用户名: 密码: 验证码:
PD-L1与Kupffer细胞在大鼠肝移植免疫耐受诱导中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:(1)建立稳定的大鼠肝移植动物模型,观察从BrownNorway(BN)→BN和Lewis(LEW)→BN大鼠肝移植术后移植肝脏的免疫反应、程序性死亡配体1(programmed death ligand 1,PD-L1)以及辅助性T细胞1类(T helper cells-1,Th1)和辅助性T细胞2类(T helper cells-2,Th2)细胞因子在移植肝脏中的表达情况。(2)分离术后7天移植肝脏中的枯否细胞(Kupffer cells,KCs),观察其表达PD-L1的情况以及对淋巴细胞(lympholeukocytes,LCs)的增殖、凋亡以及功能的影响。(3)利用基因克隆技术,通过设计简并性引物,以大鼠肝脏cDNA为模板,采用pUC19质粒载体,克隆大鼠PD-L1基因。(4)构建针对大鼠PD-L1基因编码区的短发夹型RNA(short hairpinribonucleic acid,shRNA)表达质粒PD-L1-shRNA,观察PD-L1-shRNA对KCs PD-L1基因和蛋白表达的抑制效果及其对LCs功能的影响,试图阐明PD-L1与KCs在大鼠肝移植免疫耐受诱导中的作用及机制。
     方法:(1)采用Kamada“二袖套法”建立BN→BN和LEW→BN肝移植动物模型。术后观察大鼠存活率和生存质量,并于1、3、5及7天分别活杀6只取外周血及肝脏组织标本。光镜观察肝脏组织形态学改变;全自动生化分析仪检测外周血浆丙氨酸氨基转移酶(alanineaminotransferase,ALT)、天冬氨酸转移酶(aspartate aminotransferase,AST)和总胆红素(total bilirubin,TBIL);ELISA、real-time PCR和免疫组织化学分别检测Th1类细胞因子白介素2(interleukin-2,IL-2)、干扰素γ(interferon-γ,IFN-γ)、肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)和Th2类细胞因子白介素10(interleukin-10,IL-10)在血浆和移植肝脏中的表达情况,免疫组织化学检测PD-L1在两种动物模型移植肝脏中的表达情况。(2)分离术后7天移植肝脏中KCs,real-timePCR和Western-blot分别检测KCs PD-L1的基因和蛋白的表达情况。将KCs与LCs共同培养24h,~3H标记的脱氧核糖核苷(hydrogen3-thymine deoxyriboside,~3H-TdR)掺入法和流式细胞计数分别检测LCs的增殖和凋亡情况,ELISA检测培养上清液中IL-2、IFN-γ、TNF-α和IL-10的含量。(3)利用PCR技术,以大鼠肝脏组织cDNA为模板扩增PD-L1基因片段,PCR产物胶回收后与载体pUC19连接,并转化DH5α感受态细菌,随机挑取白色菌落通过PCR和测序鉴定阳性重组载体的正确性。(4)根据RNA干扰(ribonucleic acid interfere,RNAi)作用原理设计针对大鼠PD-L1的shRNA,利用pRNAT-U6.2质粒,构建重组干扰质粒pPD-L1-A、pPD-L1-B及其阴性对照质粒pPD-L1-C。经PCR及测序鉴定重组成功后,用脂质体转染大鼠KC,转染24小时以后与活化的T细胞共同培养。Real-time PCR和Western bolt检测干扰质粒对KCs PD-L1基因和蛋白表达的抑制作用,ELISA检测上清液中IL-2、INF-γ、TNF-α和IL-10的含量。
     结果:(1)采用改良的Kamada“二袖套法”成功建立稳定的大鼠原位肝移植动物模型。发现BN→BN大鼠肝移植后一直未见明显的急性排斥反应表现,可长期存活。而LEW→BN大鼠肝移植术后3天开始出现急性排斥反应病理表现(Banff标准),术后第5至7天比较典型,7只受鼠于16天内全部死亡。LEW→BN组大鼠术后血浆ALT、AST和TBIL呈现进行性升高,而BN→BN组则逐渐降至正常范围,两组差异明显(P<0.05)。ELISA结果显示:BN→BN组术后7天,血浆中IL-2、INF-γ和TNF-α(分别为210.68±16.82、170.97±14.64和126.4±15.57,pg/ml)的浓度明显低于LEW→BN(分别为753.50±12.68、509.83±17.91和427.97±13.49,pg/ml)组,而IL-10(371.13±17.63,pg/ml)的浓度则明显高于LEW→BN组(187.48±12.89,pg/ml)(P<0.05)。Real-time PCR和免疫组织化学表明上述细胞因子在两种动物模型移植肝脏中的表达情况与其血浆中的表达趋势一致。免疫组织化学结果显示:术后第1天PD-L1在两组移植肝脏中几乎没有表达。术后第3天PD-L1在BN→BN组PD-L1表达明显增强,第5、7天PD-L1继续呈强阳性表达,并且表达范围逐渐扩大;在LEW→BN组PD-L1表达始终较弱,两组比较有明显差异(P<0.05)。(2)免疫耐受组中KCs PD-L1的表达明显高于排斥组(P<0.05)。KCs+LCs共培养组LCs的增殖(13258.34±951.26 cpm)明显低于LCs单独培养组(3047.98±101.42 cpm,P<0.05),而其凋亡率(8.83±0.37%)却显著高于后者(1.34±0.16%,P<0.05)。共培养组上清液的IL-2、TNF-α和INF-γ的含量(分别为186.50±12.68、142.83±17.91和129.97±13.49,pg/ml)明显低于LCs单独培养组(分别为481.76±34.53、357.16±19.88和326.4±15.57,pg/ml),但IL-10在共培养组(108.8±12.89 pg/ml)明显高于LCs单独培养组(49.13±17.63 pg/ml,P<0.05)。(3)采用PCR方法从大鼠肝脏组织中扩增出约873bp的DNA片段,连接到pUC19载体成功构建重组质粒,其扩增的目的片段经PCR和测序验证为PD-L1基因片段,克隆的PD-L1与GenBank中小鼠PD-L1(NM_008798)序列同源性达到88%,其翻译蛋白与小鼠PD-L1理论蛋白同源性为85%。(4)经PCR及测序证实重组干扰质粒pPD-L1-A、pPD-L1-B及其阴性对照质粒pPD-L1-C构建成功,并在脂质体介导下可以高效转染KCs。转染24小时后,RNA干扰组PD-L1表达水平均明显低于未转染组和RNAi对照组。其中pPD-L1-B对KCs PD-L1的表达有较好的抑制效果,抑制率约为79%。pPD-L1-B组上清液中IL-2、IFN-γ和TNF-α的含量(分别为448.70±37.61、327.33±24.35和301.62±17.72,pg/ml)明显高于未转染组(分别为179.60±20.47、153.46±10.70和118.90±15.65,pg/ml),而IL-10的表达则正好相反(分别为40.03±7.81和103.2±17.46,P<0.05)。
