用户名: 密码: 验证码:
基于树突状细胞的膀胱肿瘤疫苗的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膀胱肿瘤是我国泌尿系统最常见的肿瘤,其中多数为非肌层浸润性膀胱癌。膀胱肿瘤的主要特点是复发率高,可能的原因是膀胱肿瘤患者膀胱粘膜局部免疫功能低下,使得残存肿瘤容易逃避免疫监视,得以生存和形成复发。因此,非肌层浸润性膀胱肿瘤术后常辅以膀胱灌注化疗或免疫疗法以预防肿瘤复发和进展。卡介苗(Bacillus Calmette-Guerin,BCG)膀胱灌注是目前投入临床应用最有效的免疫治疗方法,有效激活膀胱粘膜局部免疫应答是其抗肿瘤作用的主要机制,但BCG膀胱灌注等治疗仍不能完全预防肿瘤的复发和进展。预防膀胱肿瘤复发和进展仍是尚未完全解决的难题。
     树突状细胞(DC)是目前发现的体内功能最强,也是唯一能激活初始型T淋巴细胞的抗原递呈细胞(APC)。DC在肿瘤免疫中的功能强大,但肿瘤组织及外周血中DC的数目、成熟及功能受到抑制。随着体外大量扩增DC和制备DC疫苗技术的日趋成熟,采用DC疫苗进行抗肿瘤治疗已成为当今肿瘤生物治疗领域倍受关注的焦点之一。
     环氧化酶2(COX-2)是一种诱导型酶,正常组织几乎无表达,与多种肿瘤的发生发展有关,对肿瘤的分化、凋亡、血管生成等生物学行为产生影响,且与肿瘤分级分期、进展预后等有关。因此,近年来,COX-2抑制剂作为膀胱肿瘤治疗的新型途径,获得了广泛的关注。我们试验组也进行了大量相关的研究工作,发现COX-2抑制剂对膀胱肿瘤有明显的杀伤与抑制增殖的作用,同时对DC细胞具有很强的诱导作用。
     CpG是卡介苗(BCG)中提取的DNA片段,以未甲基化胞嘧啶鸟嘌呤(CpG)二核苷酸为核心的六碱基序列为基础,具有强大的免疫刺激活性。人工合成的含CpG序列的寡脱氧核糖核苷酸(CpG-ODN)具有与细菌DNA相同的免疫活性,可与DC表面TLR-9受体特异性结合,激活DC,上调共刺激分子的表达、增强DC向T细胞递呈抗原的能力,可以替代BCG使DC成熟获得抗原递呈和刺激免疫的功能。
     本实验组近年来在COX-2与膀胱肿瘤的相关研究以及CpG-ODN联合DC疫苗的研究都进行了大量的工作,本课题是本实验室前期相关研究延续和深入。课题研究的目的在于建立以DC为基础,以COX-2抑制剂和免疫佐剂CpG-ODN刺激诱导其成熟并发挥免疫功能的膀胱肿瘤疫苗,研究其对膀胱肿瘤的生物学效应,为寻找一种新的治疗膀胱癌和预防其复发的方法奠定实验基础。
     本研究主要研究内容及结果如下:
     第一部分基于DC的膀胱肿瘤疫苗的建立及其形态与功能的初步鉴定。
     目的:建立基于DC的膀胱肿瘤疫苗并进行初步鉴定。
     方法:
     1.从人脐血中分离单个核细胞,体外诱导培养为树突状细胞(DC),加入COX-2抑制剂塞来昔布和免疫佐剂CpG-ODN,刺激使其成熟,制备膀胱肿瘤疫苗。观察其形态并对其表面标志进行检测。
     2. ELISA法测定各组培养上清中Th1型细胞因子(IL-12)和Th2型细胞因子(IL-10)水平。
     3. MTT法测定各组DC的同种异体混合淋巴细胞反应性。
     结果和结论:
     1.经鉴定建立的以DC为基础的膀胱肿瘤疫苗具有典型DC形态学和表型特征。
     2.细胞因子检测结果显示BCG激活DC后IL-12和IL-10水平均较对照组显著升高,表明BCG既激活了Th1型,也激活了Th2型免疫应答,而加入塞来昔布的2组DC的细胞因子IL-12分泌显著增加而IL-10表达明显下降,证实了塞来昔布引起的免疫漂移现象。同时,应用佐剂CpG-ODN也可以见到IL-12的分泌明显增加,但对IL-10的分泌没有明显影响。
     3.同种异体混合淋巴细胞反应性检测结果显示,实验组MLR明显比对照组增强。这些结果都初步显示了我们制备的DC疫苗具有更强的抗原递呈效应和诱导机体免疫的效应,为我们进一步验证DC疫苗的生物效应和动物试验打下了良好的基础。
     第二部分DC疫苗对体外培养的膀胱肿瘤细胞株T24的免疫学效应研究。
     目的:观察建立的DC疫苗对体外培养的膀胱肿瘤T24细胞的免疫治疗效应。
     方法:
     1.制备DC疫苗激活的细胞毒T淋巴细胞(CTL);复苏和培养人膀胱肿瘤T24细胞作为CTL的靶细胞。
     2.将贴壁生长的T24细胞,分别与各组DC疫苗共培养,乳酸脱氢酶(LDH)释放法测定各组DC激活的细胞毒T淋巴细胞(CTL)对人膀胱肿瘤细胞株T24的细胞毒活性。
     结果和结论:
     1.成功复苏和扩增了靶细胞T24,成功获得了DC疫苗激活的细胞毒T淋巴细胞(CTL)。
     2. LDH释放法测定各组DC激活CTL对人膀胱肿瘤细胞株T24的细胞毒活性,我们制备的DC疫苗激活CTL,产生很强的抗膀胱肿瘤细胞毒活性的效应。
     随着效/靶比提高,细胞毒活性亦相应加强。由此可以推断我们制备的DC疫苗可能成为膀胱肿瘤的有效治疗方法。
     第三部分负载肿瘤抗原的DC疫苗对T739小鼠体内膀胱肿瘤的免疫学效应研究。
     目的:观察建立的DC疫苗对BTT739膀胱肿瘤荷瘤小鼠体内膀胱肿瘤的免疫治疗效应。
     方法:
     1.采用细胞悬液法建立BTT739膀胱肿瘤荷瘤小鼠模型,分别于接种肿瘤细胞后第7天和14天,应用负载肿瘤抗原的DC疫苗肿瘤周围注射,观察肿瘤的体积、瘤重、荷瘤小鼠的生存期等变化。
     2.经负载肿瘤抗原的DC疫苗治愈的2只小鼠,30天后仍无肿瘤生长,再次皮下接种BTT739细胞,观察肿瘤生长情况。
     结果和结论:
     1.负载肿瘤抗原的DC疫苗实验组荷瘤鼠肿瘤平均体积和平均瘤重均显著低于对照组(P<0.01),生存期长于对照组,并且有2只小鼠无瘤长期存活;负载肿瘤抗原的DC疫苗联合CpG-ODN对膀胱肿瘤荷瘤小鼠具有抑瘤效应和生存期延长作用。
     2.经DC疫苗实验组治愈的2只小鼠30天后无肿瘤生长,再次皮下接种BTT739细胞观察30天仍无肿瘤发生。我们建立的DC疫苗对膀胱肿瘤细胞再次攻击具有免疫保护作用,其机制可能是诱导机体产生了长期的肿瘤记忆性细胞免疫反应,在膀胱肿瘤复发预防中具有良好应用前景。
     全文结论:
     1.建立了以DC为基础,以COX-2抑制剂和免疫佐剂CpG-ODN刺激其诱导成熟的膀胱肿瘤疫苗,其具有和普通DC相同的细胞形态和表型特征。并能诱导明显的Th1/Th2应答平衡向Th1型极性漂移的现象。
     2.我们建立的DC疫苗诱导的特异性CTL对体外培养的膀胱肿瘤T24细胞具有的很强的细胞毒活性。
     3.负载肿瘤抗原的DC疫苗对膀胱肿瘤荷瘤小鼠具有显著的抑瘤效应和生存期延长作用。
     4.负载肿瘤抗原的DC疫苗可诱导机体产生并维持长期的肿瘤记忆性细胞免疫反应,对膀胱肿瘤细胞再次攻击具有免疫保护作用,在膀胱肿瘤复发预防中具有良好应用前景。
