.
    [5] Weber M, Lange C, Gunther W, et a1. Minor histocom patibility antigens on canine hemopoietic progenitor cells. J Immunol, 2003, 170(12):5861-5868.
    [6]杨守礼.维生素D研究的新趋势-维生素D免疫学.中国骨质疏松杂志, 2004, l0(1):1-6
    [7] Deluca HF, Cantorna MT. Vitamin D:its role and uses in immunology. FASEB J, 2001, 15:2579-2585
    [8] Hayes CE, Nashold IrE, Spach KM, et a1. The immunological functions of the vitamin D endocrine system. Cell Mol Biol, 2003, 49:277-300.
    [9] Lemire J 1,25-Dihydroxyvitamin D3-a hormone with immunomodulatory properties. Z Rheumatol, 2000, 59(supp1 1):24-27
    [10] Mathieu C, Adorini L The coming of age l, 25 -dihydroxyvitamin D3 analogs as immunomodulatory agents. Trends Mol Med, 2002, 8:174-179.
    [11] Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecu1ar action of vitamin D. Physiol Rev, 1998, 78:1193-1231.
    [12] Provvedini DM, ts0ukas CD, Defies U, et a1. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science, 1983, 221:1181-1183.
    [13] Bhalla AK, Amento EP, Clemens TL, et a1. Specific high-affinity receptors for dihydmxycholccalciferol in human peripheral blood mononuclear cells:presence in monocytes and induction in T lymphocytes following activation. J ClinEndocrinol Metab. 1983, 57:1308-1310.
    [14] Yang S, Smith C, Prahl JM, et a1. Vitamin D deficiency suppresses cell-mediated immunity in vivo. Arch Biochem Biophys, 1993, 303:98-106.
    [15] Yang S, Smith C, DeLuna HF. 1,25-dihydroxyvitamln D3 and 19-nor-1,25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochen Biophys Acta, 1993, 1158:279-386.
    [16] Takeuchi A. Reddy GS. Kobayashi T. et a1. Nuclear factor Of activated T cells as a molecular target for 1-25-Dihydroxyvitamin D3-mediated effects. J lmmuno1. 1998, 160:209-218.
    [17] Penna G, Adofini L. 1a, 25-Dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol, 2000, 164:2405-2411.
    [18] Zuo ZX, Wang C, Carpenter D, et a1. Prolongation of all survival with viral IL-10 transfection in a highly histoincompatible model of rat heart allograft rejection. Transplantation, 2001, 71:686-691.
    [19] Halloran PF, MillerLW, Urmson J, et a1. IFN-gamm alters the pathology of graft rejection:protection from early necrosis. J Inanunol, 2001, 166:7072-7081.
    [20] Lemire JM, et a1. Immunosuppressive actions of 1,25-dihydroxyvitamin D3:preferential inhibition of TH1 functions. J Nutr, 1995,125(6 Supp1):1704s-1708s.
    [21] Cantorn MT, eta1. 1,25-dihydroxyvitamin D3 is a positive regulator for the two anti-encephalitogenic cytokines
    [22] Boonstra A, Bacrat FJ, Crain C, et a1. 1alph, 25-Dihydmxyvitamin D3 has a direct effect on naive CD4+T cells to enhance the development of Th2 cells. J Immunol, 2001, 167:4974-4980.
    [23] Grifn MD, Lutz W, Phan VA, et a1. Dendritic cell modulation by 1,25-dihydroxyvitamin D3 and its analogs:a vitamin
    [24]章爱斌,郑树森. I, 25-(OH)2D3的免疫抑制作用及其在器官移植中的应用.国外医学外科学分册, 2003, 30(5):285-287
    [25] Lemire JM, Archer DC. 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Invest, 199l, 87:1103-1107.
    [26] Cantoma MT, Hayes CE, DcLuca HF. 1,25-dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyclitis. Proc Natl Acad Sci USA, l996,93:7861-7864.
    [27] Gregori S, GiarrantanaN, Smimldo S, et a1. l, 25-dihydroxyvitamin D3 analog enhances regulatory T-cell and arrests autoimmune diabetes in NOD mice. Diabetes, 2002, 51:1367-1374.
    [28] Becker BN, Huler DA, Herrin JK, et a1. Vitamin D3 as immunomodulatory therapy for kidney transplantation. 2OO2, 74:1204-1206.
    [29] Redaelli CA, Wagner M, Tieh YH, et a1. 1,25-Dihydroxycholecalciferol reduces rejection and improves survival in rat liver allografs. Hepathology, 2001, 34:926-934.
    [30] Asehenbrenner Jl, Lacseke PF, Sollinger HW, et a1. Oral 1,25-(OH)2D3 modulates the progression of chronic allograft nephropathy by altering TGF beta-I signaling protein. Am J Transplant, 2001, 1(Suppl1):245-251.
    [31] ZhangAB, Zheng SS, Jia CK, et a1. Effect of 1,25-dihydroxyvitamin D3 on preventing allograft from acute rejection fllowing rat orthotopic liver transplantation. W0rld Gestroenterol, 2003, 9:1067-1071.
    [32]陈江华姜睿,何强.维生素D衍生物联合供者骨髓细胞输注诱导异基因大鼠心脏移植免疫耐受.中华器官移植杂志, 2004, 25(1):38-41
    [33]党森涛,陆晓和,周瑾. 1,25-二羟维生素D对高危角膜移植急性排斥反应及角膜新生血管的影响.第一军医大学学报, 2004;24(8):892-896
    [34] Hullett DA, et a1. Prolongation of allograft survival by 1,25-dihydroxyvItamin D3. Transplantation, 1998,66(12):824-828.
    [35]章爱斌,郑树森贾长库.骨化三醇预防大鼠原位肝移植后急性排斥的动态观察.中华普外科杂志, 2003, 18(12)
    [36] Wekerle T. Sykes M. Mixed chimerism and transplantation tolerance. Ann Rev Med, 2001, 52:353-370.