     结论:(1)PD-L1在免疫耐受移植肝脏中的表达明显高于急性排斥组,PD-L1可能通过调节LCs的功能,影响Th1和Th2细胞因子的平衡从而参与了移植后免疫反应过程的调控。(2)免疫耐受组移植肝脏中KCs PD-L1的表达水平明显高于急性排斥组。高表达PD-L1的KCs可以显著性抑制LCs的增殖、活化及功能,可能在诱导免疫耐受方面具有重要作用。(3)成功克隆了PD-L1基因,首次构建了pUC19-PD-L1克隆质粒。克隆基因经测序证明与小鼠PD-L1具有较好的同源性。(4)利用克隆的PD-L1可以成功构建出PD-L1-shRNA干扰质粒,其在体外可以有效抑制KCs PD-L1的表达,消除KCs对LCs功能的抑制作用,证实KCs通过高表达PD-L1可以有效抑制LCs功能。表明PD-L1与KCs在肝移植免疫耐受的诱导和维持过程中发挥重要作用。
Objective:(1) To build stable and longtime survival experimental model of rat orthotopic liver transplantation(LT) to investigate the difference of immune reaction between Brown Norway(BN) to BN and Lewis(LEW) to BN LT,expression of programmed death ligand 1(PD-L1) and T help type 1(Th1) and T help type 2(Th2) cytokines in the liver grafts, respectively.(2) To observe the PD-L1 expression of KCs isolated from the two groups on day 7 after LT and its effect on the proliferation,apoptosis and function of LCs.(3) To clone the rat PD-L1 gene using gene cloning technique and degenerated primers with the template of rat liver tissue cDNA and plasmid vector of pUC19.(4) To construct the short hairpin ribonucleic acid(shRNA) targeted PD-L1 and investigate the effect of PD-L1-shRNA on the PD-L1 expression of KCs and cytokines production of LCs,and explore the role of PD-L1 and KCs in the immune tolerance in rat liver transplantation.
     Methods:(1) BN to BN and LEW to BN liver transplantation were performed using modified Kamada two-cuff method.Survival rate and general condition of recipients were observed after LT.Every six survival rats were sacrificed at days 1,3,5 and 7 post-transplantation.The pathohistological change of grafts was observed by light microscope and plasma levels of alanine aminotransferase(ALT),aspartase mainotransferase(AST) and total bilirubin(TBIL) were measured with an automatic biochemical analyser.Expression of Th1,including interleukin-2 (IL-2),interferon-γ(IFN-γ) and tumor necrosis factor-α(TNF-α),and Th2 cytokines,including interleukin-10(IL-10),in plasma and grafts were determined by ELISA,real-time PCR and immunohistochemistry staining, respectively.PD-L1 expression in the allograft was evaluated by immunohistochemistry staining.(2) KCs were isolated from the graft on day 7 after LT,expression of PD-L1 mRNA and protein in KCs was determined by real-time PCR and Western-blot,respectively.KCs and LCs were co-cultured for 24 hours,proliferation and apoptosis of LCs was analyzed by ~3H incorporation and flow cytometry.Supernatant levels of IL-2,IFN-γ, TNF-αand IL-10 were determined by ELISA.(3) PD-L1 gene was amplified from RNA isolated from the liver tissue by PCR and cloned into plasmid pUC19,and then the recombinate plasmid was transformed into DH5αcompetence bacteria.White colonies were randomly selected to identify the amplified PD-L1 gene by PCR and sequencing.(4) Two different recombinant plasmids(pPD-L1-A,pPD-L1-B) targeting rat PD-L1 gene sequences and their unrelated control plasmid pPD-L1-C were constructed based on pRNAT vector,and identified with digestion and sequencing.These recombinant plasmids were transfected into freshly isolated rat KCs with cationic liposome.At 24h post transfection,KCs was co-cultured with rat TCs.Expression changes of PD-L1 mRNA and protein were determined by real-time PCR and Western bolt analysis,respectively. Levels of IL-2,INF-γ,TNF-αand Interlukin-10 in the supernatant were measured by ELISA.