Bladder tumor, the most frequent urinary malignancy in Chinese people, of which most is non-muscle invasive tumor is characterized of high recurrence, owing probably to the local immunodeficiency in mucous membrane of urinary bladder, which makes residual tumor cells be able to escape from immunological surveillance, surviving and forming recurrence. Therefore, intravesical chemotherapy or immunotherapy is used postoperatively for the prevention of tumor recurrence and progress usually. Bacillus Calmette-Guerin (BCG) is currently the most effective intravesical immunotherapeutic agent, which takes the anti-tumor effect by the mechanism of effective activation of local immune response in mucous membrane of urinary bladder. However, treatments like intravesical BCG therapy are still not able to completely control recurrence and progress of bladder cancer. Prophylaxis of recurrence and progress of bladder cancer is a tough problem unsettled.
     Dendritic cells(DC) are believed to have the most powerful antigen presenting capacity(APC) and the native T cells can be only primed by DCs. But in tumor tissue and peripheral blood of tumor patients, amount of DCs decreases, of which maturity and function is inhibited. With the development of technique of DCs amplification vitro and DC vaccine constructed, Dendritic cell-based vaccine manifest a good clinical applications as a representative of new vaccines.
     Cyclooxygenase 2 (COX-2) is a kind of enzyme which is almost not expressed in normal human urothelial cells, but it is significantly over expressed in human multiple cancer cells. COX-2 affects cell differentiation, apoptosis, vascularization of tumors, and is related with tumor grading and staging, tumor progress and prognosis. Therefore COX-2 has been supposed to be a new therapeutic target for the treatment of bladder cancer. Many studies,with which it was found that COX-2 inhibitor could restrain progress of bladder cancer and had powerful entrainment on DCs, were carried out by our group.
     CpG, a DNA frag abstracted from Bacillus Calmette-Guerin Recent which unmethylated CpG motifs in bacterial DNA, was believed that had powerful immunostimulatory activity. Synthetic oligodeoxynucleotides(ODNs) containing CpG motifs have the same activity as bacterial DNA. CpG-ODNs are recognized by specific Toll-like receptor 9 on the surface of DCs and induce an activataion phenotype of DCs characterized by the expression of costimulatory molecules, enhanced antigen presentation to T cells.
     In recent years, studies about the relation of COX-2 , DC, CpG-ODN and bladder cancer were progressed by our group, constantly. The purpose of this study is to construct bladder tumor vaccine based on DC which is inducted by COX-2 inhibitor and CpG-ODN and detect its biological effect on bladder cancer. It should be a experiment foundation of looking for the new method of bladder cancer therapy and prophylaxis.
     Part I. Construction of bladder tumor vaccine based on DC and detection initially of its biological effect.
     Purpose: To construc bladder tumor vaccine based on DC and detect its biological effect, initially.
     Methods:
     1. Mononuclear cells were isolated from human cord blood and induced to differentiate to dendrtic cells (DCs) in vitro. Then DCs were stimulated mature using COX-2 inhibitor and CpG-ODN. Then the morphous and surface markers were detected.
     2. DCs were co-cultured with reagent concerted. Th1-type cytokine IL-12 and Th2-type cytokine IL-10 were measured in culture supernatant of each group by enzyme-linked immunosorbent assay (ELISA).