    [37] Morelli AE, Hackstein H, Thomson AW. Potential of tolerogenie dendritic cells for transplantation[J]. Semin Immunol, 2001, 13(5):323-335
    [38]王胜军,刘恭植,许化溪.树突状细胞诱导外周免疫耐受的机制.国外医学分子生物学分册, 2002, 24(4):209-212
    [39] Waller EK, Lynn MJ, Boyer M, et a1. Survial after allogeneic bone marrow transplantation(BMT)is predicted by the number of transplanted donor CD34 cells and donor dendritic cell progenitors(DCPs). Blood, 1998,92(suppl 1):2041
    [40] Shlomchid WD, Couzens M S, Tang CB, et al, Prevention of graft versus host disease by inactivation of host antigen-presenting cells, Science, 1999;285:412-415
    [41] Pulendran B, Smith JL, Caspary G, et al. Distinct dendritic cell subsets differentially regulate the class of immune responsein vivo[J]. Proc Natl Acad Sci(USA), 1999, 96(3):l036-l041
    [42] Gibbs PJ, Tan LC, Sadck SA, et al. Comparative evaluation of‘TaqMan’RT-PCR and RT-PCR ELISA for immunological monitoring of renal transplant recipients[J]. Transplant Immunology. 2003, 11(1):65-72
    [43] Truong LD, Shappell S, Barrios R, et al. Immunohistochemistry and molecular biology markers of renal transplant rejection: diagnostic applications[J]. transplantation review. 1996, 10( 4):187-208
    [44] Hernandez-Fuentes MP, Warrens AN, Lechler RI. Immunologic monitoring[J]. Immunol Rev. 2003, 196:247-64
    [45] Roitt I, Brostoff Jand Male D 6th ed Immunology, Harcourt Asia Ptd Ltd 2001
    [46] Nickerson P, Steiger J, Zheng XX, et a1. Manipulation of cytokine networks in transplantation[J]. Transplantation, 1997, 63:489-494
    [47] He XY, Chen J, Verma N, et a1. Treatment with inter1eukin-4 prolongs allogeneic neontal heart graft survival by inducing T helper 2 responses[J]. Transplantation. 1998, 65:1145-1152
    [48] Li w, Fu FM, Lu L, et a1. Differential effects of exogenous interleukin-10 on cardiac allograft survival[J]. Transplantation, 1999, 68:1402-1409
    [49] Spriewald BM, Billing JS, wood KJ. Cytokines as mediators in immunologic tolerance[J]. Curt opin Organ Transplant, 2001;6(1):7-l3
    [50] Feng ZH, Zhou YC, Li JG, Wang QC. Cytokine enhances immune responses to DNA vaccine of HCV[J]. Di-si Junyi Daxue Xuebao(J Fourth Mil Med Univ), 2000;21(7):834-836
    [51]张晓雪,昌盛. Th细胞因子在移植免疫中的研究新进展.国外医学免疫学分册, 2OO2, 25(6):307-311
    [52] David A, Chetritt J, Guillot C, et a1. Interleukin-10 produced by recombinant adenoviruss prolongs survival of cardiac allografts in rats. Gene Ther, 2000, 7(6):505-510
    [53] Krenger W, Cooke KR, Crawford JM, et a1. Transplantation of polarized type 2 donor T cells reduces mortality caused by experimental graft-versus-host disease. Transplantation, 1996,62:1278-1285
    [54] Qian S, Lu L, Fu F, et a1. Apoptosis within spontaneously accepted mouse liver allografts:Evidence for deletion of cytotoxic T cells and implications for toleranceinduction[J]. J Immunol, l997, 158(10):4654-4668
    [55] Hung YS, Laks H, Cui G, et a1. Localized immunosuppression in the cardiac allograft induced by a new liposome-mediated IL-10 gene therapy. J Heart Lung Transplant, 2002, 21(11):1188-1200
    [56] Qin L, Ding Y. Viral lL-10 induced immunosupression requires Th2 cytokines and impairs APCc function within the allograft[J]. J Immunol, 2001, 166(4);2385
    [57] DeBruyne LA, LiK, Chan SY, et a1. Lipid-mediated gene transfer of viral interleukin- 10 prolongs vascularized cardiac allograft survival by inhibiting donor-specific celluar and humoral immune responses[J]. Gene Ther, 1998, 5:1097
    [58]毕树雄,戴克寸戎,汤亭亭. IL-4与IL-10联合诱导异种骨移植免疫耐受的体外研究.实用骨科杂志, 2004, 10(4):334-336
    [59] Tomura M, Nakatani I, Murachi M, et a1. Suppression of allograft responses induced by interleukin-6, which selectively modulates interferon-gamma but not interleukin-2 production. Transplantation, 1997, 64(5):757-763
    [60] Josien R, Douillard P, Guillot C, et a1. A critical role for transforming growth factor-beta in donor transfusion-induced allograft tolerance. J Clin Invest, l998, l02:l920-1926
    [61] Cooke KR, Kobzk L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation[J]. Blood, 1996, 88(8):3230-3239
    [62] Wilke M, Dolstra H, Maas F, et a1. Quantification of the HA-1 gene product at the RNA level; relevance for immunotherapy of hematological malignancies. Hematol J. 2003, 4(5):315-320.
    [63] Mutis T, Ghoreschi K, Schrama E, et a1. Efficient induction of minor histocompatibility antigen HA-1-specific cytotoxic T-cells using dendritic cells retrovirally transduced with HA-1-coding eDNA. Bilo Blood Marrow Transplant, 2002, 8(8):412-419.
    [64] GiIlespie G, Mutis T, Schrama E, et a1. HLA class 1-minor histocompatibility antigen tetramers select cytotoxic T cells with high avidity to the natural ligand. Hematol J. 2000. 1(6):403-410.
    [65] Verdiik RM, Mutis T, Wlike M, et a1. Exclusive TCRbeta chain usage of ex vivo generated minor Hiscompatibility antigen HA-1 specific cytotoxic T cells: implication for monitoring of immunotherapy of leukemia by TCRBV spectratyping. Hematol J, 2002, 3(6):271-275.
    [66] Mutis T, Blokland E, Schrama E, et a1. Generation of allo HLA restricted minor histocompatibility antigen HA-1 specific cytotoxic T cells as tools for treatment of relapsed leukemia following HLA-mismatched stem cell transplantation. Bone M arrow Transplantation, 2001(Suppl 1 abstr). 27:S1.
    [67] Heemskerk MH, Hoogeboom M, de Paus RA, et a1. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor hiscompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood. 2003, 102(10):3530-3540.
    [68] Vallera DA, Sodevling CCB, Carlson GJ; etal. Bone manorrow transplantation across major histo computibility barriers in mice[J]. Transplantation, 1981, 31(2):218- 226
    [69] 12. Sprent J, Schaefler M; Gao EK, et al. Role of T cell subsets in lethal graft- versus-host disease directed to classⅠversns classⅡH-2 differences[J]. J EXP Med, 1998, 167(44):556-569
    [70] Speriser DE, Bachman MF, Shahinian A, et al. Acute graft-versns-host disease with at costimulation via CD28[J]. Transplantation, 1997, 63(7):1042-1050
    [71] Cooke KR, Kobzk L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation[J]. Blood, 1996, 88(8):3230-3239
    [72]兰炯采,刘红雨,陈强等?人脐血移植的裸鼠模型[J].中国实验血液学杂志2000;8(1):52-55
    [73]刘传芳,彭军,张玉昆等?不同方式骨髓移植对辐射小鼠GVHD反应影响的研究?中国辐射卫生, 2002, 11(2):69-70
    [74]李俭杰,张毅,张明伟等?小鼠H-2半相合非清髓同种异基因造血干细胞移植模型的建立及其相关研究?中国实验血液学杂志[J] 2004;12(5):655-660
    [75]杨志刚,曾耀英,何贤辉等?NK细胞在小鼠异基因骨髓移植中的作用[J].中国病理生理杂志, 2004;20(9):1563-1567
    [76]徐之良,邹萍,刘凌波?转染mFasL cDNA小鼠造血细胞预防移植物抗宿主病的实验研究《中华器官移植杂志》2003, 24(4):209-210
    [77]张梅,吴迪,徐汇,等NK细胞对小鼠H22单倍体相合骨髓移植后GVHD及造血重建的影响第四军医大学学报2007, 28 (5):418-420
    [78]胡晶,冯敏,杨慧,等当归多糖动员的造血干/祖细胞移植重建小鼠造血功能的研究第三军医大学学报, 29(23):2236-2239
    [79]裴夫瑜,李春富,许红波?异种骨髓移植中移植物抗宿主病的实验研究[J].中国现代医学杂志, Vol. 13 No. 13:1-4
    [80] Waller EK, Redei I, Yeager AM, et al. 7. 5Gy irradiation attenuates the graft versus host disease potential of allogeneic lymphocytes while preserving antileukemic activity in preclinical and clinical studies. The 39th Annual Meeting of Hematology, SanDiego, 1997.
    [81] Guerriero A, Boyer M, Waller EK.γIrradiation activates NFκB in human T cells. The 39th Annual Meeting of Hematology, SanDiego, 1997.
    [82] Igietseme JU, Smith K, Simmons A, et al. Effect of gamma irradiation on the effect or function of T lymphocytes in microbial control. Int J Radiat Biol, 1995, 67:557 564.
    [83]张立成,郭坤元,罗庆良.γ射线照射预防供者淋巴细胞输注相关移植物抗宿主病的实验研究?中华血液学杂志, 1999, 20:493-495.
    [84]邓晓辉,翁霞,梁辉等不同预处理方案对异基因骨髓移植物抗宿主病的影响?免疫学杂志2003, 19(1):33-35
    [85]胡军,严媚,江明等,大鼠异基因骨髓移植急性移植物抗宿主病模型的建立[J].中国比较医学杂志, 2007, 17(10):581-583
    [86]刘传芳,彭军,姜国胜等,少量多次异基因骨髓移植的实验研究[J].中国免疫学杂志, 2002, 18(4):268-271
    [87]杜遵民等,中国辐射卫生, 2003, 12(4):198-200
    [88]方建培,徐宏贵,黄绍良等,胎鼠血及新生鼠外周血分次移植对造血干细胞植入影响的实验研究?中华血液学杂志2002, 23(12):658-659
    [89]许红波,李富春等?异种骨髓移植移植物抗宿主反应的实验动物模型[J]?中国实验血液学杂志, 2003, 11(1):188-190
    [90]杨志刚,曾耀英等?小鼠异基因骨髓移植急性移植物抗宿主病模型的建立中国病理生理杂志, 2004, 20(10):1947-1949
    [91] Goker H, Haznedaroglu IC, Chao NJ. Acute graft- versus- host-disease: Pathobiology and management[J]. Exp Hematol, 2001, 29(3):259-277
    [92]戚峰,王鹏志,朱理玮,等.复方丹参对异种移植物的保护作用[J].天津医药, 2003, 31(12):780-782
    [93] Jordan SC, Nigata M. Mullen Y. 1,25-dihydroxyvitamin D3 pro-longs rat cardiac allograft survival. Berlin, 1988, 334-335.
