用户名: 密码: 验证码:
基于产絮克隆菌的遗传及产絮特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物凝剂作为一种高效、无毒、无二次污染、具有生物可降解性和安全性的绿色水处理剂,代表了凝剂的重要研发方向之一。本研究对所分离到的高效凝菌进行了菌种鉴定,并对其凝特性及代谢成分进行了分析。同时以基因定位为基础,进行了凝菌的细胞融合,构建了凝菌的基因组文库,得到了具有凝特性的克隆菌,并将克隆菌应用到两段式发酵工艺中,即以纤维素降解菌的物为凝菌的发酵原料,进行二段式发酵,获得了新型生物凝剂。
     经生理生化和16SrDNA分析鉴定,凝菌F2为芽孢杆菌属(Bacillus sp.)。通过凝活性分布测定,凝剂的有效成分存在于发酵液中,为凝菌的胞外物。进一步利用红外光谱、紫外扫描、考马斯亮蓝等手段,确定了生物凝剂的有效成分为多糖类物质,具有良好的高效产絮遗传稳定性。为研究产絮菌的遗传特性,采用质粒转化技术进行了凝基因的定位实验:将凝菌的质粒转入无凝特性的大肠杆菌感受态细胞中,得到大肠杆菌阳性转化菌株;经检测,转化菌株无凝特性,说明凝基因存在于染色体DNA,初步确定凝菌质粒无凝基因控制。从而确定了凝菌的代谢途径,为合成新型、经济的代谢物及分析代谢物成分提供了理论基础。
     以细胞融合技术作为凝菌的改良手段,采用促融合剂聚乙二醇(PEG),进行原生质体的融合,得到融合细胞。通过混凝试验验证,融合细胞的凝效果与单菌株一致,表明细胞融合技术作为凝菌的改良是有效的、可行的。
     为进一步分离和研究凝基因,构建了凝基因组文库。从文库中筛选出了一株表达凝活性的大肠杆菌阳性克隆子FC2,其凝率为90%,高于原凝菌和受体菌,说明克隆菌FC2凝性状遗传于原凝菌。采用轻敲模式下的原子力显微镜成像技术、光学显微镜、Zeta(ξ)电位对凝微观形貌进行了测定。结果显示,加入克隆菌发酵液的高岭土悬浮液形成的凝体出现较大而且紧密的球形颗粒结构,且表面积粗糙,凹凸程度大,具有大的比表面积和吸附液体悬浮颗粒的能力。同时,凝颗粒由不定形且松散的结构转变为密集分布、水平尺寸均匀的球形结构,表明克隆菌发酵液中的凝集素容易以高岭土悬浮颗粒为中心吸附在其表面,从更直观上进一步证实了克隆菌发酵液的净水效能。Zeta(ξ)电位测定结果表明,离子键作用强度不同,致使凝形态存在着差异,为研究生物凝剂的凝机理提供了有力的依据。
     最后,采用纤维素降解菌和凝菌组成的复合型生物凝剂生菌群,进行两段式发酵工艺。以HIT-3的纤维素降解物作为凝菌的代谢底物,得到优良的复合型生物凝剂。并研究纤维素降解菌HIT-3的酶学特性,对纤维素酶活进行测定,培养6d达到酶高峰,酶活力可达到0.676U·mL-1,所生的有机碳完全能被凝菌作为发酵的底物利用,生的复合型生物凝剂的凝效果高达94.5%,使生物能源再利用成为可能。
As an efficient, untoxic, non-secondary contaminative, biodegradable and environmental-friendly green wastewater disposal agent, bioflocculant is one of the most potential flocculants and would certainly receive more and more concerns. In the present research, the isolated flocculant-producing bacteria were identified and their flocculating characteristics and metabolic components were also analyzed. In addition, based on gene localization, the cell fusion and the gene liberary construction of flocculant-producing bacteria were conducted, by which cloning bacterium with flocculating characteristics was obtained. Then the cloning bacterium was applied in the two-stage fermentation process, i.e., the metabolic products of the cellulose degrading bacteria were utilized by flocculating bacteria as fermentation substance to carry out two-stage fermentation in order to obtain novel bioflocculant.
     Through physiological-biochemical and 16SrDNA analysis, the flocculant producing bacteria F2 was identified as Bacillus sp.. Results of flocculating activity distribution tests indicated that the effective component of flocculant existed in fermentation solution and was extracellular product. Moreover, through such as method coomassie blue reaction, ultraviolet spectroscope and infared spectra, the effective component of flocculant was determined as polysaccharide, which has favorable and efficient flocculant producing inherited stability.
     The location of flocculating gene was carried out by plasmid transformation to investigate. The plasmid of flocculant the inherited characteristics of flocculating bacteria producing bacteria was extracted and transformed into the competent cells of E. coli without flocculating ability. The results showed That the Tran for mants didn’t have flocculating characteristics and the flocculant gene but not flocculant gene located on chromosomes DNA and not on plasmid. It provide theoretical foundation for the determinationis of metabolic pathway of flocculant-producing bacteria, and the synthes is of novel and economical metabolic product as well as the composition analysis of metabolic products .
     Protoplast fusion technology was applied to optimal flocculants producing bacteria to carry out protoplast fusion. Polyethylene glycol (PEG) solution was used as fusion agent to obtain fusion cell.The results showed that the flocculating efficiency of fusion and the single slain were the same, indicating that protoplast fusion technology is feasible and effective for the improvement of flocculant-producing bacteria.