     3. Allogenic mixed lymphocyte reactivity (MLR) was determined by MTT assay of DCs in each group.
     Results:
     1. Results of identification showed that the cultured cells were morphology- and phenotype-typical DCs.
     2. Results of cytokine detection demonstrated that after BCG infection, both IL-12 and IL-10 production of DCs increased significantly compared with blank group, and no dominant immunological drift of the Th response occured. Celecoxib stimulated increased IL-12 and decreased IL-10 production. The results indicated that Celecoxib induced Th response drift to Th1, meanwhile CpG-ODN increased IL-12 and unchanged IL-10 production.
     3. Results of MLR detection showed that experimental group had higher stimulating index than control group.
     The effect of antigen presentation and inducing immune response of DC vaccine has been enhanced by combining celecoxib and CpG-ODN.
     Part II: Immunotherapy Effects of dendritic cell vaccine on bladder tumor cell T24 in vitro.
     Purpose: To investigate immunotherapy effects of dendritic cells vaccine on bladder tumor line T24 in vitro.
     Methods:
     1. The cytotoxic T lymphocyte activited by DC vaccine was prepared. Meanwhile as the target cell, bladder cancer cells T24 were resuscitated and cultivited.
     2. Adherent T24 cells were respectively co-cultured with the DCs. Cytotoxicity of CTLs activted by DCs of each group was measured by LDH release assay.
     Results:
     1. As the target cell, bladder cancer cells T24 were resuscitated and cultivited, successfully. And The cytotoxic T lymphocyte activited by DC vaccine were gained.
     2. Results of LDH release assay suggested that DC vaccine activated CTLs enhanced cytotoxicity on human bladder cancer cell line T24.
     PartⅢImmunotherapy Effects of dendritic cell vaccine plused with tumor antigen on bladder tumor in vivo.
     Purpose: To investigate immunotherapy effects of dendritic cells vaccine plused with tumor antigen on bladder tumor in T739 mice.
     Methods:
     1. After the BTT739 bladder tumor model in T739 mice were successfully established, DC vaccine were injected respectively into the margins of the tumor(peritumoral) on day 7 and day 14 after tumor cells inoculation. Tumor weight, volume and the living time of mice were recorded.
     2. After two mice cured with DC vaccine were rechallenged with BTT739 cells, the development of tumor was monitored.
     Results:
     1. Tumor weight and volume inhibition effects of DC vaccine treatment experiment group were significantly higher than that of control group (P<0.01). The living time of experiment group mice was significantly longer than that of control group. DC vaccine plused with tumor antigen can inhibit tumor growth and prolong the living time of T739 mice with BTT739 bladder tumor.
     2. Two mice cured with DC vaccine were tumor-free 30 days after being rechallenged with BTT739 cells. DC vaccine plused with tumor antigen can lead to complete rejection of tumor rechallenge and provide long-term maintenance of tumor immunity, It should be an appealing immunotherapeutic approach to preventing the recurrence of bladder tumor in clinic.
     Summary and Conclusions:
     1. Mononuclear cells were isolated from human cord blood and induced to differentiate to dendrtic cells (DCs) in vitro. Then DCs were stimulated mature using COX-2 inhibitor and CpG-ODN and were confirmed that the cultured cells were morphology- and phenotype-typical DCs. Meanwhile Th response drifting to Th1 was induced.
     2. DC vaccine can induce effector cells to appear strong cytotoxicity and killing activity on bladder cell T24.
     3. DC vaccine plused with tumor antigen can inhibit tumor growth and prolong the living time of T739 mice with BTT739 bladder tumor.
     4. DC vaccine plused with tumor antigen can lead to complete rejection of tumor rechallenge, which shows that this method should be an appealing immunotherapeutic approach to preventing the recurrence of bladder tumor in clinic.
引文
1.吴阶平主编,吴阶平泌尿外科学(上卷).济南,山东科学技术出版社, 2004: 965-980
    2. Herr HW, Pinsky CM, Whitmore WF, et al. Effect of transvesical Bacillus Calmette-Guerin on carcinoma in situ of the bladder. Cancer. 1983, 51(10): 1323~1328
    3. Akaza H, Kurth KH, Hinotsu S, et al. Intravesicle chemotherapy and immunotherapy for superficial tumors: basic mechanism of action and future direction. Urol Oncol. 1998, 4(1):121-129.
    4. Kikuchi T, Ohno N, Ohno T. Maturation of dendritic cells induced by Candida beta-D-glucan. Int Immunopharmacol. 2002, 2(10):1503-1508.
    5. Tokunaga T , Yamamoto H , ShimadaS , et al. Antitumor activity of deoxyribonucleric acid fraction from Mycobacterium bovis BCG I. Isolation, physicochemical characterization and antitumor activity. J Natl Cancer Inst, 1984, 72(4): 955-962.
    6. Ristimaki A, Nieminen O, Saukkonen K, et al. Expression of cyclooxygenase-2 in human transitional cell carcinoma of the urinary bladder. Am J Pathol. 2001, 158(3): 849-853
    7. Shirahama T, Sakakura C. Overexpression of cyclooxygenase-2 in squamous cell carcinoma of the urinary bladder. Clin Cancer Res. 2001, 7(3):558-561
    8. Bostrom PJ, Aaltonen V, Soderstrom KO, et al. Expression of cyclooxygenase-1 and -2 in urinary bladder carcinomas in vivo and in vitro and prostaglandin E2 synthesis in cultured bladder cancer cells. Pathology. 2001, 33(4):469-474
    9. Shariat SF, Kim JH, Ayala GE, et al. Cyclooxygenase-2 is highly expressed in carcinoma in situ and T1 transitional cell carcinoma of the bladder. J Urol. 2003, 169(3):938-942
    10. Komhoff M, Guan Y, Shappell HW, et al. Enhanced expression of cyclooxygenase-2 in high grade human transitional cell bladder carcinomas. Am J Pathol. 2000, 157(1): 29-35
    11. Shirahama T. Cyclooxygenase-2 expression is up-regulated in transitional cell carcinoma and its preneoplastic lesions in the human urinary bladder. Clin Cancer Res. 2000, 6(6):2424-2430
    12. Wadhwa P, Goswami AK, Joshi K, et al. Cyclooxygenase-2 expression increases with the stage and grade in transitional cell carcinoma of the urinary bladder. Int Urol Nephrol. 2005, 37(1):47-53.
