用户名: 密码: 验证码:
SnAgCuGe钎料组织、熔化、润湿及界面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅和铅的化合物对环境和人体健康有严重的危害。近年来随着微电子、表面组装技术(SMT)的发展,研制面向21世纪的绿色钎料产品以取代传统的锡铅钎料成为钎焊工业所面临的重要课题之一。通过近十年的研发,研究者们发现:在众多无铅钎料中,SnAgCu钎料最有可能成为SnPb铅料的替代品。
     对无铅钎料,我国开展研究比较晚,与国外的产品还具有较大的差距。本文选择目前最为常用的Sn-Ag-Cu无铅钎料,通过向其中添加少量的Ge元素,研究了Ge对Sn-Ag-Cu无铅钎料组织、熔化特性和铺展润湿性能的影响,并分析了Ge的添加对Sn-Ag-Cu/Cu界面及对Sn-Ag-Cu/Cu接头老化的影响。
     研究结果表明,在所研究的合金系列中,未出现低熔点共晶峰,表明微量锗的添加不会使Sn-Ag-Cu合金产生低熔点共晶成分,有利于在钎焊过程中形成可靠的连接焊点。添加少量锗对Sn-Ag-Cu钎料合金的熔化温度影响不大,熔点温度在217.642℃~218.622℃之间。通过铺展面积的测量得出:当Ge含量为0.5%时,该系钎料具有较大的铺展面积和较小的润湿角。
     添加锗元素后,钎料组织中的Ag3Sn和Cu6Sn5相都得到了一定程度的细化,并且其分布状态均匀,使共晶组织中的金属间化合物排列趋于规则。研究了含Ge量不同的Sn-Ag-Cu-Ge钎料与Cu板的钎焊界面。锗含量为1.0%时界面平均厚度最小为2.165μm,并且界面最平坦;锗含量为0.5%时界面厚度最大可达2.37~3.75μm,并且界面整体看来参差不齐。
     研究了在150℃的干燥箱中经100h时效后的钎焊接头,三个成分钎料形成的金属间化合物层都有不同程度的长大。Sn-2.5Ag-0.7Cu-1.0Ge/Cu的界面平均厚度最薄为3.94μm。而锗含量为Sn-2.5Ag-0.7Cu-0.5Ge/Cu的界面生长的厚度最大是4.71μm。不含锗的界面厚度为4.275μm。总体来说,在时效的100小时内,由基体向Cu-Sn界面层扩散铜原子的速度大于界面层向钎料扩散的速度,从而导致了界面层的长大。
Lead and its compounds are harmful to environment and human health. In recent years, with the development of microelectronic and Surface Mounted Technology, developing new green solders to replace tin lead solder is becoming one of the most important subjects. After ten years study, researcher found that among all of the lead free solders, SnAgCu solder is the most possible solder to replace tin lead solder.
     As our research about lead free solder is latter, we have a great gap compared with abroad. This work choose the most popular solder (Sn-Ag-Cu lead free solder) as experimentl material, adding a small mount of Ge into in, to study the effect of Ge to its microstructure,melting characteristic and spreading wettability, and how Ge effect the interface of Sn-Ag-Cu/Cu, and its effect on Sn-Ag-Cu/Cu joint after aging.
     The result shows that, there is no low-melting eutectic substance formed in the Sn-Ag-Cu alloy, because there is no low-melting eutectic peak in all the alloys. This can form reliable spot weld. Ge has small effect on Sn-Ag-Cu solder’s melting temperature. Its melting temperature is between 217.642℃and 218.622℃. According to measure the spreading area: when adding 0.5% Ge, the solder has lager spreading area and smaller wetting angle.
     After adding Ge into the solder, the Ag3Sn phase and Cu6Sn5 phase are refined, and their distribution become homogeneous, and the arrangement of intermetallic compounds become more regulation.
     Studied the interface of Sn-Ag-Cu-Ge solder and Cu plate. When the amount of Ge is 1.0%, the interface has the smallest thickness(2.165μm), and the interface is flattest. When the amount of Ge is 0.5%, the interface’s thickness is between 2.37~3.75μm, and the interface is unflat.
     Studied the soldering joint after aging 100 hours at 150℃in drying cabinet, the intermetallic compounds in the three solders are all growed up. Sn-2.5Ag-0.7Cu-1.0Ge/Cu has the thinnest interface (3.94μm). Sn-2.5Ag-0.7Cu-0.5Ge/Cu has the thickest interface (4.71μm). Generally speaking, the speed of Cu atom from the basic body to the Cu-Sn boundary layer is higher than the speed of Cu atom from boundary layer to the solder, that makes the boundary layer grow up,when aging 100 hours.