     Results:(1) BN to BN and BN to LEW LT model were successfully established.Without using any immunosuppressive therapy,recipients in BN-BN group survived a long time without any obviously acute rejection, but it was observed in LEW-BN group on day 3 after LT and typical characteristic appeared at day 5-7.Similarly,plasma levels of ALT,AST and TBIL were sharply increased in LEW-BN group,while they were gradually decreased to normal in BN-BN group(P<0.05).ELISA results showed that plasma levels of IL-2,IFN-γand TNF-αin BN-BN group(210.68±16.82, 170.97±14.64 and 126.4±15.57 pg/ml,respectively) were significant lower and that of IL-10(371.13±17.63 pg/ml) were obviously higher than that in LEW-BN(753.50±12.68,509.83±17.91,427.97±13.49 and 187.48±12.89 pg/ml) group on day 7 after LT(P<0.05).Rea-time PCR and immunohistochemistry showed the change of these cytokines in the grafts was same to that in the plasma.After LT,PD-L1 had no obvious expression in the two groups on day 1.But it elevated on day 3,and kept strong positive on day 5-7 in the BN-BN group,while it kept week-positive in LEW-BN group after LT(P<0.05).(2) PD-L1 mRNA and protein expression of KCs in BN-BN group was significantly higher than that in the LEW-BN group (P<0.05).Proliferation of LCs was obviously inhinited in KCs+LCs group (13258.34±951.26 cmp) in comparison with that in LCs group (3047.98±101.42 cpm,P<0.05).But its apoptosis rate was significantly higher than that in the LCs group(8.83±0.37%and 1.34±0.16%, respectively;P<0.05).IL-2,TNF-αand INF-γlevels were remarkably high and IL-10 levels were lower in the KCs+LCs group(186.50±12.68, 142.83±17.91,129.97±13.49 and 108.8±12.89 pg/ml,respectively) than that in the LCs group(481.76±34.53,357.16±19.88,326.4±15.57 and 49.13±17.63 pg/ml,respectively;P<0.05).(3) 873 bp of DNA fragment was amplified from liver tissue by PCR and identified by sequencing.As compared with mouse gene PD-L1(NM_008798) in Genebank,cloned rat PD-L1 gene sequence homology was about 88%,and the homology of cloned rat PD-L1 gene translated protein with the standard protein sequence of mouse PD-L1 was about 85%.(4) Interference recombinant plasmid (pPD-L1-A,pPD-L1-B) and the unrelated control plasmid pPD-L1-C were successfully constructed and identified with PCR and sequencing.At 24h post-transfection,the results of real-time PCR and Western blot assay indicated that these recombinant plasmids carrying different shRNA showed different inhibition on the mRNA and protein expression of PD-L1.The pPD-L1-B was the most efficient plasmid in comparsion with the control. The levels of IL-2、IFN-γand TNF-αin pPD-L1 group were significantly higher and that of IL-10 was obviously lower than that in the untransfection group(448.70±37.61,327.33±24.35,301.62±17.72 and 40.03±7.81 pg/ml in pPD-L1-B group;179.60±20.47,153.46±10.70,118.90±15.65 and 103.2±17.46 pg/ml in no transfection group,respectively;P<0.05).
     Conclusion:(1) Expression of PD-L1 in graft of BN-BN group was significantly higher that that in the LEW-BN group,it may be involved in the regulation of immune reaction by regulation the function of lymphocytes and the balance of Th1 and Th2 cytokines.(2) PD-L1 expression in KCs of immune tolerance grafts was obviously higher than that in the rejection grafts.KCs with high expression of PD-L1 could significantly suppress the proliferation and function of LCs,which may indicate it play an important role in the immune tolerance induction.(3) PD-L1 gene was successfully cloned and ligated into pUC19 vector.The sequence of the cloned gene showed a good homology to mouse PD-L1 gene.(4) The interference plasmid PD-L1-shRNA was successfully constructed according to the cloned PD-L1 gene.It could effectively silence the expression PD-L1 in KCs in vivo and restored the function of LCs.These results indicated that PD-L1 and KCs play a key role in the immune tolerance in liver transplantation.
引文
[1]Tanigawa K,Sakaida I,Masuhara M,et al.Augmenter of liver regeneration(ALR)may promote liver regeneration by reducing natural killer(NK) cell activity inhuman liver diseases[J].J Gastroenterol.2000,35:112-9.
    [2]Zhang Y,Yin JY,Song LW,et al.Significance of inhibitory efect of augmenter of liver regeneration on expression of TGF-β in nonparenchymal cells of liver[J].Med J Chin PLA.2006,31(9):896-8.
    [3]Greenwald RJ,Freeman GJ,Sharpe AH.The B7 family revisited[J].Annu Rev Immunol.2005.23:515-48.
    [4]Truong W,Plester JC,Hancock WW,et al.Negative and positive co-signaling with anti-BYLA(PJ196) and CTLA4Ig prolongs islet allograft survival[J].Transplantation.2007,84:1368-72.
    [5]Okazaki T,Honjo T.Rejuvenating exhausted T cells during chronic viral infection [J].Cell.2006,124:459-61.
    [6]Chen Yong,Chen jie,Liu zuojin,et al.Relationship between Yh1/Yh2 cytokines and immune tolerance in liver transplantation in rats[J].Transplant Proc.2008,40:2691-5.
    [7]Gorre K,Lee R,GLewin K,et al.An International panel.Banff schema for grading liver allograft rejection:an international consensus document[J].Hepatology.1997,25:658-63.
    [8]严律南.现代肝脏移植学[M].第一版,北京:人民军医出版社.2004:3-5.