    13. Wulfing C, Eltze E, von Struensee D, et al. Cyclooxygenase-2 expression in bladder cancer: correlation with poor outcome after chemotherapy. Eur Urol. 2004, 45(1):46-52.
    14. Dovedi SJ, Kieby JA, Atkins H, et al. Cyclooxygenase-2 inhibition: a potential mechanism for increasing the efficacy of bacillus Calmette-Guerin immunotherapy for bladder cancer.J Urol. 2005,174(1):332-337
    15. Choi EM, Kwak SJ, Kim YM, et al. COX-2 inhibits anoikis by activation of the PI-3K/Akt pathway in human bladder cancer cells. Exp Mol Med, 2005, 37(3): 199-203
    16. Alexandroff AB, Jackson AM, O'Donnell MA, et al. BCG immunotherapy of bladder cancer: 20 years on.Lancet. 1999,353(9165):1689-1694
    17. Saint F, Patard JJ, Maille P, et al. T helper 1/2 lymphocyte urinary cytokine profiles in responding and nonresponding patients after 1 and 2 courses of bacillus Calmette-Guerin for superficial bladder cancer.2001,166(6):2142-2147.
    18. Bander NH, Yao D, Liu H, et al. MHC classⅠandⅡexpression in prostate carcinoma and modulation by interferon alpha and gamma.Prostate.1997;33(4):223-239.
    19. Nouri AM, Hussain RF, Oliver RT. The frepuency of major histocompatibility complex antigen abnormalities in urological tumours and their correction by gene transfection or cytokine stimulation.Cancer-Gene-Ther.1994;1(2):119-123.
    20. Lee SH, Lee JY, Park Ws, et al.Transitional cell carcinoma expresses high levels of Fas ligand in vivol.BIU Int.1999;83(6):698-702.
    21. Matsui S, Ablers JD, Vortmeyer AO, et al.A model for CD8+CTL tumor immuosurceillance and regulation of tumor escape by CD4+ T cells through an effect on quality of CTL.J Immuol.1999;161(1):184-193.
    22. D’Orazio TJ, Niederkorn JY. A novel role for TGF-beta and IL-10 in the induction of immune privilege. J Immuol.1998;160(5):2089-2098.
    23. Gabrilovich DI, Ciemik IF, Carbone DP. Dendritic cells in antitumor immune response . Ⅰ.Defective antigen presentation in tumorbearing hosts.Cell Immunol.1996; 170(1): 101-110.
    24. Harizi H, Gualde N. Dendritic cells produce eicosanoids,which modulate generation and functions of antigen-presenting cells.Prostaglandins Leukot Essent Fatty Acids. 2003;66(5-6):459-466.
    25. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med, 1973, 137(5):1142-1162.
    26. Inaba KM, Inaba N, Romani H, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med, 1992, 176:1693-1702.
    27. Kikuchi T, Ohno N, Ohno T. Maturation of dendritic cells induced by Candida beta-D-glucan. Int Immunopharmacol. 2002, 2(10):1503-1508.
    28. Guo G, Chen S, Zhang J, et al. Antitumor activity of a fusion of esophageal carcinoma cells with dendritic cells derived from cord blood.Vaccine.2005, 23(45):5225-30.
    29. De Smedt AC, Van Den Heuvel RL, Van Tendeloo VF, et al. Capacity of CD34+ progenitor-derived dendritic cells to distinguish between sensitizers and irritants.Toxicol Lett. 2005, 156(3):377-389
    30. Canque B, Camus S, Dalloul A, et al. Characterization of dendritic cell differentiation pathways from cord blood CD34+CD7+CD45RA+ hematopoietic progenitor cells.Blood. 2000, 96(12):3748-3756.
    31. Mainali ES, Tew JG. Dexamethasone selectively inhibits diVerentiation of cord blood stem cell derived-dendritic cell (DC) precursors into immature DCs. Cellular Immunology. 2004, 232 () :127–136
    32. Montoya M, Edwards MJ, Reid DM, Borrow P. Rapid activation of spleen dendritic cell subsets following lymphocytic choriomeningitis virus infection of mice: analysis of the involvement of type 1 IFN.J Immunol. 2005,174(4):1851-1861
    33. O'Neill HC, Wilson HL, Quah B, Abbey JL, Despars G, Ni K. Dendritic cell development in long-term spleen stromal cultures.Stem Cells. 2004;22(4):475-86
    34. Naik S, Vremec D, Wu L, O'Keeffe M, Shortman K. CD8alpha+ mouse spleen dendritic cells do not originate from the CD8alpha- dendritic cell subset.Blood. 2003, 102(2):601-4.
    35. Voisine C, Hubert FX, Trinite B, Heslan M, Josien R. Two phenotypically distinctsubsets of spleen dendritic cells in rats exhibit different cytokine production and T cell stimulatory activity.J Immunol. 2002,169(5):2284-2291
    36. McIlroy D, Troadec C, Grassi F, Samri A, Barrou B, Autran B, Debre P, Feuillard J, Hosmalin A. Investigation of human spleen dendritic cell phenotype and distribution reveals evidence of in vivo activation in a subset of organ donors.Blood. 2001, 97(11):3470-7.