    [94] Ji XY, Tan BK, Zhu YZ. Salvia miltiorrhiza and ischemic diseases. Acta Pharmacol Sin, 2000, 21(12):1089-94.
    [95]阴健,郭力弓.中药现代研究与临床应用北京:学苑出版社. 1994, 89-94.
    [96]伍锟,张金彦,朱利军.丹参在肾移植急性血管排斥反应治疗中的应用.医学临床研究, , 2003, 2O(8):578-580.
    [97]黄祖发,伍锟.丹参在治疗慢性移植肾肾病中的应用研究.中国医师杂志, 2002, 4(1):19-20
    [98] Nolta JA, Hanley MB, Kohn DB, et al. Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3 : analysis of gene trans-duction of long-lived progenitors. Blood, 1994 ; 83 : 3041 - 3051
    [99]蒋激扬,李爱玲,王光明等转染IL-3基因的骨髓基质细胞促进骨髓移植小鼠造血功能重建中国实验血液学杂志2003, 11 (6):633 - 638
    [100]杨志刚,曾耀英,何贤辉等, NK细胞在小鼠异基因骨髓移植中的作用中国病理生理杂志2004, 20(9)1563-1567
    [101]刘丹,孙汉英,刘文励等,川芎嗪对同基因骨髓移植小鼠骨髓细胞PECAM-1/CD31分子表达与造血重建的作用,中国实验血液学杂志, 2004, 12(4):489-492
    [102]何莉,孙汉英,刘文励等,川芎嗪对同基因骨髓移植小鼠骨髓中干细胞因子表达的影响,中国血液流变学杂志, 2004, 14(1):9-11
    [103]刘晓,武正炎,范萍?黄芪与粒细胞—集落刺激因子对外周血干细胞移植术后早期造血功能重建影响的观察,南京医科大学学报, 2000年, 20(4):281-283
    [104]刘晓,武正炎,范萍?黄芪在外周血造血干细胞移植中应用的初步实验研究,镇江医学院学报, 2001, 11(1):15-17
    [105] Gupta RK, Jain M, Sharma RK. Serum & urinary interleukin-2 levels as predictors in acute renal allograft rejection[J]. Indian J Med Res. 2004, 119(1):24-27
    [106] Oliveira G, Xavier P, Murphy B, et al. Cytokine analysis of human renal allograft aspiration biopsy cultures supernatants predicts acute rejection. Nephrol Dial Transplant[J]. 1998, 13(2):417-422
    [107] Casiraghi F, Ruggenenti P, Noris M, et al. Sequential monitoring of urine-soluble interleukin 2 receptor and interleukin 6 predicts acute rejection of human renal allografts before clinical or laboratory signs of renal dysfunction[J]. Transplantation. 1997, 63(10): 1508- 1514
    [108] Noronha IL, Eberlein-Gonska M, Hartley B, et al. In situ expression of tumor necrosis factor-alpha, interferon-gamma, and interleukin-2 receptors in renal allograft biopsies[J]. Transplantation. 1992, 54 (6): 1017-1024
    [109] Nast CC, Zuo XJ, Prehn J, et al. Gamma-interferon gene expression in human renalallograft fine-needle aspirates[J]. Transplantation. 1994, 57(4):498-502
    [110] Fitzgerald JT, Johnson JR, Perez RV. Et al. Pre-transplant elevations of interleukin-12 and interleukin-10 are associated with acute rejection after renal transplantation[J]. Clin Transplant. 2004, 18(4): 434-439
    [111] Kutukculer N, Clark K, et al. The value of posttransplant monitoring of interleukin (IL)-2, IL-3, IL-4, IL-6, IL-8, and soluble CD23 in the plasma of renal allograft recipients[J]. Transplantation, 1995, 59(3):333-340.
    [112]肖家全,唐孝达,免疫抑制剂用量对肾移植受者细胞因子谱系的影响[J].中华移植器1官杂志. 2002, 23(5):269-272.
    [113] Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell, 2000, 101(5): 455-458.
    [114] Sakaguchi S. Naturally arising CD4+ regilatory T cells for immunologic self-tolerance and negative eciiirol of immune responses. Ann Rev Immunol. 2004,22: 531-562.
    [115] Hanash AM, Levy RB Dcnor CD4+ T cells promote engm'tmem tnd tolerance following MHC mismatched hema-topuieiic cell transplantation. Blood, 2004, 105(4): 1828-1836.
    [116] Albert MH. Liu Y. Anasetti C et al. Antigen-dependent suppression of alloresponses by Foxp3-induced regulatory T cells in transplantation. Eur J Immunol, 2005, 35(9). 2598-2607.
    [117] Waldmann H, Cobbold S. Exploiting tolerance processes intransplantation. Science, 2004, 305(5681): 209-212.
    [118] Zheng SC Wang JH, Gray JD. Et al. Natural and induced CD4+ CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol, 2004, 172(9): 5213-5221.
    [119]吴小剑,兰平,王东平,等?无能T淋巴细胞的建立及其免疫生物学特性的研究,中华器官移植杂志, 2005, 26(1):40-44.
    [120] Fehervari Z, Sakaguchi S. CD4+ Tregs and immune control[J]. J Clin Invest. 2004, 114(9):1209-17 (J)
    [121] Stephens LA, Barclay AN, Mason D. Phenotypic Characterization of regulatory CD4+ CD25+T cells in rats. Int Immunol, 2004, 16(2): 365-375.
    [122] Meyer D. Thorwarth W. Otto C et al. Early T-cell inactivation and apoptosis-critical events for tolerance induction after allo-geneic liver transplantation. Transplant Proc, 2001, 33 ( 1-2): 256-258.
    [123]汪爽.调节性T细胞和免疫耐受.国外医学免疫学分册, 2001, 24(1) :1
    [124] D A I Y B, H U A N G X, LU O ZG, etal. Inhibitory effect of sinom enine on acute rejection reaction in renal transplantation of rat[J]. China Journal of M odern M edicine, 2004, 14(11): 49-54.
    [125] Sun J, Sheil A G, Wang C, et al. Tolerance to rat liver allografts : accep-tance depends on the the quantity of donor tissue and on donor leukocyers. Transplantation, 1996, 62(12):1725
    [126] Sayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection[J]. New Eng J Med. 1998, 338(25): 1813-1821
    [127] Kamada N. The immunology of experimental liver transplantation in the rat. Immunology, 1985, 55(3): 369-389.
    [128] Asai-'uia H, Ku CKataoka M, et al. Regulatory cells develop after the spontaneous acceptance of rat liver allograts. Surgery, 2004, 136(3): 532-536.
    [129] ZH A N G H, W U D L, W U T, et al. G ytom egalovirus infection is related to the rejection in renal allograft recipiehts[J]. China Journal of M odern M edicine, 2002, 12(2): 21-22. Chinese
    [130] Bishop GA, McCanghan GW. Immune activation required for the induc-tion of liver llograft tolerance:implications for immunosuppressive therpy. LiverTranspl, 2001, 7 :161-172.
    [131] Kamada N, Calne RY. A surgical experience with 530 transplant in therat. Surg, 1983, 93:64-69.
    [132] Bishon GA, Sun J, Sheil AG, et al. High dose / activation on associated tolerance :a mechanism for allograft tolerance. Transplantation, 1997, 64(10):1377
    [133] Walsh PT, Taylor DK, Turka LA. Tregs and transplantation tolerance. J Clin Invest, 2004, 114(10):1398-1403.
    [134]刘彤,戚风,张建平,等?大鼠小肠移植后外周血CD45RC+细胞核CD45RC细胞比例变化及意义?中华器官移植杂志, 2005, 26(7): 404-407.