    [9]Martelius T,Salaspuro V,Salmi M,et al.Blockade of vascular adhesion protein-1inhibits lymphocyte infiltration in rat liver allograft rejection[J].Am J Pathol.2004,165:1993-2001.
    [10]Debonera F,Wang G,Xie J,et al.Severe preservation injury induces Il-6/STAT3activation with lack of cell cycle progression after partial liver graft transplantation[J].Am J Transplant.2004,4:1964-71.
    [11]Mueller TH,Kienle K,Beham A,et al.Caspase 3 inhibition improves survival and reduces early graft injury after ischemia and reperfusion in rat liver transplantation [J].Transplantation.2004,78:1267-73.
    [12]郑树森.肝脏移植[M].第一版,北京:人民卫生出版社.2001:140-1.
    [13]Spiegel HU,Palmes D.Surgical techniques of orthotopic rat liver transplantation [J].J Invest Surg.1998,11:83-96.
    [14]Lee S,Chater AC,Chandler JB,et al.A technique for orthotopic liver transplantation in the rat[J].Transplantation.1973,16:664-9.
    [15]Kamada N,Calne RY.Orthotopic liver transplantation in the rat-technique using cuff for portal vein anastomosis and biliary drainge[J].Trnasplnatation.1979,28:47-50.
    [16]Tisone G,Vennarecci G,Bauiechi L,et al.Rnadomized study on insitu liver perfusion techniques:gravity perfusion vs high pressure perfusion[J].Transplant proc.1997:29:3460.
    [17]Tokunaga Y,Ozkai N,Wkashiro S,et al.Effects of perfusion pressure during flushing on the viability of the procured liver using invasive fluoromerty[J].Trnasplantation.1988:45:1031.
    [18]陈忠华.在体移植免疫实验研究应注意的几个问题[J].中华器官移植杂志.2002.23:4-5.
    [19]刘静,高毅,汪爽,等.急性排斥反应模型肝移植大鼠生存时间延长分析[J].广东医学.2004,25(12):1374-6.
    [20]Yamamoto S,Okuda T,Yamasaki K,et al.FK778 and FK506 combination therapy to control acute rejection after rat liver allotransplantation[J].Transplantation.2004,78(11):1618-25.
    [21]Suzuki A,Kudoh S,Mori K,et al.Expression of nitric oxide and inducible nitric oxide synthase in acute renal allograft rejection in the rat[J].Int J Urol.2004,11:837-44.
    [22]Lee AD,Ribeiro U Jr,Ferreira MA,et al.Apoptosis participation in the acute rejection of intestinal transplantation in rats[J].Arq Gastroenterol.2004,41:193-8.
    [23]Deuse T,Schrepfer S,Schafer H,et al.FK778 attenuates lymphocyte-endothelium interaction after cardiac transplantation:in vivo and in vitro studies[J].Transplantation.2004,78:71-7.
    [24]Ninova DI,Ferguson DM,Wettstein PJ,et al.Liver allograft rejection in rats depleted of CD8+cells[J].Transpl Int.1996,9:499-505.
    [25]Mosmann TR,Coffman RL.TH1 and TH2 cells:different patterns of lymphokine secretion lead to different functional properties [J]. Annu Rev Immunol. 1989,7:145-73.
    [26] Oliveira G, Xavier P, Murphy B, et al. Cytokine analysis of human renal allograft aspiration biopsy cultures supernatants predicts acute rejection [J]. Nephrol Dial Transplant. 1998, 13(2):417-22.
    [27] Coito AJ, Shaw GD, Li J, et al. Selectin-mediated interactions regulate cytokine networks and macrophage heme oxygenase-1 induction in cardiac allograft recipients [J]. Lab Invest. 2002, 82(1):61-70.
    [28] Lin ML, Zhan Y, Nutt SL, et al. NK cells promote peritoneal xenograft rejection through an IFN-gamma-dependent mechanism [J]. Xenotransplantation. 2006,13(6):536-46.
    [29] Zhang XG, Lu Y, Wang B, et al. Cytokine production during the inhibition of acute vascular rejection in a concordant hamster-to-rat cardiac xenotransplantation model [J]. Chin Med J (Enql). 2007,120(2): 145-9.
    [30] Battaglia M, Stabilini A, Draghici E, et al. Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen specific transplantation tolerance [J]. Diabetes.2006, 55: 40-49
    [31] Ding Y, Chen D, Tarcsafalvi A, et al. Suppressor of Cytokine Signaling 1 Inhibits IL-10-Mediated Immune Responses [J]. J Immunol, 2003, 170(3): 1383-1391.
    [32] Maloy KJ, Salaun L, Cahill R, et al. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms [J]. J Exp Med. 2003,197(1):111-9.
    
    [33] Mazighi M, Pelle A, Gonzalez W, et al. IL-10 inhibits vascular smooth muscle cell activation in vitro and in vivo [J]. Am J Physiol Heart Circ Physiol. 2004,287(2):H866-H871.
    [34] Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Thl7-cell differentiation [J].Immunity. 2007,26:579-91.
    [35] Romagnani S. Regulation of the T cell response [J]. Clin Exp Allergy. 2006,36:1357-66.
    [36] Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells [J]. Immunology. 2006, 117:433-42.
    [37] Jacobs JF, Idema AJ, Bol KF, et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors [J].Neuro Oncol. 2008, 21. [Epub ahead of print].
    
    [38] Zhang C, Wu S, Xue X, et al. Anti-tumor immunotherapy by blockade of the PD-1/PD-L1 pathway with recombinant human PD-1-IgV [J]. Cytotherapy. 2008,10(7):711-9.