    37. Danciger JS, Lutz M, Hama S, Method for large scale isolation, culture and cryopreservation of human monocytes suitable for chemotaxis, cellular adhesion assays, macrophage and dendritic cell differentiation. Journal of Immunological Methods. 2004, 288: 123-134
    38. Huck B, Steck T, Habersack M, et al. Pregnancy associated hormones modulate the cytokine production but not the phenotype of PBMC-derived human dendritic cells. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2005, 122(1) : 85–94
    39. Chen L, Cohen AC, Lewis DB. Impaired allogeneic activation and T-helper 1 differentiation of human cord blood naive CD4 T cells. Biology of Blood and Marrow Transplantation. 2006, 12:160-171
    40. Ratta M, Curti A, Fogli M, et al. Efficient presentation of tumor idiotype to autologous T cells by CD83+ dendritic cells derived from highly purified circulating CD14+ monocytes in multiple myeloma patients. Exp Hematol. 2000, 28(8):931-40
    41. Turley SJ,Steinman RM,Mellman I,et al.Propagation and culture of dendritic cells .In:lotze MT Thomson AW.Dendritic Cells:Biology and Clinical Application[M]. San Diego,colif:Academic Press,1999.544.
    42. Coventry BJ, Austyn JM, Chryssidis, et al. Identification and isolation of CD1a positive putative tumor infiltrating dendritic cells in human breast cancer. Adv Exp Med Biol. 1997, 417(1):571-577
    43. Coventry BJ,Austyn JM,Chryssidis S,et al.Identification and isolation of CD1a positive putative tumor infiltrating dendritic cells in human breast cancer.Adv Exp Med Biol.1997;417(1):571-577.
    44. Zhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol. 1995, 154(8):3821-3835.
    45. Kruse M,Rosorius O,Kratzer F ,et al.Inhibition of CD83 cell surface expression during dendritic cell maturation by interference with nuclear export of CD83 mRNA. J Exp Med.2000;191(9):1581-1590.
    46. Ishigami S, Aikou T, Natsugoe S, et al. Prognostic value of HLA-DR expression and dendritic cell infiltration in gastric cancer. Oncology. 1998, 55(1):65-69.
    47. Aarvak T, Natvig JB. Cell-cell interactions in synovitis: antigen presenting cells and T cell interaction in rheumatoid arthritis. Arthritis Res. 2001,3(1):13-17
    48. Terabe M, Berzofsky JA. Immunoregulatory T cells in tumor immunity. Curr Opin Immunol. 2004,16(2):157-162
    49. Fazekas DS,Smith LA,Bosco J,et al.Experimental models linking dendritic cell lineage,phenotype and function.Immunol Cell Biol.2002;80(5):469-476.
    50. Gary JN.HIV vaccine strategies .Vaccine . 2002;20(15):1945-1947.
    51. Silvia B,Claudia M,Roberta G,et al.Dendritic cell-based vaccination against opportunistic fungi.Vaccine.2004;22(7):857-864.
    52. Thomson AW,Lu L,Murase N,et al.Microchimerism,dendritic cell progenitors and transplantation tolerance.Stem Cell Dayt.1995;13(6):622-631.
    53. Vries IJ,Eggert AA,Scharenborg NM,et al.Phenotypical and functional characterization of clinical grade dendritic cells.J Immunother.2002;25(5):429-438.
    54. Heidrum M.Dendritic cells as a tool to combat infectious diseases.Immunology Letters.2003;85(2):153-157.
    55. Caetano RS.Activation of dendritic cells:translating innate into adaptive immunity . Current Opinion in Immunology.2004;16(1):21-25.
    56. Nouri SM,Banchereau J,Fay J,et al. Dendritic cell based tumor vaccines.Immunol Lett.2000;74(1):5-10.
    57. Kumamoto T,Morita A,Takashima A.Recent advances in dendritic cell vaccines for cancer treatment.J Dermatol.2001;28(11)658-662.
    58. Matthias S,Jochen S.Dendritic cell vaccination:new hope for the treatment of metastasized endocrine malignancies.Trends in Endocrinology and Metabolism. 2003;14(4):156-162.
    59. Andrew J Troy,Peter J.T.Davidson,Christopher H, et al.CD1a dendritic cells predominate in transitional cell carcinoma of bladder and kidney but are minimallyactivated . J Urol .1999;161(6):1962-1967.
    60. Patel VA, Dunn MJ, Sorokin A. Regulation of MDR-1(P-glycoprotein)by cyclooxygenase- 2. J Biol Chem.2002;277(41):38915-38920.
    61. Stolina M, Sharma S, Lin Y, et al.Specific Inhibition of Cyclooxygenase-2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis.J Immunol.2000;164(1):361-370.
    62. Sombroek CC , Stam AG, Masterson AJ,et al.Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol. 2002;168(9):4333-4343.
    63. Harizi H,Grosset C ,Gualde N.Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes.J Leukou Biol.2003;73(6):756-763.
    64. Chace JH, Hooker NA, Mildenstein KL, et al. Bacterial DNA induced NK cell INF-γproduction is dependent on macrophage secretion of IL-12. Clin Immunnol Immunopathol, 1997,84(2):185.
    65. Hartmann G, Risini DW, Ballas ZK, etal. Delineation of a CpG phophorothioate Oligosexoynucleotide for Activating primate Immune Response In vitro and In vivo. J Immunol, 2000,164(8):1617
    66. Yi AK, Chang M, Peckham DW, et al. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immumol, 1998,160(12);5898-5906.
    67. Inaba KM, Inaba N, Romani H, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med, 1992, 176:1693-1702.
    68.唐华,银平章,孔令非等。冻融抗原冲击致敏的树突状细胞对结肠癌小鼠的治疗作用。中国肿瘤生物治疗杂志,2000;7(3):199-202.
    69.高维实,闵军,褚忠华等。肝癌细胞冻融抗原负载树突状细胞瘤苗的制备与活化。中国病理生理杂志,2003;19(9):1279-1282.