    [135] Wang C, Sun J, Sheil A, etal. A short course of methylprednisolone im-munosuppression inhibits both rejection and spontaneous acceptance ofrat liver allografts. Transplantation, 2001, 72:44-51.
    [136] Calne RY, Watson CJ E, Makisalo BH, et al. Tolerance of porcine renalallografts induced by donor spleen cells and seven days, treatment with cyclosporine. Transplantation, 1994, 57:1433-1435
    [137] Taams LS, Vukmanovic-Stejic M, Smith J, et al. Antigen-specific T cellsuppression by human CD4+ CD25+T regulatory cells. Eur J Immunol, 2002, 32(6): 1621-1630.
    [138] Asakura H, Ku CKataoka M, et al. Regulatory cells develop after the spontaneous acceptance of rat liver allografts. Surgery, 2004, 136(3): 532-536.
    [139] Kohlhaw K, Sack U, Lehmann I. The monoclonal anti-CD4 antibody RIB5/ 2 induces donor-specific tolerance in the high2responder liver transplant model in the rat. Transplant Proc, 2001, 33:2371-2376.
    [140]吕凌张峰浦立勇等,自发免疫耐受大鼠移植肝内调节性T细胞的生物学特性,中华器官移植杂志2007, 28(2):67-70
    [141]古维立翁杰锋山口淳三等调节性CD4+ T细胞在大鼠自发肝移植耐受中的作用中华实验外科杂志2006, 23 (2 ):173-174
    [142] Yamaguchi J, Kanematsu T, Shiku H, et al. Long-term survival of or-thotopic lewis liver grafts in wistar furth rats. Elimination or inativation of effector CTL and altered antigenicity as possible reasons for tolerance. Transplantation, 1994, 57:412-418.
    [143] Larkin DFP, Calder VL, Lightman SL. Identification and characteriza2tion of cells infiltration the graft and aqueous humour in rat corneal al2lograft rejection[J ]. Clin Exp Immunol, 1997, 107:381
    [144] Gu WL, Yamaguchi J, Hashimoto T, et al. Rapid loss of graft immuno-genicity and transient hyporesponsiveness to the donor antigen after rat liver transplantation. Acta Medica Nagasakinensia, 1999, 44:31-38.
    [145] Wiesner RH, Demetris AJ, Belle SH, et al. Acute hepatic allograft rejection: risk factors, and impact on outcome. Hepatology, 1998, 28: 638-645.
    [146] erholzer A, Oberholzer C, Moldawer LL. Cytokine signaling- regulation of the immune response in normal and critically ill states[J]. Crit Care Med. 2000, 28(suppl 4 ):3-12
    [147] Ferrara JL. The cytokine modulation of acute graft-versus-host disease[J]. Bone Marrow transplant, 1998, 21(supple 3):S13-S15
    [148] Fowler DH, Gress RE. Th2 and Tc2 cells in the regulation of GVHD, GVL, and graft rejection: considerations for the allogeneic transplantation therapy of leukemia and lymphoma[J]. Leuk Lymphoma, 2000, 38(3-4):221-234
    [149] Krenger W, Snyder KM, Byon JC, et al. Polarized type 2 alloreactive CD4+ and CD8+ donor T cells fail to induce experimental acute graft-versus-host disease[J]. J. Immunol. 1995, 155(2):585-592
    [150] Krenger W, Cooke KR,. Crawford JM, et al. Transplantation of polarized type 2 donor T cells reduces mortality caused by experimental graft-versus-host disease[J]. Transplantation, 1996, 62(9):1278-1285
    [151] Sefrioui H, Donahue J, Gilpin EA, et al. Tolerance and immunity following in utero transplantation of allogeneic fetal liver cells: the cytokine shift[J]. Cell Transplant, 2003, 12(1):75-82.
    [152] Chen IM, O’Shaughnessy MJ, Gramaglia I, et al. IL-10 and TGF-beta induce alloreactive CD4+CD25-T cells to acquire regulatory cell function[J]. Blood, 2003, 101(12):5076-5083.
    [153] Tanaka J, Imamura M, Kasai M, et al. The important balance between cytokines derived from type 1 and type 2 helper T cells in the control of graft-versus-host disease[J]. Bone Marrow Transplant, 1997, 19(6):571-576
    [154] Krenger W, Snyder K, Smith S, et al. Effects of exogenous interleukin-10 in a murine model of graft-versus-host disease to minor histocompatibility antigens[J]. Transplantation, 1994, 58(11):1251-1257
    [155] Holler E, Roncarolo MG, Hintermeier-Knabe R, et al. Prognostic significance of increased IL-10 production in patients prior to allogeneic bone marrow transplan- tation[J]. Bone Marrow Transplant, 2000, 25(3):237-241
    [156] Ju X, Wang J, Xu B, et al. Roles of interleukin-10 in acute graft-versus-host disease and graft rejection[J]. Chin Med J (Engl), 2003, 116(4):534-537
    [157] Sakata N, Yasui M, Okamura T, et al. Kinetics of plasma cytokines after hematopoietic stem cell transplantation from unrelated donors: the ratio of plasma IL-10/sTNFR level as a potential prognostic marker in severe acute graft-versus- host disease[J]. Bone Marrow Transplant
    [158] Sad S, Mosmann TR. Interleukin(IL)4, in the absence of antigen stimulation, induces an anergy like State in differentiated CD8+Tc1 cells: loss of IL-2 synthesis and autonomous proliferation but retention of cy totoxicity and synthesis of other cytokines. JExp Med, 1995, 182: 1505 -1515.
    [159] Sad S, Li L, Mosmann TR. Cytokine deficient CD8+ Tc1 cells induced by IL-4: retained inflammation and perforin and Fas cytotoxicity but compromised longterm killing of tumor cells. J Immunol, 1997, 159:606 -613.
    [160] Hill G, Krenger W, Ferrara J. Cytokine dysregulation in acute graft versus host disease. Hematology, 1998, 2:423-431.
    [161] Via CS, Finkelman FD. Critical role of interleukin2 in the development of acutegraft versus hostdisease. Int Immunol, 1993, 5:565-572.
    [162] Hu HZ, Li GL, Lim YK, et al. Kinetics of interferon-gamma secretion and its regulatory factors in the early phase of acute graft-versus-host disease.[J] Immunology, 1999, 98(3):379-385.
    [163] Yang Y-G, Dey B, Sergio JJ, et al. Donor-derived interferonγis required for inhibition of acute graft-versus-host disease by interleukin 12[J]. J Clin Invest, 1998, 102(12): 2126-2135.
    [164] Murphy WJ, Welniak LA, Taub DD, et al. Differential Effects of the Absence of Interferon-γand IL-4 in Acute Graft-Versus-Host Disease after Allogeneic Bone Marrow Transplantation in Mice[J].J Clin Invest, 1998, 102(9): 1742-1745
    [165] Boris Nikolic, Roderick T, Michael J, et al. Th1 and Th2 mediate acute graft-versus- host disease, each with distinct end-organ targets[J]. J Clin Invest, 2000, 105(9): 1289-1298.
    [166] Nakamura H, Komatsu K, Ayaki M, et al. Serum levels of soluble IL-2 receptor, IL-12, IL-18 and IFN-gamma in patients with acute graft-versus-host disease after allogeneic bone marrow transplantation[J]. J Allergy clin Immunol, 2000, 106(1pt 2):545-550.
    [167] Imamura M, Tsutsumi Y, Miura Y, et al. Immune reconstitution and tolerance after allogeneic hematopoietic stem cell transplantation.[J] Hematology, 2003, 8(1):19-26
    [168] Roy J, Blazar BR, OchsL, et al. The tissue expression of cytokines in human acute cutaneous graft-versus-host disease[J]. Transplantation, 1995, 60(4):343-348
    [169]居小萍,王健民,曹永彬,等.细胞因子在急性移植物抗宿主病发病机制中的作用[J]. Shanghai Med J, 2002, 25(3):158-160.