    
    
    [39] Nakamoto N, Kaplan DE, Coleclough J, et al. Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compar- tmentalization [J]. Gastroenterology. 2008, 134(7): 1927-37.
    [40] Lucas JA, Menke J, Rabacal WA, et al. Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice [J].J Immunol. 2008, 181(4): 2513-21.
    [41] Butte MJ, Pea-Cruz V, Kim MJ, et al. Interaction of human PD-L1 and B7-1 [J].Mol Immunol. 2008, 45(13):3567-72.
    [42] Sato K, Yabuki K, Haba T, et al. Kupffer Cells in the Induction of Tolerance after Liver Transplantation [J] . J Surg Res. 1996, 63:433-438
    [43] Chen Y, Liu ZJ, Liang SY, et al. Role of Kupffer cells in the induction of tolerance of orthotopic liver transplantation in rats [J]. Liver transplantation. 2008,14(6):823-36.
    [44] Sharpe AH, Wherry EJ, Ahmed R, et al. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection [J]. Nat Immunol. 2007,8:239-45.
    [45] Maier H, Isogawa M, Freeman GJ, et al. PD-1:PD-L1 Interactions Contribute to the Functional Suppression of Virus-Specific CD8+ T Lymphocytes in the Liver [J]. J Immunol. 2007, 178:2714-20.
    [46] Schleifer KW, Mandfield JM. Suppressor macrophages in African Trypanosomiasis inhibit T cell proliferative responseby nitric oxide and prostaglandins [J]. J Immunol. 1993, 151(10): 542-9.
    [47] Sun Z, Wada T, Maemura K, et al. Hepatic allograft-derived Kupffer cells regulate T cell response in rats [J]. Liver transpl. 2003, 9(5):489-97.
    [48] Zhang X, Brunner T, Carter L, et al. Unequal death in T helper cell 1 (Th1) and Th2 effectors: Thl, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis [J]. J Exp Med. 1997, 185:1837-40.
    [49]Day CL,Kaufmann DE,Kiepiela P,et al.PD-1 expression on HIV-specific Tcells is associated with T-cell exhaustion and disease progression[J].Nature.2006,443:350-4.
    [50]Barber DL,Wherry EJ,Masopust D,et al.Restoring function in exhausted CD8 T cells during chronic viral infection[J].Nature.2006,439:682-7.
    [51]Blattman JN,Greenberg PD.PD-1 blockade:rescue from a near-death experience[J].Nat Immunol.2006,7:227-8.
    [52]Zhang JY,Zhang Z,Wang XC,et al.PD-1 upregulation is correlated with HIV-specific memory CD8+T-cell exhaustion in typical progressors,but not in long-term non-progressors[J].Blood.2007,109:4671-8.
    [53]Penna A,Pilli M,Zerbini A,et al.Dysfunction and functional restoration of HCV-specific CD8 responses in chronic hepatitis C virus infection[J].Hepatology.2007,45:588-601.
    [54]Furukawa H,Oshima K,Tung T,et al.Overexpressed exogenous IL-4 and IL-10paradoxically regulate allogenic T-cell and cardiac myocytes apoptosis through FAS/FASL pathway[J].Transplantation.2008,85(3):437-46.
    [55]Oshima K,Cui G,Tung T,et al.Exogenous IL-10 overexpression reduces perforin production by activated allogenic CD8+cells and prolongs cardiac allograft survival[J].Am J Physiol Heart Circ Physiol.2007,292(1):277-84.
    [56]金冬雁,黎孟枫.分子克隆实验指南[M].第二版,北京:科学出版社,1999.65-70.
    [57]李永明,赵玉琪.实验分子生物学方法手册[M].北京:科学出版社,1998.114-119.
    [58]Ynlseh PC,Vieira J,Messing J,et al.Improved M13 phage cloning vectors and host strains:nucleotide sequences of the M13mP18 and PUC19 vectors[J].Gene.1985,33:103-119.
    [59]卢圣栋.现代分子生物学实验技术[M].北京:高等教育出版社,1993.252-256.
    [60]黄培堂,俞炜源,陈添弥,等.PCR技术实验指南[M].北京:科学技术出版社,1998.410-420.
    [61]Hosaka S,Akahoshi T,Wada C,et al.Expression of the chemokine super family in rheuxnatoid arthritis[J].Clin Exp Inunimol.1994,97:451-57.
    [62] Gerard C, Rollins B. Chemokines and disease [J]. Nat Immunol. 2000, 2:108-115.
    [63] Downing JR. Targeted therapy in leukemia [J]. Mod Pathol. 2008,21(2):S2-7.
    [64] Amarzguioui M, Rossi JJ, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi [J]. FEBS Lett. 2005, 579(26):5974-5981.
    [65] Aalto AP, Sarin LP, van Dijk AA, et al. Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage phi6 RNA-dependent [J]. RNA polymerase.2007,13(3):422-429.
    [66] Sugiyama T, Cam H, Verdel A, et al. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production [J]. Proc Natl Acad Sci U S A. 2005, 102(1): 152-157.
    [67] Magkouras I, Matzener P, R(?)menapf T, et al. RNase-dependent inhibition of extracellular, but not intracellular, dsRNA-induced interferon synthesis by Erns of pestiviruses [J]. 2008, 89(10):2501-2506.
    [68] Lamontagne B, Larose S, Boulanger J, et al. The RNase III family: a conserved structure and expanding functions in eukaryotic dsRNA metabolism [J].Curr Issues Mol Biol. 2001, 3(4):71-78.