    70. Silke G, Michael S, Herbert R. Dendritic cells pulsed with tumor-derived lysate augment T cell mediated tumor cell lysis. Otolaryngology Head and Neck Surgery,2004:131(2):176-177.
    71.武文森,尹克铮,韩月明等。小鼠可移植性膀胱移行细胞癌(BTT739)的建立及实验研究。中国肿瘤临床,1996;23(10):751-756
    72. Wang RF,Wang HY.Enhancement of antitumor immunity by prolonging antigen presention on dendritic cells.Nat Biotechnol .2002;20(2):149-154.
    73. Janetzki S,Palla D,Rosenhauer V,et al.Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations:a pilot study .Int J Cancer. 2000;88(2):232-238.
    74. Adams M,Navabi H,Jasani B,et al. Dendritic cell(DC) based therapy for cervical cancer:use of DC pulsed with tumor lysate and matured with a novel synthetic clinically non-toxic double stranded RNA analogue poly[Ⅰ]:poly [C(12)U](Ampligen R).Vaccine.2003;21(7-8):787-790.
    75. Kim KD,Choi SC,Kim A,et al. Dendritic cell-tumor coculturing vaccine can induce antitumor immunity through both NK and CTL interaction.Int Immunopharmacol. 2001;1(12):2117-2129.
    76. Fong L,Brockstedt D,Benike C,et al. Dendritic cell injected via different routes induce immunity in cancer patients.J Immunol.2001;166(6):4254-4259.
    77. Van Tendeloo VF,Van Broeckhoven C,Berneman ZN.Gene-based cancer vaccines:an ex vivo approach.Leukemia.2001;15(4):545-558.
    78. Saijo Y,Hong X,Tanaka M,et al.Autologous high-killing cytotoxic T lymphocytes against human lung cancer are induced using interleukin(IL)-1 beta,IL-2,IL-4,and IL-6:possible involvement of dendritic cells.Clin Cancer Res.1999;5(5):1203-1209.
    79.周清华,赵峰,陆燕蓉等。突变K-ras基因修饰的肺癌树突状细胞疫苗的体内外实验研究。中国肺癌杂志,2001;4(6):475-476.
    80. McConnell EJ,Pathangey LB,Madsen CS,et al.Dendritic cell-tumor cell fusion and staphylococcal enterotoxin B treatment in a pancreatic tumor model.J Surg Res.2002;107(2):196-202.
    81. William M,Kristin LV,Carrie J,et al.Induction of specific antitumor immunity in the mouse with the electrofusion product of tumor cells and dendritic cells.Molecular Therapy.2003;7(4):498-505.
    82. Scott-Taylar TH,Pettengell R,Clarke I,et al.Human tumor and dendritic cell hybrids generated by electrofusion:potential for cancer vaccines .Biochim Biophys Acta. 2000;1500(3):265-279.
    83.武文森,尹克铮. BBN诱发小鼠膀胱癌和可移植性膀胱癌株(BTT739)的建立及其特性研究。南京铁道医学院学报,1992;11(1):12-14. 106(84).
    84.聂志林,靳风烁,王洛夫等。CpG-ODN预防膀胱肿瘤复发的可行性研究。第三军医大学学报2006,28(10):1054-1056
    85. Heckelsmiller K, Beck S, Rall K, et al. Combined dendritic cell- and CpG oligonucleotide-based immune therapy cures large murine tumors that resist chemotherapy. Eur J Immunol, 2002,32:3235-3245.
    86.杜宇琛,林苹,张洁,等. CpG-ODN加强树突状细胞疫苗抗Lewis肺癌的研究.中华肿瘤杂志,2005;27(1):1-5.
    87. Janssen EM, Lemmens EE, Wolfe T, et al. CD4+ T cells are required foe secondary expansion and memory in CD8+ T lymphocytes. Nature, 2003, 421(20):852-856.
    88. Gao FG, Khammanivong V, liu WJ, et al. Anti-specific CD4+ T-cell help is required to activate a fully functional tumor killer cell. Cancer Res, 2002,62(22):6438-6441.
    89. Davila E, Velez MG, Heppelmann CJ, et al. Creating space: an antigen-undependent, CpG-induced peripheral expansion of na?ve and memory T lymphocytes in a full T-cell compartment. Blood, 2002, 100(7):2537-2545.
    90. Beloeil L, Tomkowiak M, Angelov G, et al. In vivo impact of CpG1826 oligodeoxynucleotide on CD8 T cell primary responses and survival. J Immunol, 2003,171(6):2995-3002.
    1. Bohle A, Jocham D, Bock PR. Intravesical bacillus Calmette-Guerin versus mitomycin C for superficial bladder cancer: a formal meta-analysis of comparative studies on recurrence and toxicity. J Urol, 2003, 169: 90-95.
    2.兰卫华,靳风烁,王洛夫,等.卡介苗与丝裂霉素C膀胱灌注预防浅表性膀胱癌复发疗效及毒性比较的Meta分析.中华泌尿外科杂志,2006,27:29-32.
    3. Bohle A, Bock PR. Intravesical bacille Calmette-Guerin versus mitomycin C in superficial bladder cancer: formal meta-analysis of comparative studies on tumor progression. Urology. 2004;63:682-686
    4. Badalament RA, Herr HW, Wong GY, et al. A prospective randomized trial of maintenance versus nonmaintenance intravesical bacillus Calmette-Guerin therapy of superficial bladder cancer. J Clin Oncol, 1987, 5:441-449.
    5. Hudson MA, Ratliff TL, Gillen DP, et al. Single course versus maintenance bacillus Calmette-Guerin therapy for superficial bladder tumors: a prospective, randomized trial. J Urol, 1987, 138:295-298.
