用户名: 密码: 验证码:
新型无铅钎料钎焊工艺性及机械性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2006年7月1日欧盟RoHS(Restriction on Hazardous Substance)立法开始实施,禁止在电子产品中使用包括铅在内的六种物质(铅、汞、镉、六价铬、聚合溴化联苯(PBB)、聚合滇化联苯乙醚(PBDE)),从而迫使无铅钎料的研究进入了实际应用阶段。而SnAgCu合金以其优良的综合性能,被认为是最有发展前途的SnPb钎料的替代品。
     然而,与现行的SnPb钎料相比,SnAgCu合金存在熔点较高,润湿性能较差成本较高等缺点,严重影响着其发展。本文在SnAgCu合金基础上添加Ga、Bi,同时优化Ag含量,来对合金进行熔化温度、润湿性、力学性能、物理性能、微观组织分析,从而得出以下结论:
     (1)在SnAgCu合金基础上添加Ga元素,随着Ga含量的不断增加,合金的固、液相线温度不断降低,尤其是固相线温度下降更为明显,从而使合金的熔化区间变宽,不利于钎料的流动。随着Ga含量的不断增加,钎料的润湿性是不断降低的,每增加1%的Ga,铺展面积降低了10~15%。故Ga的含量不宜太高。
     (2)在SnAgCuGa合金基础上添加Bi元素,Bi的加入可以降低无铅焊料的熔化温度,但是当Bi的含量超过2%时,合金的液相线温度降低就不太明显。同时Bi的加入提高了无铅焊料的润湿性能,当Bi含量小于2%时,润湿性是随着Bi含量的增加逐渐改善,当Bi含量大于2%时,润湿性有所降低。
     (3)在SnAgCuGaBi基础上降低Ag的含量,当Ag含量小于2.5%时,熔化温度是随着Ag含量的升高而降低,当Ag含量大于2.5%时,熔化温度有所回升。而且无铅焊料的润湿性也是在Ag含量在2.5%时为最好。
     (4)新型无钳焊料的力学性能要高于SnAgCu合金。价格也较SnAgCu低。
EU Rolls (Restriction on Hazardous Substance) legislation comes into effect in July1st 2006,which forbids using Pb,Hg,Ge, Cr6+, PBB,PBDE in Electron product,and compelthe study of lead-free solder come into application. SnAgCu lead-free solder which haseximious comprehensive performance is deemed to the promising of solder in the substitut:of SnPb.
     Comparing with SnPb solder,SnAgCu has the high melting point, bad wetting property,high cost and so on, which affecting the development of SnAgCu. In this book,we addGa,Bi in SnAgCu, and optimize the Ag content and analyze their melting temperature,wetting property, mechanical property and microstructure, and educe the followingconclusion:
     (1) Adding Ga into SnAgCu can reduce the melting temperature, with increasing content ofGa, the solidus and liquidus of alloys reduce unceasingly, especially the solidus.This canincrease the solder melting range, and make against the solder flow. With increasing contentof Ga, the wetting property reduces unceasingly. When the content of Ga increase 1%, thespreading area reduces 10~15%.
     (2) Adding Bi into SnAgCuGa can reduce the lead-free solder melting temperature.When the content of Bi exceeds 2%, the liquidus of alloy lessening is not very obvious. Andadding Bi can improve the wetting property. When the content of Bi is less than 2%, thewetting property is improved unceasingly. Whereas, when the content of Bi is more than 2%, the wetting property is reduced.
     (3) Changing the content of Ag on the basis of SnAgCuGaBi,When the content of Ag is lessthan 2.5%,with the increasing content of Ag,the melting temperature is reduced. And themelting temperature will increase with the increasing of the Ag content under the condition ofthe Ag content more than2.5%.And the wetting property of lead-free solder is the best whenthe content of Ag is 2.5%.
     (4) The mechanical property of New Lead-free Solder is prior to SnAgCu.and the price ofnew lead-free solder is less than SnAgCu.