    [69] Wang S, Shi Z, Liu W, Jules J, et al. Development and validation of vectors containing multiple siRNA expression cassettes for maximizing the efficiency of gene silencing [J].BMC Biotechnol. 2006, 6:50.
    [70] Amarzguioui M, Rossi JJ, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi [J]. FEBS Lett. 2005, 579(26):5974-81.
    [71] Bellamy SR, Mina P, Retter SE, et al. Fidelity of DNA sequence recognition by the SfiI restriction endonuclease is determined by communications between its two DNA-binding sites [J]. J Mol Biol, 2008, 384(3):557-63.
    [72] Embleton ML, Vologodskii AV, Halford SE.Dynamics of DNA loop capture by the SfiI restriction endonuclease on supercoiled and relaxed DNA [J]. J Mol Biol.2004, 339(1):53-66.
    [1] Manfred B, Frigga R and Alexander LG. Role of Kupffer cells in host defense and liver disease [J]. Liver International, 2006; 26: 1175-1186
    [2] Bouwens L, Baekeland M, De Zanger R, Wisse E. Quantitation, tissue distribution and proliferation kinetics of Kupffercells in normal rat liver [J]. Hepatology. 1986;6:718-722
    [3] Perez R, Johnson J, Winkler JD, Rudich S, Carter L, Katznelson S, German JB.Kupffer cell-mediated lymphocyte apoptosis: a PGE2-dependent mechanism of portal venous transfusion-induced immuno-suppression [J]. J Surg Res 1998; 78:37-41
    [4] Callery MP, Kamei T, Flye MW. Kupffer cell blockade inhibits induction of tolerance by the portal venous route [J]. Transplantation, 1989; 47: 1092-1094
    [5] Margenthaler JA, Landeros K, Kataoka M, Flye MW. CD1-dependent natural killer (NK1.1(+)) T cells are required for oral and portal venous tolerance induction [J]. J Surg Res, 2002; 104: 29-35
    [6] Watanabe T, Katsukura H, Shirai Y, Yamori M, Nishi T, Chiba T, Kita T,Wakatsuki Y. A liver tolerates a portal antigen by generating CD1 lc+ cells, which select Fas ligand+ Th2 cells via apoptosis [J]. Hepatology, 2003; 38: 403-412
    [7] Diaz-Peromingo JA, Gonzalez-Quintela A. Influence of gadolinium-induced kupffer cell blockade on portal venous tolerance in rat skin allograft transplantation [J]. Eur Surg Res, 2005; 37: 45-49
    [8] Vidal C, Gonzalez-Quintela A, Cuervas-Mons V. Influence of Kupffer cell phagocytosis blockade of the production of ovalbumin-specific IgE and IgG1 antibodies in an experimental model [J]. Clin Exp Allergy 1993; 23: 15-20
    [9] Bumgardner GL, D Gao, J Li, J Baskin, M Heininger, CG Orosz. Rejection responses to allogeneic hepatocytes by reconstituted SCID mice, CD4 KO, and CD8 KO mice [J]. Transplantation, 2000; 70: 1771-1780
    [10]Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell, 2002; 111: 927-930
    [11]Greenberg S, Gfinstein S. Phagocytosis and innate immunity [J]. Curt Opin Immunol, 2002, 14: 136-145
    [12]Fadok VA, Bratton DL, Herson PM. Phagocyte receptors for apoptotic cells:recognition, uptake, and consequences [J]. J Clin Invest, 2001; 108: 957-962
    [13]Savill J, Fadok VA. Corpse clearance defines the meaning of cell death [J]. Nature,2000; 407: 784-788
    [14]Jialan Shi, Gary EG, Yoshihiro K, and Takashi O. Role of the liver in regulating numbers of circulating neutrophils [J]. Blood, 2001; 98: 1226-1230
    [15]Crispe IN, Dao T, Klugewitz K, Mehal WZ, Metz DP. The liver as a site of T-cell apoptosis: graveyard, or killing field [J]. Immunol Rev, 2000; 174: 47-62
    [16]Knolle PA, Gerken G. Local control of the immune response in the liver [J].Immunol, 2000; 174:21-34
    [17] Annette E, Markus B, Thomas P, Gisa T. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice [J].Hepatology, 2007; 45: 475-485
    [18]Gouw AS, Houthoff HJ, Huitema S, Beelen JM, Gips CH, Poppema S. Expression of major histocompatibility complex antigens and replacement of donor cells by recipient ones in human liver grafts [J]. Transplantation, 1987; 43: 291-296
    [19]Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T. The mononuclear phagocyte system revisited [J]. J Leukocyte Biol 2002; 72: 621-627
    [20]Geske FJ, Monks J, Lehman L, Fadok VA. The role of the macrophage in apoptosis: Hunter, gatherer, and regulator [J]. Int J Hematol 2002; 76: 16-26
    [21]Sun Z, Wada T, Maemura K, Uchikura K, Hoshino S, Diehl AM,Klein AS. Hepatic allograft-derived kupffer cells regulate T cell response in rats [J]. Liver Transplantation, 2003; 9: 489-497
    [22] Zhang X, Brunner T, Carter L, Dutton RW, Rogers P, Bradley L, Sato T, Reed JC,Green D, Swain SL. Unequal death in T helper cell (Th)l and Th2 effectors:Thl, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis [J]. J Exp Med,1997; 185: 1837-1849
    [23]Peng Y, Gallagher SF, Haines K, et al. Nuclear factor-kappaB mediates Kupffer cell apoptosis through transcriptional activation of Fas/FasL [J]. J Surg Res. 2006; 130:58-65