    [170] Krenger W, Ferrara JL. Graft-versus-host disease and the Th1/ Th2 paradigm[J]. Immunol, 1996, 15(1):50-73
    [171]韩志军,祝青国,仇宇,等大鼠肾移植亚临床急性排斥反应中T淋巴细胞亚群的变化及其意义中国现代医学杂志, 2005, 15(8):1198-1199
    [172] Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol. 1986, 136 (7): 2348-2357
    [173] Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more[J]. Immunol Today. 1996, 17(3):138-146
    [174] Cher DJ, Mosmann TR. Two types of murine helper T cell clone. II. Delayed-typehypersensitivity is mediated by TH1 clones. J Immunol[J]. 1987, 138(11):3688-3694
    [175] Cherwinski HM, Schumacher JH, Brown KD, et al. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies[J]. J Exp Med. 1987, 166(5):1229-1244
    [176] Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones[J]. J Exp Med. 1989, 170(6):2081-2095
    [177] Coffman RL, Shrader B, Carty J, et al. A mouse T cell product that preferentially enhances IgA production. Biologic characterization[J]. J Immunol. 1987, 139(11):3685-3690
    [178] Bond MW, Shrader B, Mosmann TR, et al. A mouse T cell product that preferentially enhances IgA production. II. Physicochemical characterization[J]. J Immunol. 1987, 139(11):3691-3696
    [179] Fernandez-Botran R, Sanders VM, Mosmann TR, et al. Lymphokine -mediated regulation of the proliferative response of clones of T helper 1 and T helper 2 cells[J]. J Exp Med. 1988, 168(2):543-558
    [1]石炳毅.器官移植免疫耐受的研究进展[J].解放军医学杂志, 2002, 27(10):847-851
    [2]谢蜀生.我国移植免疫学发展的历史和现状[J]中国免疫学杂志, 2004, 20(1):11-12
    [3] Kobayash T, Taniguch S, Neethling FA, et a1. Delayed xenograft rejection of pig-to-baboon cardiac transplants after cobravenom factor therapy[J]. Transplantation. 1997, 64:1255-1261
    [4] Arnold B. Levels of peripheral T cell tolerance[J]. Transpl Immunol, 2002, 10(2-3):109-114
    [5] Sutmunller RP, Offring R, Melief CJ. Revival of the regulatory T cell:new targets for drug development[J]. Drug Discov Today, 2004, 9(7):310-316
    [6] Steinmm L. Immune therapy for autoimmune diseases[J]. Science, 2OO4, 305(5681):212-216
    [7]刘秉干,马腾骧,王广有.异种移植诱导免疫耐受策略的研究进展[J].国外医学泌尿系统分册, 2OO4, 24(6):729-731
    [8] Neuberger J. 1iver transplantation[J]. J Hepato1, 2000, 32(suppl 1):198-207
    [9]韩钦,尤胜国,赵春华.人工诱导免疫耐受[J].国外医学输血及血液学分册, 2003, 26(5):390-392
    [10] Nowakowska B. Chimerism and tolerance[J]. Postepy Hig Med Dosw, 1999, 53:771
    [11] Wekerle T, Sykes M. Mixed chimerism and transplantation tolerance[J]. Ann Rev Med, 200l, 52:353-370
    [12] Prabhune KA, Gorantla VS, Maldonado C. Mixed allogeneic chimerism and tolerance to composite tissue allografts[J]. Microsurgery, 2000, 20:441
    [13] Gudmundsottir H, Turka LA. Transplantation tolerance:mechanisms and strategies[J], Semin Nephrol, 2000, 20(2):209-216
    [14] Zhang QW. Tomita Y. Matsuzaki G. et a1. Heart allograft tolerance without development of posttransplant cardiac allograft vasculopathy in chimerism-based?Drug-induced tolerance[J]. Transplantation, 2002, 73(4):652-656
    [15] Kawai T, Cosimi AB. Wee SL, et a1. Effect of mixed hematopoietic chimerism on cardiac allograft survival in cynomolgus monkeys[J]. Transplantation. 2002, 73(11):l757-l764
    [16] Tomita Y, Khan A, Sykes M. Mechanism by which additional monoclonal antibody (mAB)injections overcome the requirement for thymic irradiation to achieve mixed chimerism in mice receiving bone marrow transplantation after conditioning with anti-T cell mABs and 3-Gy whole body irradiation. Transplantation, 1996, 61:477-485
    [17] Hunag C A, Fuchimoto Y, Scheier-Dolberg R, et a1. Stable mixed chimerism and tolerance using a nonmyeloablative preparative regimen in a large-animal mode1. J Clin Invest, 2000, 105:173-181
    [18]赵海东,肖序仁,张海滨.造血干细胞在皮肤移植中诱导特异性免疫耐受的研究[J].中华现代外科学杂志, 2004, 1(4):302-305
    [19] Abe M, Qi J, Sykes M, et al Mixed chimerism induces donor-specific T-cell tolerance across a highly disparate xenogeneic barrier. Blood, 2002, 99:3823-3829
    [20] Rachamim N, Gan J, Segall H, et a1. Tolerance induction by“megadose”hematopoietic trans. Plants:donor-type human CD34 stem cells induce potent specific reduction of host anti-donor cytotoxic T lymphocyte precursors in mixed lymphocyte culture. transplantation. 1998;65:1386-1393
    [21] Reisner Y, Gur H, Reich-Zeliger S, et a1. Hematopoietic stem cell transplantation across major genetic barriers:tolerance induction by megadose CD34 cells and other veto cells. Annals New York Acad Sci, 2003, 996:72-79
    [22] Gur H, Krauthgamer R, Berrebi A, et a1. Tolerance induction by megadose hematopoietic progenitor cells:expansion of veto cells by short-term culture of purified human CD34+cells. Blood, 2002, 99:4174-4181
    [23] Sykes M. Chimerism and central tolerance[J]. Curr Opin immunol. 1996, 8(5):694- 703
    [24] Sykes M, Szot GL, Swenson K, et al. Separate regulation of peripheral hematopoietic and thymic engraftment[J]. Exp Hematol, 1998, 26(6):457-465
    [25] Jacobsen N, Taaning E, Ladefoged J, et al. Tolerance to an HLA-B?DR disparate kidney allograft after bone-manrow transplantation from same donor[J]. Lancet, 1994, 343(8900):800
    [26] Sharabi Y, Sachs DH. Mixed chimerism and permanent specific transplantation tolerance induced by a non-lethal preparative regime[J] Exp Med, 1989, 169:493
    [27] Spitzer TR, Delmonico F, Tolkoff-Rubin N et a1. Combined histocompatible leukocyteantige-matched donor bone marrow and renal transplantation for multiplemyeloma with end stage renall disease:the induction of allograft tolerancethrough mixed lymphohematopoietic chimerism. Transplantation, 1999, 68:480
    [28] Starzl TE, Rao AS. Murase N, et a1. Chimerian and xenotransplantation. New concept[J]. Surg Clin North Am, 1999, 79(1):191-205
    [29]傅耀文,张文岚,王伟刚,等.嵌合体与同种异体肾移植免疫耐受相关性的研究[J].中华泌尿外科杂志, 2004, 25(10):688-690
    [30]史其新,谢蜀生,俞莉章,等.成年大鼠联体诱导的移植耐受与嵌合状态相关性的研究[J].中华医学杂志, 2000, 80:602-605
    [31]于平,熊思东,何球藻,等.未成熟树突状细胞诱导异基因嵌合体的形成[J].中国免疫学杂志, 2002, 18:223-227
    [32] Shirwan H, Wu GD, Barwart L, et a1. Induction of allograft nonresponsiveness after intrathymic inoculation with donor class I allopeptides:II. Evidence for persistent chronic rejection despite high levels of donor microchimerism. Transplantation, 1997, 64:1671-1676
    [33] Starzl TE, Demetris AJ, Murase N, et a1. The lost chord:microchimerism and allograft survival Immunology Today, 1996, 7:577
    [34]毕树雄,戴克戎.免疫耐受与移植[J].国外医学·骨科学分册, 2001, 22(2):87-90
    [35] Niimi M, Hara M, witzke O, et a1. Donor resting B cells induce indefinite prolongation of fully allogeneic cardiac grafts when delivered with anti-immunoglobulin- D monoclonal antibody: evidence for tolerogenicity of donor resting B cells in vivo[J]. Transplantation, 1998, 66(12):1786-1792
    [36]李蓁,李树浓,徐鸿绪,等. H. 2K基因转移诱导小鼠心肌移植免疫耐受[J].免疫学杂志, 2000, 16:4
    [37] Sonnytag KC, Emery DW, Yasumoto A, et a1. Tolerance to solid organ transplants through transfer of MHC class II gene[J]. J Cin Invest, 2001, 107(1):65
    [38] Oluwole SF, Chowdhury NC, Fawwaz R, et a1. Induction of specific unresponsiveness to rat cardiac allografts by pretreatment with intrathymic donor major histocompatibility complex class I antigens. Transplant Proc, 1993, 25:299-300
    [39] Takeuchi T, Lowry RP, Konieczny R, et a1. Heart allografts in murine systems, The differential ctivation of Th2-like effector cells in peripheral tolerance. Transplantation, 1992, 53:1281-1294
    [40] De Vries-von der Zwan A, Besseling A C, de Waal L P. et al. Specific tolerance induction and transplantation:a single-day protoco1. Blood, 1997, 89:2596-2601
    [41]朱彦罗鸣巴荣,等.抗CD4?CD8单抗诱导异基因骨髓移植嵌合供体小鼠免疫耐受[J].江苏医药杂志, 2002 28(10):743-744
    [42] Chen ZH, Cobbold S, Metecalfe S, et a1. Tolerance in the mouse histocompatibility complex mismatched heart allografts, and to rat heart xenografts, using monoclonal antibodyies to CD4 and CD8. Eur J Immunol, 1992, 22:805-810.