引文
1 贾松良.集成电路的现状和发展趋势.97 电子封装会议论文集.北京,1997:12~16
    2 况延香.迈向新世纪的微电子封装技术.电子工艺技术,2001,(1):1~6
    3 R. P. Prasad. Surface Mount Technology Principles and Practice. Van Nastrand Reinhold, 1989,17(4): 215~228
    4 E. P. Wood, K. L. Nimmo. Lead-Free Solders for Electronic Packaging. J. Eloctron, 1994, 23(8): 709~714
    5 C. E. Homer, H. C. Watkins. Reliability Inventigation and Interfacial Reaction of Ball-Grid-Array Packages Using the Lead-Free Sn-Cu solder. MetalInd, 1992, 26(2):364~366
    6 M. R. Harrison, J. H. Vincent, Proc. 12th European Microelectronics & Packaging Conference. IMAPS Europe, 1999, 12(5): 98~104
    7 Katsuaki Suganuma. The Current Status of Lead-free Soldering. NPL&ITRL Technology Report, 2001, 23(5): 67~69
    8 薛松柏,钱乙余.创新、环保-21 世纪我国钎焊与扩散焊的发展方向.焊接,2000,(1):1~4
    9 M. McCormack, S. Jin. New Lead-free Solder Alloy with Superior Mechanical Properties. Appl. Phys. Lett, 1993, 63(1): 15~18
    10 庄鸿寿.无铅软钎料的新进展.电子工艺技术,2001,22(5):192~196
    11 P. T. Vianco, J. A. Rejent. Properties of Ternary Sn-Ag-Bi Solder Alloys:Part I-thermal Properties and Microstructural Analysis. J. Electron. Mater, 1999, 28(10): 1127~1136
    12 J. W. Moms. High Temperature Deformation of Polycrystalline Sn-Bi Solid of Structure. J. Electron. Mater, 1992, 8(21): 599~607
    13 J. A. Glazer. Metalurgy of Low Temperature Pb-free Solders for Electronic Assembly. Int. Mater Rev, 1995, 40(2): 65~93
    14 G. W. Handwerker. Americal Lead-Free Dynamical Research. J. Electron. Mater, 1998, 38(12): 968~971
    15 J. W. Morris, L. F. Goldstein, Z. Mei. Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solders. J. Electron. Mater, 1993, 9(23): 25~27
    16 H. Kabassis, J. W. Rutter, W. C. Winegard. Phase Relationships in Bi-In-Sn Alloys Systems. Mater. Sci. Technol, 1986, 13(2): 985~988
    17 G. Ghosh, M. Loomans, M. E. Fine. An Investigation of Phase Equilibria of Bi-Sb-Sn system. J. Electron. Mater, 1994, 17(23): 619~621
    18 S. W. Yoon, B. S. Rho, H. M. Kim, et al. Sn2.5Ag0.5Cu Lead-Free Solder Balls with “Ge” and “Ni”. J. Electron. Mater, 1999, 24(30): 1503~1507
    19 C. A. Mackay, W. D. Voss. The Interfacial Reaction between Sn-Zn-Ag-Ga-Al Solders and Metallized Cu Substrates. Mater. Sci. Technol, 1985, 24(10):57~59
    20 W. J. Tomlinson. Residual Shear Strength of Sn-Ag and Sn-Bi Lead-free SMT Joints after Thermal Shock. J. Mater. Sci, 1992, 11(27): 557~559
    21 J. M. Song. Microstructure and Tensile Properties of Sn-9Zn-xAg Lead-free Solder Alloys. Scripta Materialia, 2003, 9(48): 1047~1051
    22 于大全,赵杰,王来.稀土元素对 Sn-9Zn 合金润湿性的影响.中国有色金属学报,2003,13(4):1001~1004
    23 C. M. Wu, D. Q. Yu, L. Wang, The Wettability and Microstructure of Sn-Zn-RE Alloys. J. Electron. Mater, 2003, (32): 63~69
    24 C. M. Wu, D. Q. Yu et al. The Properties of Sn-9Zn Lead-free Solder Alloys Doped with Trace Rare Earth Elements. J. Electronic. Mater, 2002, (31): 921~927