引文
[1] 虞自基编著,环境中微量重金属元素的污染危害与迁移转移,科学出版社,1987
    [2] 夏志东,锡锌系无铅钎料的性能及其评价,北京工业大学工学博士学位论文,2002:1-60
    [3] Dr. Ning-Chen Lee, Lead-free Soldering-Where The World Is Going, [J]. Ad vancingM icroelectronics. 1999, 26(5): 29-35
    [4] 陈国海,耿志挺,马莒生等,新型无铅焊料合金Sn-Ag-Cu-In-Bi的研究,电子元件与材料,2003:36-38
    [5] Bill Trunble, Get the lead out IEEE Spectrum. 1998:55-60
    [6] T.S. Bannos, Lead-Free Solder to Meet New Safe Drinking Water Regulations, Welding Journal. October 1988:23-26
    [7] 马鑫,董本霞,无铅焊料的发展现状,电子工艺技术,2002.3,47—52
    [8] City University of Hong kong. Microelectronics Packaging and Assembly (EPA) Roadmap Study Preparing Hong kong's Electronics for the New Millennium ISF Project No. AF/255/97.
    [9] Mulugeta Abtew, Guna Selvaduray. Lead-free solder in Microelectronics Materials Science and Engineering. 2000, (27): 95-141
    [10] Laura J. Turbini, Gregory C. Munie, Dennis Bernier, etal. Examining the Enbironmental Impact of Lead-free soldering Alternatives. IEEE Transactions on Electronics Packaging Manufacturing. 2001, 24 (1) : 4-9
    [11] D. R. Frear, S.N. Burchett, H.S. Morgan, etal. Tbe Mechanics of Solder Alloy Interconnects. Van Nostrand Reinhold. 1993, (3) : 63-75
    [12] Jeff D. Sigelko, K.N. Subramanian. Oberview of Lead-free Solder, Advanced Materials & Processes. March 2000:47-48
    [13] Legislation, Regulations and Directions on Lead-Free Soldering Around the World. downloaded from http://www.lead-free.org
    [14] 庄鸿寿,无铅软钎料的新进展,电子工艺技术,2001,22(5):192-195
    [15] 潘长海,无铅焊料的研究动向,无铅焊料与免清洗助焊剂在SMT中应用学术研讨会 论文集,2001:54-60
    [16] B. Huang and Ning-Chen Lee. Prospect of Lead Free Alternatives for Reflow Soldering. 1999 International Symposium on Microelectronics, Chicago Clinton & Towers Chicago. 1999:711-721
    [17] 马鑫,董本霞,无铅焊料发展现状,电子工艺技术,2002,(3):47-52
    [18] 孟桂萍,Sn-Ag和Sn-Zn及Sn-Bi系无铅焊料,电子工艺技术,2002,(3):24-29
    [19] 汤清华,潘晓光,添加Sn-Ag对Sn-Bi焊接特性的改善,电子元件与材料,1999,18(4):27-31
    [20] 贾红星,黄金亮,Ag对Sn-57Bi无铅钎料组织和性能影响,河南科技大学学报(自然科学版),2004.6
    [21] 张习敏,胡强,Sn-Zn系钎料研究及应用现状,电子工艺术,2005.9,273-277
    [22] 马鑫,方洪渊,董秀丽等,Sn-Zn-In软钎料合金初步研究,电子工艺技术,1996,(5):28-35
    [23] 戴志丰,黄继华,微电子组装中Sn-Zn系无铅钎料的研究与开发,2004:5-8
    [24] 魏秀琴,黄惠珍,周浪,微合金化对Sn-9Zn基无铅钎料润湿性能的影响电子元件与材料,2003,(22):39-42
    [25] 周健,孙扬善,低熔点Sn-Zn-Bi无铅钎料的组织和性能,金属学报,2005.7
    [26] 戴志锋,黄继华,微电子组装中Sn-Zn系无铅钎料的研究与开发,电子工艺技术,2004.1,5-8
    [27] 管沼克昭,无铅焊接技术,科学出版社,2004.7
    [28] B. Salam, N.N. Ekere, D. Rajkumar. Study of the Interface Microstructure of Sn-Ag-Cu Lead-free Solders and the Effects of Solder Volume on Internetallic Layer Formation. Electronic Components and Technology Conference. 2001: 471-477
    [29] Research Trends in Lead-Free Soldering in the U.S: NCMS Lead-Free Solder. Project. http://www.ncms.org/3portfolio/lprojectportfolio/pubs.htm