    [43]杨敏,涂阳科,裘晓惠,等.应用抗CD3单克隆抗体预防肾移植术后急性排斥反应的体会[J].中华器官移植杂志, 2002, 23(3):143-145
    [44] Borras FE, Matthews NC, Lowdell MW, et a1. Identification of both myeloid CD1lc+ and lymphoid CD1lc-dendritic cell subsets in cord blood[J]. Br J Haematol, 2001, 113(4):925-931
    [45] Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature, 1998;392:245-252
    [46] Kissoan MC, Soumelis V, Kadowaki N, et al. Keciprocal control of T helper cell and dendritic cell differentiation[J]. Science, 1999, 283(5405):1183-1186
    [47] Roake JA. Dendritic cells and the initiation of the immune response to organ trans- plants[J]. Transplant Rev, 1994, 8:37-52
    [48] Jenkins MK, Schwartz RH. Antigen--presentation by chmaically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo[j]. J Exp Med 1987;165:302-319
    [49] Maldonado-Lopez R, De Smedt T, Michel P, et a1. CD8 alpha+ and CD8alpha-subclasses of dendritic cells direct the development of distinct Thelper cells in vivo. J Exp Med, l999, 189(3):587-592
    [50] Morelli AE, Hackstein H, Thomson AW. Potential of tolerogenie dendritic cells for transplantation[J]. Semin Immunol, 2001, 13(5):323-335
    [51]王胜军,刘恭植,许化溪.树突状细胞诱导外周免疫耐受的机制[J].国外医学分子生物学分册, 2002, 24(4):209-212
    [52] Maria GR, Megan K, Catia T, et al. Differentiation of Tregulatory cells by immature dendritic cells[J]. J Exp Med, 2001, 193:529.
    [53] Tiao MM, Lu L, Huang LT, et al. Cross-tolerance of recipient-derived transforming growth factor-beta dendritic cells[J]. Transplant Proc, 2007, 39(1):281-282
    [54] Tiao MM, Lu L, Tao R, et al. Application of recipient-derived dendritic cells to induce donor-specific T-cell hyporesponsiveness[J]. Transplant Proc,. 2004 Jun, 36(5): 1592-1597
    [55] Tiao MM, Lu L, Tao R, et al. Prolongation of cardiac allograft survival by systemic administration of immature recipient dendritic cells deficient in NF-kappaBactivity[J]. Ann Surg, 2005, 241(3):497-505
    [56] Kim YS, Yang SH, Kang HG, et al. Distinctive role of donor strain immature dendritic cells in the creation of allograft tolerance[J]. Int Immunol, 2006, 18(12): 1771-1777
    [57] Jin Y, Fuller L, Ciancio G, et al. Antigen presentation and immune regulatory capacity of immature and mature-enriched antigen presenting (dendritic) cells derived from human bone marrow[J]. Hum Immunol, 2004, 65(2):93-103
    [58] Waller EK, Lynn MJ, Boyer M, et a1. Survial after allogeneic bone marrow transplantation(BMT)is predicted by the number of transplanted donor CD34 cells and donor dendritic cell progenitors(DCPs). Blood, 1998;92(suppl 1):2041
    [59] Shlomchid WD, Couzens M S, Tang CB, et al, Prevention of graft versus host disease by inactivation of host antigen-presenting cells, Science, 1999;285:412-415
    [60] Pulendran B, Smith JL, Caspary G, et al. Distinct dendritic cell subsets differentially regulate the class of immune responsein vivo[J]. Proc Natl Acad Sci(USA), 1999, 96(3):l036-l041
    [61] Schuler G, Steinman RM. Murine epidermal langerhans cells mature into potent immunostimulatory dendritic cells in vitro[J]. J Exp Med, 1995, 161(3):526-546
    [62] Stumbles PA, Thomas JA, Pimm CL, et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2(TH2)responses and require obligatory cytokine signals for induction of THl immunity[J]. J Exp Med, l998, 188(11):2019-2031
    [63] Iwasaki A, Kelsall BL. Freshly isolated Peyer’s patch, but not spleen, dendritic cels produce interteukin-10 and induce the differentiation of T helper type 2 cells[J]. J Exp MED, 1999, 190(23):229-239
    [64] Mazariegos GV, Zatnorchak AF, Reyes J, et a1. Dendritic cell subset ratio in peripheral blood correlates with successful withdrawal 0f immunosuppression in liver transplant patients[J]. Am J Transplant. 2003, 3(6):689-960
    [65]苏青和,郑红.趋化因子及树突状细胞与移植免疫耐受[J].免疫学杂志, 2004, 20(5):403-406
    [66]张临友,张学峰.树突状细胞和免疫耐受[J].国外医学免疫学分册, 20O2, 25(5)225-228
    [67] Lu L, McCaslin D, Starzl TE, et a1. Bone marrow-derived dendritic cell progenitors induce alloantigen-specific hyponysponsiveness in murine T lymphocytes[J]. Transplantation, 1995, 60(12):l539-l545
    [68] Rissoan MC, Soumelis V, Kadowaki N, et a1. Reciprocal control of T helper cell and dendritic cell differentiation[J]. Science, l999, 283(5405):l183-ll86
    [69] Min WP, Gorczynski R, Huang XY, et a1. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft surviva[J]. J Immunol, 2000, 164(1):161-167
    [70] Sun W, Wang Q, Zhang L, et a1. TGF-beta(1)gene modified immature dendritic cells exhibit enhanced tolerogenicity but induce allograft fibrosis in vivo[J]. J Mol Med, 2002, 80(8):514-523
    [71] Penna G, Adofini L. 1a, 25-Dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol, 2000, 164 :2405-2411
    [72] Grifn MD, Lutz W, Phan VA, et a1. Dendritic cell modulation by 1, 25-dihydroxyvitamin D3 and its analogs:a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Pro Natl Acad Sci USA, 2001?98:6800-6805
    [73] Harding FA, McArthur JG, Gross JA, et al CD28-mediated signalling costimulates murine T cells and prevents induction of anergy in T-cell clones Nature, 1992:356:607-609
    [74] Medema JP, Borst J. T cell signaling:A decision of life and death[J]. Hum Immunol, 1999, 60(5):403-411
    [75] Guina EC, Boussiotis VA, Neuberg D, et a1. Transplantation of anergic histoincompatible bone marrow allografts[J]. New Eng J Med, 1999;340(22):1704-1714
    [76] Tanaka J, Asaka M, Imarnura M. T-cell co-signaling molecules in graft-versus disease[J]. Ann Hematol, 2000, 79(6):283-290
    [77] Appleman LJ, Boussiotis VA. T cell anergy and costimulation[J]. Immunol, Review, 2003, 192:162-180
    [78] Reddy B, Gupta S. Chuzhin Y. et al. The effect ofCD28/B7 blockade on alloreactive T and B cells after liver cell transplantation[J]. Transplantation. 2001, 71(6):801-8l1
    [79] Judge TA, Tang A, Turka LA. Immunosuppression through blockade of CD28:B7-mediated costimulatory signals. Immunol Res l996;l5:38-49
    [80] Lenschow DJ, Zeng Y, Thistlethwaite JR, et al Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA41g[J]. Science, 1992, 257(7):789-792
    [81] Kita Y, Li XK, Ohba M, et a1. Prolonged cardiac allograft survival in rats systemically injected adenoviral vector8 containing CTLA4Ig-gene. Transplantation, 1999, 68(6):758-766
    [82] Balign P, Chavin KD, Qin L, et a1. CTLA4Ig prolongs allograft survival while suppressing cell-mediated in unity. Transplantation, 1994, 58(10):1082-1090
    [83] Yanagida N, Nomura M, Yamashita K, et a1. Tolerance induction by a single donor pretreatment with the adenovirus vector encoding CTLA4Ig gene in rat orthotopic liver transplantation[J]. Transplant Proc, 2001, 33(1):573-574