    6. Yabusaki N, Komatsu H, Tago K, et al. Intravesical instillation of bacillus Calmette-Guerin for superficial bladder carcinoma: study on significance of additional maintenance instillations of bacillus Calmette-Guerin. Nippon Hinyokika Gakkai Zasshi, 1991, 82:290-296.
    7. Akaza H, Hinotsu S, Aso Y, et al. Bacillus Calmette-Guerin treatment of existing papillary bladder cancer and carcinoma in situ of the bladder. Four-year results. The Bladder Cancer BCG Study Group. Cancer, 1995, 75:552-559.
    8. Gruenwald IE, Stein A, Rashcovitsky R, et al. A 12 versus 6-week course of bacillus Calmette-Guerin prophylaxis for the treatment of high risk superficial bladder cancer. J Urol, 1997,157:487-491
    9. Lamm DL, Blumenstein BA, Crissman JD, et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent Ta, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group study. J Urol, 2000,163:1124-1129.
    10. Palou P, Laguna P, Millan-Rodriguez F, et al. Control group and maintenance treatment with bacillus Calmette-Guerin for carcinoma in situ and/or high grade bladder tumors. J Urol, 2001, 165:1488-1491.
    11. Malmstrom PU. Intravesical therapy of superficial bladder cancer. Crit Rev Oncol Hematol, 2003, 47:109-126
    12. Colombel M, Saint F, Chopin D, et al. The effect of ofloxacin on bacillus calmette-guerin induced toxicity in patients with superficial bladder cancer: results of a randomized, prospective, double-blind, placebo controlled, multicenter study. J Urol. 2006, 176(3): 935-939
    13. van der Meijden AP, Sylvester RJ, Oosterlinck W, et al. Maintenance Bacillus Calmette-Guerin for Ta T1 bladder tumors is not associated with increased toxicity: results from a European Organisation for Research and Treatment of Cancer Genito-Urinary Group Phase III Trial. Eur Urol. 2003, 44(4):429-434.
    1. Lamm DL. Long - term results of intravesical therapy for superficial bladder cancer. Urol Clin North Am,1992 ,19 :573.
    2. Bander NH, Yao D, Liu H, et al. MHC classⅠandⅡexpression in prostate carcinoma and modulation by interferon alpha and gamma. Prostate, 1997;33(4):223-239.
    3. Nouri-AM, Hussain-RF, Oliver-RT. The frepuency of major histocompatibility complex antigen abnormalities in urological tumours and their correction by gene transfection or cytokine stimulation. Cancer-Gene-Ther, 1994,1(2):119-123.
    4. Perbo FG, Kam PS, Scbmidi D, et al. Bladder cancer cells acqure competent mechanisms to escape Fas-mediated apoptosis and immune surveillance in the course of maligenant transformation. Br J Cancer ,2001,84(10):1330-1338.
    5. Lee SH, Lee JY , Park Ws, et al. Transitional cell carcinoma expresses high levels of Fas ligand in vivol. BIU Int,1999,83(6):698-702.
    6. Matsui S, Ablers JD, Vortmeyer AO, et al. A model for CD8+CTL tumor immuosurceillance and regulation of tumor escape by CD4+ T cells through an effect on quality of CTL. J Immuol,1999,161(1):184-193.
    7. D’Orazio TJ, Niederkorn JY. A novel role for TGF-beta and IL-10 in the induction of immune privilege. J Immuol,1998,160(5):2089-2098.
    8. Harizi H, Gualde N. Dendritic cells produce eicosanoids, which modulate generation and functions of antigen-presenting cells. Prostaglandins Leukot Essent Fatty Acids,2003,66(5-6):459-466.
    9. Young SL, Murphy M, Zhu XW, et al. Cytokine-modified Mycobacterium smegmatis as a novel anticancer immunotherapy. Int J Cancer,2004,112(4):653.
    10. Tokunaga T, Yamamoto H, ShimadaS, et al. Antitumor activity of deoxyribonucleric acid fraction from Mycobacterium bovis BCG I. Isolation, physicochemical characterization and antitumor activity. J Natl Cancer Inst,1984, 72(4): 955-962.
    11. Chace JH, Hooker NA, Mildenstein KL, et al. Bacterial DNA induced NK cell INF-γproduction is dependent on macrophage secretion of IL-12. Clin ImmunnolImmunopathol, 1997,84(2):185.
    12. Hartmann G, Risini DW, Ballas ZK, et al. Delineation of a CpG phophorothioate Oligosexoynucleotide for Activating primate Immune Response In vitro and In vivo. J Immunol,2000,164(8):1617
    13. Yi AK, Chang M, Peckham DW, et al. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immumol, 1998,160(12):5898-5906.
    14. Linn JF, Black P, Derksen K, et al. Keyhole limpet haemocyanin in experi2 mental bladder cancer: literature review and own results. Eur Urol,2000,37:34.
    15. Flamm J, Donner G, Bucher A, et al. Topical immunotherapy ( KLH) vs. chemotherapy (ethoglucid) in prevention of recurrence of superficial bladder cancer :a prospective randomized study. Urol A,1994,33:138.
    16. Molto L, Carballido J, Manzano L, et al. Prophylactic intracavitary treatment with interferon alpha increases interferon gamma production by peripheral blood mononuclear cells in patients with superficial transitional cell carcinoma of the bladder. Br J Cancer,1997,75:1849.
    17. Papatsoris AG, Deliveliotis C, Giannopoulos A, et al. Adjuvant intravesical mitoxantrone versus recombinant interferon - alpha after transurethral resection of superficial bladder cancer :a randomized prospective study. Urol Int,2004,72(4):284.
    18. O’Donnell MA, Luo Y, Hunter SE, et al. Interleukin-12 immunotherapy of murine transitional cell carcinoma of the bladder : dose dependent tumor eradication and generation of protective immunity. J Urol, 2004,171(3):1330.