    [24]Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation [J].Immunity, 2007; 26: 579-591
    [25]Romagnani S. Regulation of the T cell response [J]. Clin Exp Allergy, 2006; 36:1357-1366
    [26]Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells [J]. Immunology, 2006; 117: 433-442
    [27] Battaglia M, Stabilini A, Draghici E. Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen specific transplantation tolerance [J]. Diabetes, 2006; 55: 40-49
    [28] Waldmann H, Graca L, Cobbold S. Regulatory T cells and organ transplantation [J].Semin Immunol, 2004; 16: 119-126
    [29]Fainboim L, Chernavsky A, Paladino N, Flores AC, Arruvito L. Cytokines and chronic liver disease [J]. Cytokine Growth Factor Rev, 2007; 18: 143-157
    [30]Olthoff KM. Molecular pathways of regeneration and repair after liver transplantation [J]. World J Surg, 2002; 26: 831-83
    [31]Sakuda S, Taumura S, Yamada A, Miyagawa JI, Yamamoto K, Kiso S, Ito N,Higashiyama S, Taniguchi N, Kawata S, Matsuzawa Y. NF-kB activation in non-parenchymal liver cells after partial hepatectomy in rats: possible involvement in expression of heparin-binding epidermal growth factor-like growth factor [J]. J Hepatol, 2002; 36: 527-533
    [32]Sun D, Chen D, Du B, Pan J. Heat shock response inhibits NF-kappaB activation and cytokine production in murine Kupffer cells [J]. J Surg Res, 2005; 129: 114-121
    [33]Edelman DA, Jiang Y, Tyburski JG, Wilson RF, Steffes CP. Cytokine Production in Lipopolysaccharide-exposed Rat Lung Pericytes [J]. J Trauma, 2007; 62: 89-93
    [34]Ojaniemi M, Liljeroos M, Harju K, Sormunen R, Vuolteenaho R, Hallman M.TLR-2 is upregulated and mobilized to the hepatocyte plasma membrane in the space of Disse and to the Kupffer cells TLR-4 dependently during acute endotoxemia in mice [J]. Immunol Lett, 2006; 102: 158-168
    [35]Jahnke C, Mehrabi A, Golling M, Frankenberg M, Kashfi A, Nentwich H, Fonouni H, Nickkholgh A, Schemmer P. Evaluation of microperfusion disturbances in the transplanted liver after Kupffer cell destruction using GdCl_3: an experimental porcine study [J]. Transplant Proc, 2006; 38: 1588-1595
    [36] Giakoustidis D, Papageorgiou G, Iliadis S, Giakoustidis A, Kostopoulou E, Kontos N, Botsoglou E, Tsantilas D, Papanikolaou V, Takoudas D. The protective effect of alpha-tocopherol and GdCl3 against hepatic ischemia/reperfusion injury [J]. Surg Today, 2006; 36: 450-456
    [37]Imamura H, Laberge S, Brault A, Cote J, Huet PM. Immunogenic role of Kupffer cells in a rat model of acute liver allograft rejection [J]. Liver Transpl Surg, 1995; 1:389-394
    [38]Savier E, Lemasters JJ, Thurman RG. Kupffer cells participate in rejection following liver transplantation in the rat [J]. Transpl Int, 1994; 7: S183-S186
    [39] von Frankenberg M, Golling M, Mehrabi A, Nentwich H, Klar E, Kraus TW. Donor pretreatment with gadolinium chloride improves early graft function and survival after porcine liver transplantation [J]. Transpl Int, 2003; 16: 806-813
    [40]Akamatsu Y, Ohkohchi N, Doi H, Satomi S. Effect of elimination of donor Kupffer cells and/or recipient macrophages on acute rejection in liver transplantation [J].Hepatogastroenterology, 2003; 50: 1105-1110
    [1] GrennwaldRJ, FreemanGJ, SharpeAH. The B7 family revisited [J]. Annu Rev Immunol, 2005, 23:515-548.
    [2] Truong W, Plester JC, Hancock WW, et al. Negative and posotive cosignaling with anti-BTLA (PJ196) and CTLA4-Ig prolongs islet allograft survival [J]. Transplantation, 2007, 84: 1368-1372.
    [3] Khoury SJ, Sayegh MH. The roles of the new negative T cell costimulatory pathways in regulating autoimmunity [J]. Immunity, 2004, 20(5): 529-538.
    [4] Okazaki T, Honjo T. Rejuvenating exhausted T cell during chronic viral infection [J]. Cell, 2006, 124:459-461.
    [5] Kroner A, Schwab N, Ip CW, et al. PD-1 regulates neural damage in oligodendro-glia-induced inflammation [J]. PLoS ONE, 2009, 4(2): e4405.
    [6] Velu V, Titanji K, Zhu B, et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade [J]. Nature, 2009, 458(7235): 206-210.
    [7] Koehn BH, Ford ML, Ferrer IR, et al. PD-1 dependent mechanisms maintain peripheral tolerance of donor-reactive CD8+ T cells to transplanted tissue [J]. J Immunol, 2008, 181(8): 5313-5322.
    [8] Jacobs JF, Idema AJ, Bol KF, et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors [J]. Neuro Oncol, 2008, Nov 21.[Epub ahead of print].
    [9] Zhang C, Wu S, Xue X, et al. Anti-tumor immunotherapy by blockade of the PD-1/PD-L1 pathway with recombinant human PD-1-IgV [J]. Cytotherapy, 2008, 10(7):711-719.
    [10]Nakamoto N, Kaplan DE, Coleclough J, et al. Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compar-tmentalization [J]. Gastroenterology, 2008, 134(7): 1927-1937.