    [84] Imai E, Takenaka M, Ito T, et a1. Gene therapy and tissue engineering in nephrology and renaltransplantation[J]. Nippon Rinsho, 2001, 59(1):65-71
    [85]朱宇狄,林宗明.移植免疫耐受研究进展[J].上海免疫学杂志, 2003, 23(6):427-429
    [86] van G SW, Ceuppens JL. Walter H, et al. Blood. 1994, 83:176
    [87] Blazar BR, Taylor PA, Linsley PS, et a1. In vivo blockade of CD28/CTLA-4 B7/BB1 interaction with CTLA4-lg reduces letha1 murine graft-versus-host disease across major histocompatability complex barrier in mice. Blod, 1994;83:3815-3825
    [88]陈永乐,郭坤元,李玉华. Tjul03和CTLA4-Ig诱导MHC半相合小鼠骨髓移植耐受比较[J].中国肿瘤生物治疗杂志, 2003, 10(4):248-252
    [89] Zuo ZX, Wang C, Carpenter D, eta1. Prolongation of all survival with viral IL-10 transfection in a highly histoincompatible model of rat heart allograft rejection. Transplantation, 2001, 71:686-691
    [90] Halloran PF, MillerLW, Urmson J, eta1. IFN-gamm alters the pathology of graft rejection:protection from early necrosis. J Inanunol, 2001, 166:7072-7081
    [91] Lemire JM, et a1. Immunosuppressive actions of 1, 25-dihydroxyvitamin D3:preferential inhibition of TH1 functions. J Nutr, 1995;125(6 Supp1):17O4s-1708s
    [92] Kirk AD. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nature Med, 1999, 5:686
    [93] Kirk AD, Harlan DM, Armstrong NN et a1. CTLA-4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA, 1997, 94:8789
    [94] Dengler TJ, Szabo G, Sido B et a1. Prolonged allograft survival but no tolerance induction by modulating CD28 antibody JJ319 after high-responder rat heart transplantation. Transplantation, 1999, 67:392
    [95] Kirk AD, Jadaki DK, Celniker A et a1. Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates. Transplantation, 2001, 72(3):377
    [96] Park DC, Grieiner DL, Phillips NE, et a1. Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligant[J]. Proc Natl Acad Sci USA, 1995, 92:9560
    [97] Ohata J, Sakurai J, Saito K, et al. Differential graft-versus-leukaemia effect by CD28 and CD40 costimulatory blockade after graft-versus-host disease prophylaxis[J]. Clin-Exp-Immunol, 2002?129(1):6l-68
    [98] Olthoff KM, Judge TA, Gelman AE, et a1. Adenovirus gene transfer into cold-preserved liver allografts:survival pattern and unresponsiveness following transduction with CTLA-4Ig[J]. Nat Med, 1998, 4:194
    [99] Kita Y, Li XK, Ohb M, et a1. Prolonged cardiac allograft survival in rats systemically injected adenovial vectors containing CTLA-4 lg-gene[J]. Transplantation, 1999, 68(6):758
    [100] Hayashi S, Guang-Lin M, Yokoyama I, et a1. Adenovirus-mediated gene transfer of CTLA41g gene results in prolonged survival of heart allograft[J]. Transpl Int, 2000, Suppl l:S329
    [101] Shiraishi T, Yasunami Y, Takehara M, et a1. Prevention of acute lung allograft rejection in rat by CTLA41g[J]. Am J Transplant, 2002, 2:223
    [102] Feng S, Quickel RR, Hollister-Lock J, et a1. Prolonged xenograft survival of islets infected with small doses of adenovlrus expressing CTLA41g[J]. Transplantation, 1999, 67:1607
    [103] Lederman S, Yellin MJ, Krichevsky A, et a1. Identification of a novel surface protein on activated CD4 T cell that induces contact-dependent B cell differentiation[J]. J Exp Med, 1992, 175:1091
    [104] Bumgardner GL, Li J, Heininger M, et a1. Efficacy of anti-intercellu1ar adhesion molecule-1 immunotherapy on immue responses to allogeneic hepatocytes in mice[J]. Hepatology, 1998, 28(4):1005-1012
    [105]吴文林.器官移植排斥与耐受的研究进展[J].泉州师范学院学报(自然科学), 2003, 21(4):78-82
    [106] Pietersz GA, Sandrin MS·Ling S. et a1. LFA-1 and ICAM-1 antibody-idarubicin conjugates separately prolong murine cardiac allograft survival[J]. Transpl-Immuno1, 2001, 9(1):7-l1
    [107] Berholzer A, Oberholzer C, Moldawer LL. Cytokine signaling- regulation of the immune response in normal and critically ill states[J]. Crit Care Med. 2000, 28(suppl 4 ):3-12
    [108] Fehervari Z and Sakaguchi S. CD4+ Tregs and immune control[J]. J Clin Invest. 2004, 114(9):1209-1217
    [109] ayegh MH, and Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection[J]. New Eng J Med. 1998, 338(25):1813-1821
    [110] Nickerson P, Steiger J, Zheng XX, et a1. Manipulation of cytokine networks in transplantation[J]. Transplantation, 1997, 63:489-494
    [111] He XY, Chen J, Verma N, et a1. Treatment with inter1eukin-4 prolongs allogeneic neontal heart graft survival by inducing T helper 2 responses[J]. Transplantation?1998, 65:1145-1152
    [112] Li w, Fu FM, Lu L, et a1. Differential effects of exogenous interleukin-10 on cardiac allograft survival[J]. Transplantation, 1999, 68:1402-1409
    [113] Spriewald BM, Billing JS, wood KJ. Cytokines as mediators in immunologic tolerance[J]. Curt opin Organ Transplant, 2001;6(1):7-l3
    [114] Feng ZH, Zhou YC, Li JG, Wang QC. Cytokine enhances immune responses to DNA vaccine of HCV[J]. Di-si Junyi Daxue Xuebao(J Fourth Mil Med Univ), 2000;21(7):834-836
    [115]张晓雪,昌盛. Th细胞因子在移植免疫中的研究新进展[J].国外医学免疫学分册, 2OO2, 25(6):307-311
    [116] David A, Chetritt J, Guillot C, et a1. Interleukin-10 produced by recombinant adenoviruss prolongs survival of cardiac allografts in rats. Gene Ther, 2000, 7(6):505-510
    [117] Krenger W, Cooke KR, Crawford JM, et a1. Transplantation of polarized type 2 donor T cells reduces mortality caused by experimental graft-versus-host disease. Transplantation, 1996;62:1278-1285
    [118] Opal SM, DePalo VA. Anti-inflammatory cytokines[J]. Chest. 2000, 117(4):1162-1172
    [119] de Waal Malefyt R, Haanen J, Spits H, et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression[J]. J Exp Med 1991, 174(4):915-924
    [120] Krenger W, Snyder K, Smith S, et al. Effects of exogenous interleukin-10 in amurine model of graft-versus-host disease to minor histocompatibility antigens[J]. Transplantation, 1994, 58(11):1251-1257
    [121] Holler E, Roncarolo MG, Hintermeier-Knabe R, et al. Prognostic significance of increased IL-10 production in patients prior to allogeneic bone marrow transplan- tation[J]. Bone Marrow Transplant, 2000, 25(3):237-241
    [122] Ju X, Wang J, Xu B, et al. Roles of interleukin-10 in acute graft-versus-host disease and graft rejection[J]. Chin Med J (Engl), 2003, 116(4):534-537
    [123] Sakata N, Yasui M, Okamura T, et al. Kinetics of plasma cytokines after hematopoietic stem cell transplantation from unrelated donors: the ratio of plasma IL-10/sTNFR level as a potential prognostic marker in severe acute graft-versus- host disease[J]. Bone Marrow Transplant, 2001, 27(11):1153-1161