    19. O’Donnell MA, Luo Y, Hunter SE, et al. The essential role of interferon -gamma during interleukin-12 therapy for murine transitional cell carcinoma of the bladder. J Urol,2004,171(3):1336.
    20.靳风烁,方玉华等。IL—2膀胱灌注防治膀胱肿瘤复发的临床研究。临床泌尿外科杂志,1998,13(1):18-21
    21. Wang J, Liu XG, He CW, et al. Synergic anti - tumour effect of B7.1 gene modified tumour vaccine combined with allicin for murine bladder tumour. Chin Med J(Engl),2005,118(3):242.
    22. Kuromatsu I, Matsuo K, Takamura S, et al. Induction of effective antitumor immune responses in a mouse bladder tumor model by using DNA of an alpha antigen from mycobacteria. Cancer Gene Ther,2001,8 (7):483.
    23. Rousseau RF, Hirschmann JC, Takahashi S, et al. Cancer vaccines. Hematol Oncol Clin North Am, 2001,15(4):741-743.
    24. Hsu FJ, Benike C, Fagnoni F et al.Vaccination of patients with B cell lymphoma using autologous antigen pulsed dendritic cells. Nat Med, 1996,2(1):52-58.
    25. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate- pulsed dendritic cells. Nat Med, 1998,4(3):328-332.
    26. Marchand M, Vanbaren N, Weynants P, et al. Tumor regressions observed in patients with matestatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer, 1999,80:219-230.
    27. Kugler A, Stuhler G, Walden P, et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med, 2000,6(3):332-336.
    28. Holtl L, Zelle-Rieser C, Gander H, et al. Immunotherapy of metastatic renal cell caricinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res, 2002,8(11):3369 3376.
    29. Fong L, Brokckstedt D, Benike C, et al. Dendritic cell based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol, 2001,167(12):7150-7156.
    30. Strome SE, Voss S, Wilcox R, et al. Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Cancer Res, 2002,62(6):1884-1889.
    31. Nishiyama T, Tachibana M, Horiguchi Y, et al. Immunotherapy of bladder cancer using autologous dendritic cells pulsed with human lymphocyte antigen-A24-specific MAGE-3 peptide. Clin Cancer Res,2001,7(1):23.
    32. Schmitt WE ,Stassar MJ ,Schmitt W,et al . In vitro induction of a bladder cancer - specific T - cell response by mRNA - transfected dendritic cells. J Cancer Res Clin Oncol ,2001 ,127 (3) :203.
    33. Lee CF, Chang SY, Hsieh DS, et al. Immunotherapy for bladder cancer using recombinant bacillus Calmette-Guerin DNA vaccines and interleukin-12 DNA vaccine. J Urol,2004,171(3):1343.
    34. Chen SA, Tsai MH, Wu FT, et al. Induction of antitumor immunity with combination of HER2/ neu DNA vaccine and interleukin 2 gene– modified tumor vaccine. Clin Cancer Res,2000,6(11):4381.
    35. Shah JB, McKiernan JM. Novel therapeutics in the treatment of bladder cancer. Curr Opin Urol,2004,14(5):287.
    36. Rao KV, Detrisac CJ, Steele VE, et al. Differential activity of aspirin, ketoprofen and sulindac as cancer chemopreventive agents in the mouse urinary bladder. Carcinogenesis. 1996,17(7):1435-1438.
    37. Grubbs CJ, Lubet RA, Koki AT, et al. Celecoxib inhibits N-butyl-N-(4-hydroxybutyl)- nitrosamine-induced urinary bladder cancers in male B6D2F1 mice and female Fischer-344 rats. Cancer Res, 2000, 60(20):5599-5602.
    38. Lubet RA, Huebner K, Fong LY, et al. 4-Hydroxybutyl(butyl)nitrosamine-induced urinary bladder cancers in mice: characterization of FHIT and survivin expression and chemopreventive effects of indomethacin. Carcinogenesis,2005, 26(3):571-578.
    39. Smakman N, Schaap N, Snijckers CM, et al. NS-398, a selective cyclooxygenase-2 inhibitor, reduces experimental bladder carcinoma outgrowth by inhibiting tumor cell proliferation. Urology. 2005, 66(2):434-440.
    40. Gee J, Lee IL, Jendiroba D, et al. Selective cyclooxygenase-2 inhibitors inhibit growth and induce apoptosis of bladder cancer. Oncol Rep. 2006,15(2):471-477.
    41. Saint F, Patard JJ, Maille P, et al. T helper 1/2 lymphocyte urinary cytokine profiles in responding and nonresponding patients after 1 and 2 courses of bacillus Calmette-Guerin for superficial bladder cancer,2001, 166(6):2142-2147.
    42. Dovedi SJ, Kieby JA, Atkins H, et al. Cyclooxygenase-2 inhibition: a potential mechanism for increasing the efficacy of bacillus Calmette-Guerin immunotherapy for bladder cancer.J Urol. 2005,174(1):332-337
    43. Willems A, Gauger K, Henrichs C, et al. Antibody therapy for breast cancer.Anticancer Res,2005,25(3A):1483.
    44. Hughes OD, Bishop MC, Perkins AC, et al. Targeting superficial bladder cancer by the intravesical administration of copper-67-labeled anti-MUC1 mucin monoclonal antibody C595. Clin Oncol,2000,18(2):363.
    45. Simms MS, Perkins AC, Price MR, et al. 99mTechnetium-C595 radioimmunoscintigraphy: a potential staging tool for bladder cancer. BJU Int, 2001,88(7):686.
    46.李香云,刘禄成,李平,等。抗人膀胱癌双功能抗体对荷瘤鼠的免疫治疗。吉林大学学报(医学版) ,2002 ,28(5) ,487.
    47.刘禄成,朱德淳,李平,等。抗人膀胱癌双功能抗体的临床应用。吉林大学学报(医学版) ,2002 ,6:638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700