    [30] B.P. Richards, C.L. Levoguer & C.P. Hunt. Lead-Free Soldering. downloaded from http://www.lead-free.org/Tommorows Solders Today
    [31] Jasbir Bath, Carol Handwerker, Edwin Bradley. Research Update: Lead-Free Solder Alternatives. Circuits Assembly. May 2000:31-40
    [32] 王国勇,刘晓波,Sn-Ag系电子无铅软钎料的超电势研究,电子工艺技术,2002,(1):7-9
    [33] 林培豪,刘心宇,成钧,铜铟铋硫对Sn-Ag基无铅焊料性能的影响,电子封装技术,2003,(10):33-34
    [34] 曹昱,易丹青,王颖等,SnAg基无铅钎焊料的研究与发展,四川有色金属,2001,(3):5-12
    [35] 石素琴,董占贵,软钎焊钎料最新发展动态,电子工艺技术,2000.11,231-234
    [36] 史耀武,雷永平,夏志东,SnAgCu系无铅钎料技术发展,产业前沿,2004
    [37] I.E. Anderson, B.A. Cook, J.L. Harringa, etal. Sn-Ag-Cu-Solders and Solder Joints Alloy developmeng. Microstructure and Properties. 2000, 29 (10) ; 214-221
    [38] Ning-Cheng Lee. A Thorough Look at Lead-free solder Alternatives, Circuits Assembly, 1998, (4): 64-71
    [39] T. Takemoto, The Recent Trend in Enviormentally Conscious Electronics Assembly,第十次全国焊接会议论文集,天津,2001,10(D):74-83
    [40] Dr. Jennie S. Hwang,无铅焊锡:锡/银/铜系统.STbtinLine. com贴装技术论坛
    [41] Denis Barbini, Ph.D. and Gerjan Diepstraten. Five Steps to Successful Lead-Free soldering Circuits Assembly. www.circuitsassembly.com
    [42] Glazer J, Metallurgy of Low temperature Pb-free solders for electronics assembly.[J]. Int Mater Rev. 1995, 40(2): 67-69
    [43] C. Michael, Garner Vivek Gupta, Vivek Bissessur, Achut Kumar, Raiyo Aspandiar. Challenges in converting to lead-free electronics Electronic Packaging Technology Conference. 2000:6-9
    [44] 赵跃,杜昆,胡珍,无铅软钎料的研究,广东有色金属学报1998,8(2):99-105
    [45] 拉尔夫.W.伍德盖特编,机器软钎焊手册,机械工业出版社,1990:1-19
    [46] 张启运,庄鸿寿主编,钎焊手册,机械工业出版社,1999
    [47] 马鑫,微电子表面组装焊点失效的相关力学及金属学因素分析,哈尔滨工业大学,工学博士学位论文,2000
    [48] 黄惠珍,魏秀琴,周浪,无铅焊料及其可靠性的研究进展,电子元件与材料,2003,(4):39-42
    [49] Lei L. Mercado. Impact of JEDEC Test Conditions on New-Generation Package Reliability. IEEE Transation on Components and Packaging Technologies 2002 (25) 25-31
    [50] 马莒生,陈国海,无铅焊料在清华大学的研究与发展,电子元件与材料,2004.11第11期,45-48
    [51] baggio T. The Panasonic mini disk player turning a new leaf in a lead-free market. Proceedings of IPCWorks' 99, minneapolis, MN. October 27, 1999
    [52] Vianco P T, Rejent J A, Artaki I, Ray U. An evaluation of prototype circuit boards assembled with a Sn-Ag-bi solder, proceedings of IPCWorks' 99Minneapolis, MN, October 22, 1999
    [53] 郭福等编著,无铅钎焊技术与应用,科学出版社,2006.2
    [54] 邹僖主编,钎焊,机械工业出版社,1988
    [55] (Zhao J, Huang L, et al. effects of the addition of In, Bi to Sn-Ag-Cu lead-free solders. Proceedings of International Symposium on Electronic Packaging Technology Beijing, China, August 8-11, 2001: 471-474)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700