    [124] Qian S, Lu L, Fu F, et a1. Apoptosis within spontaneously accepted mouse liver allografts:Evidence for deletion of cytotoxic T cells and implications for tolerance induction[J]. J Immunol, l997, 158(10):4654-4668
    [125] Hung YS, Laks H, Cui G, et a1. Localized immunosuppression in the cardiac allograft induced by a new liposome-mediated IL-10 gene therapy. J Heart Lung Transplant, 2002, 21(11):1188-1200
    [126] Qin L, Ding Y. Viral lL-10 induced immunosupression requires Th2 cytokines and impairs APCc function within the allograft[J]. J Immunol, 2001, 166(4);2385
    [127] DeBruyne LA, LiK, Chan SY, et a1. Lipid-mediated gene transfer of viral interleukin- 10 prolongs vascularized cardiac allograft survival by inhibiting donor-specific celluar and humoral immune responses[J]. Gene Ther, 1998, 5:1097
    [128] Nickerson P, Steiger J, Zheng XX, et a1. Manipulation of cytokine networks in transplantation[J]. Transplantation, 1997, 63:489-494
    [129] Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol. 1986, 136 (7): 2348- 2357
    [130] Schmidt-Weber CB, Alexander SI, Henault LE, et al. IL-4 enhances IL-10 gene expression in murine Th2 cells in the absence of TCR engagement[J]. J Immunol. 1999, 162(1):238-244
    [131]毕树雄,戴克寸戎,汤亭亭. IL-4与IL-10联合诱导异种骨移植免疫耐受的体外研究[J].实用骨科杂志, 2004, 10(4):334-336
    [132] Waldmann TA. The Interleukine-2 receptor[J]. J Bio Chemi 1991, 266 (5):2681-2684
    [133] Church AC. Clinical advanced in therapies targing the linterleukin-2 receptor[J]. O J Med 2003, 96:91-102
    [134] Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol. 1986, 136 (7): 2348- 2357
    [135] Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more[J]. Immunol Today. 1996, 17(3):138-146
    [136] Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors[J]. Immunol Rev. 2004, 202:8-232
    [137] Noronha IL, Eberlein-Gonska M, Hartley B, et al. In situ expression of tumor necrosis factor-alpha, interferon-gamma, and interleukin-2 receptors in renal allograft biopsies[J]. Transplantation. 1992, 54(6): 1017-1024
    [138] Corey HE, Alfonso F, Hamele-Bena D, et al. Urine cytology and the diagnosis of renal allograft rejection. II. Studies using immunostaining[J]. Acta Cytol. 1997, 41(6):1742-6
    [139] Najafian N, Salama AD, Fedoseyeva EV, et al. Enzyme-linked immunosorbent spot assay analysis of peripheral blood lymphocyte reactivity to donor HLA-DR peptides: potential novel assay for prediction of outcomes for renal transplant recipients[J]. J Am Soc Nephrol 2002, 13(1):288-290
    [140] Asderakis A, Sankaran D, Dyer P, et al. Association of polymorphisms in the human interferon-gamma and interleukin-10 gene with acute and chronic kidney transplant outcome: the cytokine effect on transplantation[J]. Transplantation. 2001, 71(5):674-677
    [141] Nast CC, Zuo XJ, Prehn J, et al. Gamma-interferon gene expression in human renal allograft fine-needle aspirates[J]. Transplantation. 1994, 57(4):498-502
    [142] Kirk AD, Bollinger RR, Finn OJ. et al. Rapid, comprehensive analysis of human cytokine mRNA and its application to the study of acute renal allograft rejection[J]. Hum Immunol. 1995;43(2): 113-128
    [143] Tomura M, Nakatani I, Murachi M, et a1. Suppression of allograft responses induced by interleukin-6, which selectively modulates interferon-gamma but not interleukin-2 production. Transplantation, 1997, 64(5):757-763
    [144] Josien R, Douillard P, Guillot C, et a1. A critical role for transforming growth factor-beta in donor transfusion-induced allograft tolerance. J Clin Invest, l998, l02:l920-1926
    [145] Provvedini DM, ts0ukas CD, Defies U, et a1. 1, 25-dihydroxyvitamin D3 receptors in human leukocytes. Science, 1983, 221:1181-1183
    [146] Bhalla AK, Amento EP, Clemens TL, et a1. Specific high-affinity receptors for dihydmxycholccalciferol in human peripheral blood mononuclear cells:presence in monocytes and induction in T lymphocytes following activation. J Clin Endocrinol Metab. 1983, 57:1308-1310
    [147] Yang S, Smith C, Prahl JM, et a1. Vitamin D deficiency suppresses cell-mediated immunity in vivo. Arch Biochem Biophys, 1993, 303:98-106
    [148] Yang S, Smith C, DeLuna HF. 1, 25-dihydroxyvitamln D3 and 19-nor-1, 25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochen Biophys Acta, 1993, 1158:279-386
    [149] Takeuchi A. Reddy GS. Kobayashi T. et a1. Nuclear factor Of activated T cells as a molecular target for 1-25-Dihydroxyvitamin D3-mediated effects. J lmmuno1. 1998, 160:209, 218
    [150] Zuo ZX, Wang C, Carpenter D, eta1. Prolongation of all survival with viral IL-10 transfection in a highly histoincompatible model of rat heart allograft rejection. Transplantation, 2001, 71:686-691
    [151] Halloran PF, MillerLW, Urmson J, eta1. IFN-gamm alters the pathology of graft rejection:protection from early necrosis. J Inanunol, 2001, 166:7072-7081.
    [152] Lemire JM, et a1. Immunosuppressive actions of 1, 25-dihydroxyvitamin D3:preferential inhibition of TH1 functions. J Nutr, 1995;125(6 Supp1):17O4s-1708s
    [153] Boonstra A, Bacrat FJ, Crain C, eta1. 1alph, 25-Dihydmxyvitamin D3 has a direct effect on naive CD4(+)T cells to enhance the development of Th2 cells. J Immunol, 20O1, 167:4974-4980.
    [154] Taylor PA?Panorkaltsis-Mortan A, Noelle, RJ, et al. J Immunol. 2000, 164(2);612
    [155]李天发,屠宏庆.移植免疫耐受?移植排斥与细胞凋亡[J].国外医学免疫学分册, 2000, 23(3):162-165
    [156] SUSS G, Shortman K. A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J Exp Med, 1996, 183(4):1789-1796
    [157] Baker MB, Riley, RL, Podack ER, et a1. Craft-versus-host-disease-associated lymphoid hypoplasia and B cell dysfunction is dependent upon donor T cell-mediated Fas-ligand function, but not perforin function. Pro Natl Acad sci USA, 1997, 94(4):1366-1371
    [158] Grifith TS, BrunnerT, Fleteher SM, eta1. Fas ligand induced apoptosis as a mechanism of immune privilege. Science, 1995, 270:1189-1192
    [159] Lau HT, Yu M, Fontana A et a1. Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science, 1996, 273:109
    [160] Li XK, Okuyama. Prolonged survival of rat liver allografts transfected with fas ligand- expressing plasmid[J]. Transplantation, 1998, 66:1416
    [161]刘小村,刘小群,张百萌.同种异体器官移植免疫耐受的机理研究进展[J].中国误诊学杂志, 2004, 4(7):1013-1016
    [162]韩根成.免疫耐受的形成?维持及诱导[J].国外医学免疫学分册, 2005, 28(1):4-7
    [163]邓为民,韩钦,尤胜国,等.异基因骨髓源间充质干细胞移植形成稳定的嵌合体并诱导免疫耐受的研究[J].中华检验学杂志, 2003, 26(8):466-469
    [164] Herkel J, Brunner SM, Meyer-Zum-Bushenfefelde KH, et a1. Humoral mechanisms in T cell vaccination and functional characterization of anti-lymphocytic autoantibodies[J]. Autoimmun, 1997, 10:137-l46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700