    [11] Lucas JA, Menke J, Rabacal WA, et al. Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice [J]. J Immunol. 2008, 181(4): 2513-2521.
    [12]Butte MJ, Pena-Cruz V, Kim MJ, et al. Interaction of human PD-L1 and B7-1 [J].Mol Immunol, 2008,45(13): 3567-3572.
    [13]Zhang Y, Chung Y, Bishop C, et al. Regulation of T cell activeation and tolerrance by PD-L2 [J]. Proc.Natl Acad.Sci.USA, 2006, 103: 11695-11700.
    [14]Raimondi G, Shufesky WJ, Tokita D, et al. Regulated compartmentalization of programmed cell death-1 discriminates CD4+CD25+ resting regulatory T cells from activated T cells [J]. J Immunol, 2006, 176(5): 2808-2816.
    [15]Wang L, Han R, Hancock WW. Programmed cell death 1 (PD-1) and its ligand PD-Ll are required for allograft tolerance [J]. Eur J Immunol, 2007, 37(10): 2983-2990.
    [16]Liang SC, Keir ME, Guleria I, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance [J]. J Exp Med, 2006,203(4): 883-895
    [17]Wang W, Carper K, Malone F, et al. PD-L1/PD-1 signal deficiency promotes allogeneic immune responses and accelerates heart allograft rejection [J].Transplantation, 2008, 86(6): 836-844
    [18]Dudler J, Li J, Pagnotta M, Pascual M, et al. Gene transfer of programmed death ligand-1-Ig prolongs cardiac allograft survival [J]. Transplantation, 2006, 82(12):1733-1737.
    [19] Yang J, Popoola J, Khandwala S, et al. Critical role of donor rissue expression of programmed death ligand-1 in regulating cardiac allograft rejection and vasculopathy [J].Circulation, 2008, 117: 660-669.
    [20]Aramaki O, Inoue F, Takayama T, et al. Various costimulatory pathways are essential for induction of regulatory cells by intratracheal delivery of alloantigen[J].Transplant Proc, 2005, 37(4): 1934-1936.
    [21]Koga N, Suzuki J, Kosuge H, et al. Blockade of the interaction between PD-1 and PD-Ll accelerates graft arterial disease in cardiac allografts [J]. Arterioscler Thromb Vasc Biol, 2004, 24(11): 2057-2062.
    [22]Chen L, Hussien Y, Hwang KW, et al. Overexpression of program death-1 in T cells has mild impact on allograft survival [J]. Transpl Int, 2008, 21(1): 21-29.
    [23]Tanaka K, Albin MJ, Yuan X, et al. PDL1 is required for peripheral transplantation tolerance and protection from chronic allograft rejection [J]. J Immunol, 2007,179(8): 5204-5210.
    [24]Habicht A, Kewalaramani R, Vu MD, et al. Striking dichotomy of PD-L1 and PD-L2 pathways in regulating alloreactive CD4(+) and CD8(+) T cells in vivo [J].Am J Transplant, 2007, 7(12): 2683-2692.
    [25]Schilbach K, Schick J, Wehrmann M, et al. PD-1-PD-L1 pathway is involved in suppressing alloreactivity of heart infiltrating t cells during murine gvhd across minor histocompatibility antigen barriers [J]. Transplantation, 2007,84(2):214-222.
    [26] Schuchmann M, Meyer RG, Distler E, et al. The programmed death (PD)-1/PD-ligand 1 pathway regulates graft-versus-host-reactive CD8 T cells after liver transplantation [J]. Am J Transplant. 2008, 8(11): 2434-2444.
    [27]Sester U, Presser D, Dirks J, et al. PD-1 expression and IL-2 loss of cytomegalovirus-specific T cells correlates with viremia and reversible functional anergy [J]. Am J Transplant, 2008, 8(7): 1486-1497.
    [28] La Rosa C, Krishnan A, Longmate J, et al. Programmed death-1 expression in liver transplant recipients as a prognostic indicator of cytomegalovirus disease [J]. J Infect Dis, 2008, 197(1): 25-33.
    [29]Li J, Bai Y, Wang L, Wei H, et al. Regulatory effect of FK506 on CD152 and PD-1 in the liver allorecipients [J]. Transplant Proc, 2008, 40(5): 1495-1497.
    [30]Hori J, Wang M, Miyashita M, et al. B7-H1-induced apoptosis as a mechanism of immune privilege of corneal allografts [J]. J Immunol, 2006, 177(9): 5928-5935.
    [31]Haspot F, Fehr T, Gibbons C, et al. Peripheral deletional tolerance of alloreactive CD8 but not CD4 T cells is dependent on the PD-1/PD-L1 pathway [J]. Blood,2008, 112(5): 2149-2155.
    [32]Kitazawa Y, Fujino M, Wang Q, et al. Involvement of the programmed death-1/programmed death-1 ligand pathway in CD4+CD25+ regulatory T-cell activity to suppress alloimmune responses [J]. Transplantation, 2007, 83(6): 774-782.
    [33]Mai G,del Rio ML,Tian J,et al.Blockade of the PD-1/PD-1L pathway reverses the protective effect of anti-CD40L therapy in a rat to mouse concordant islet xenotransplantation model[J].Xenotransplantation,2007,14(3):243-248.
    [34]Del Rio ML,Buhler L,Gibbons C,et al.PD-1/PD-L1,PD-1/PD-L2,and other co-inhibitory signaling pathways in transplantation[J].Transpl Int,2008,21(11):1015-1028

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700