    25 T. H. Chuang, S. F. Yen, M. D. Cheng. An Analysis of the Current Status of Lead-Free Soldering. NPL&ITRL Report, 1999, (8): 67~70
    26 J. Seyyedi. Contact Angle Measyrements of Sn-Ag and Sn-Cu Lead-Free Solders on Copper Substrates. Soldering Surf. Mount Technol, 1993, 13(26): 82~85
    27 J. L. Freer, J. W. Morns. Effect of Structural Transformation on the Creep Parameters of Sn-9.8In Alloy. J. Electron. Mater, 1992, 6(21): 647~649
    28 H. Ohtani, K. Ishida. A Thermodynamic Study of the Phase Equilibria in the Bi-Sn-Sb System. J. Electron. Mater, 1994, 18(23): 747~749
    29 J. Glazer. Metallurgy of Low Temperature Pb-free Solders for Electronic Assembly. Int. Mater. Rev, 1995, 40(2): 65~93
    30 于大全.电子封装互连无铅钎料及其界面问题研究.大连理工大学博士论文,2004:6~8
    31 G. W. Kammlott, H. S. Chen, et al. Significantly Improved Mechanical Properties in Pb-free Sn-Zn-In Solder Alloy by Ag doping. Appl Phys Lett, 1994, 65(9): 1100~1102
    32 Y. S. Kim, C. W. Hwang, K. Suganuma, et al. Effect of Composition and Cooling Rate on Microstructure and Tensile Properties of Sn-Zn-Bi Alloys. J. Alloy Comp, 2003, 3(5): 237~245
    33 张建智.锡基低熔点无铅焊料的研究.中南工业大学硕士论文,2000:17~24
    34 梁鸿卿.Sn-Zn 系无铅焊料实用化状况与今后的课题.电子工艺技术,2003,10(2):237~245
    35 王大勇.杨氏方程的能量求解法及润湿角计算模型.焊接学报,2002,12(6):59~64
    36 周国治.新一代几何模型及其今后的展望.金属学报,1997,33(2):126~131
    37 薛松柏.Sn-Ag-Cu-Ce 无铅钎料合金体系的热力学计算及预测.焊接学报,2005,27(2):126~131
    38 乔芝郁,谢允安,曹战民等.无铅锡基钎料合金设计和合金相图及计算.中国有色金属学报,2004,11(11):178~179
    39 魏秀琴,周浪.微合金化对 Sn-9Zn 基无铅钎料润湿性能的影响.电子元件与材料,2003,22(11):38~422
    40 段莉蕾,于大全,赵杰等.Sn-9Zn-3Bi/Cu 钎焊接头在 170℃时效过程中的显微结构研究.中国有色金属学报,2004,5(5):842~847
    41 唐启义,冯明光.实用统计分析及其 DPS 数据处理系统.北京:科学出版社,2002:311~313
    42 方开泰.均匀设计与均匀设计表.北京:科学出版社,1994:51~72
    43 田明波,马鹏飞.电子封装无铅化技术进展.电子工艺技术,2004,25(1):1~4
    44 Katsuaki Suganuma. 无铅电子封装发展现状.电子工业专用设备,2004,11(9):8~14
    45 杜长华.Sn-Ag-Cu 系无铅钎料的钎焊特性研究.电子元件与材料,2004,11(11):34~36
    46 胡强.无铅波峰焊工艺与设备的技术特点探讨.电子工艺技术,2004,
    11(6):52~56
    47 王素丽,雷永平,夏志东等.无铅钎料用免清洗助焊剂的研制.电子工艺技术,2004,7(4):147~149
    48 戚琳.波峰焊及再流焊无铅焊点组织演变规律的研究.电子工艺技术,2004,3(2):64~67
    49 吴安如.Sn-Ag-Sb+M 系无铅焊料的基本性能研究.湖南工程学院学报,2004,9(3):29~33
    50 龚代涛.Sn-Ag-Bi 系钎料焊接性能研究.电子元件与材料,2003,7(7):26~30
    51 肖克来提.Ag-Pd 和 Ni 对无铅钎料焊点形状、微结构及剪切强度的影响.金属学报,2001,6(6):647~653
    52 龚代涛.Sn-Zn-Ag 系无铅钎料焊接性能研究.电子工艺技术,2003,5(3):96~99
    53 史耀武,夏志东,雷永平.电子组装生产的无铅技术与发展趋势.电子工艺技术,2005,1(1):6~9
    54 胡志田,徐道荣.无铅软钎料的研究现状与展望.电子工艺技术,2005,5(3):125~133
    55 贾红星,刘素芹等.电子组装用无铅钎料的研究进展.河南科技大学学报,2003,10(5):42~46
    56 王青春,李明雨等.JISZ3198 无铅钎料试验方法简介与评述.电子工艺技术,2004,3(2):47~54
    57 吴文云,邱小明,孙大谦等.Sn-Zn-Bi 无铅钎料成分设计.吉林大学学报,2004,10 (4):538~543
    58 菅沼克昭著.无铅焊接技术.宁晓山译.北京:科学出版社,2004:7~85
    59 李梦,吉涛等.Sn-Zn-Bi-Ag 系钎料物理性能研究.电子元件与材料,2004,11(11):49~51
    60 简虎,熊腊森.电子工业用无铅钎料的研究及其可靠性.电子质量,2005,10(7):68~71
    61 戴志锋,黄继华.微电子组装 Sn-Zn 系无铅钎料的研究与开发.电子工艺技术,2004,1(1):5~8
    62 肖克来提.时效对无铅焊料 Ni-P/Cu 焊点的影响.材料研究学报,2001,4(2):193~201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700