     For the further isolation and research of flocculating gene, the flocculent genomic library was constructed. A positive cloning bacterium FC2, which could express flocculating activity, was acquired after selection. Flocculent tests showed that the flocculent efficiency of FC2 was 90%, which was higher than the original flocculent bacterium and the competent cell. It demonstrated that FC2’s flocculent characteristics were inherited from the original flocculant-producing bacterium. By adopting the tapping mode AFM, light microscope technique and Zeta-potential test, the flocculating microtopography was identified. The AFM study revealed that, the kaolin suspending solution, which has cloning bacterium FC2’s fermented liquid had larger flocculent gel and more compact spherical structure, and the surface was rough with high degree concave and convex, and had large specific surface area and strong adsorption ability to the suspending particles in the solution. In addition, the amorphous and incompact flocculent particles transformed into spherical structure and was compact and had even horizontal dimension, which indicated that the agglutinin in the fermentation liquid of cloning bacteria could easily take kaolin suspending particles as its adsorption core and adsorbed on its surface, which gave further evident to the effective pollution removal capability of FC2’s fermented liquid. The results of Zeta-potential test illustrated that the intensity of electrovalent bond was different, resulting in various flocculent morphology, which provided significant evidences for studying flocculent mechanisms of biofloculant.
     Finally , two-stage fermentation process was conducted by adopting compound-bioflocculant-producing flora composed of cellulose-degrading bacterium and flocculating bacterium. The cellulose degrading metabolites of HIT-3 was taken by flocculating bacterium F2 as its substrates, by which way excellent compound bio-flocculant was obtained. In addition, the enzymology characteristics of HIT-3 were investigated when cultured in cellulose media which utilized CMC-Na as its sole carbon. The results showed that HIT-3 achieved enzyme producing climax after 6 days’incubation, which reached as high as 0.676U·mL-1, and the organic carbons produced was sufficient as the substrates required by the fermentation of flocculating bacterium F2(flocculating efficiency=94.5%), which make it is feasible to reuse bioenergy.
引文
1 马放, 冯玉杰, 任南琪. 环境生物技术. 化学工业出版社, 2003:150~162
    2 马放, 李淑更, 金文标等. 微生物凝剂的研究现状及发展趋势. 工业用水与废水.2002, 33(1): 7~9
    3 C. G Kumar, H S Joo, J W Choi, Y M Koo and C S Chang. Purification and Characterization of an Extracellular Polysaccharide from Haloalkalophilic Bacillus sp. I-450. World Journal of Microbiology and Biotechnology. 2004, 34, 673~681
    4 M Takeda, R Kurane, J I Koizumi. A Protein Bioflocculant Produced by Rhodococcus erythropolis. Agric. Biol. Chem. 1991, 55(10):2263~2264
    5 R Kurane, K Todea, K Takeda. Agric. Biol. Chem., 1986,50(9):2039~2313
    6 F Richard. Exopolymer Production and Flocculation by Zoogloea MP6. Applied and Environmental Microbiology. 1976, 31(4): 623~626
    7 H Salehizadeh, S A Shojaosadati. Extracellular Biopolymeric Flocculants: Recent Trends and Biotechnological Importance. Biotechnology Advances, 2001. 19(5):371~385
    8 R Kurane, N Tomizuka. Towards New-biomaterial Produced by Microorgani- sm:Bioflocculants and Bioabsorbent.Nippon Kagaku Kaishi. 1992, (5):45~ 463
    9 H. Salehizadeh, M. Vossoughi, I. Alemzadeh. Some Investigations on Bioflo- cculant Producing Bacteria. Biochemical Engineering Journal. 2000,l5: 39~ 44
    10 无 锡 轻 工 大 学 编 . 食 品 微 生 物 学 ( 第 二 版 ). 中 国 轻 工 业 出 版 社 , 2002:174~203, 331~347
    11 Kurane R, Matsuyama H. Production of a booflocculant by mixed culture. Biosci Biotechnol Biochem. 1994, 58(9): 1589~1594
    12 E·д·巴宾科夫[苏]. 郭连起译. 论水的混凝.中国建筑工业出版社, 1982.
    13 江锋, 黄晓武, 胡勇有. 胞外生物高聚物凝剂的研究进展(上). 给水排水. 2002, 28(8): 83~89
    14 江锋, 黄晓武, 胡勇有. 胞外生物高聚物凝剂的研究进展(下). 给水排水. 2002, 28(9):88~91
    15 邓述波, 余刚, 蒋展鹏, 等. 微生物凝剂 MBFA9 的凝机理研究 J.水处理技术, 2001, 27(1): 22~25
    16 J.Zang, Z.Liu, S.Wang. Characteristics of a bioflocculant produced by the marine myxobacterium Nannocystis sp. NU-2[J].Appl Microbiol Biotechnol, 2002,59: 517~522
    17 Hee-MockOh, SeogJuneLee, Myung-HwanPark, et al.Harvesting of Chlorella vulgarisusing a bioflocculant from Paenibacillus sp. AM49 [J].Biotecnnolog- y Letters, 2001,23: 1229~1234
    18 AnastasiosI. Zouboulis, Xiao-LiChai, IoannisA. Katsoyiannis.The applicationof bioflocculant for the removal of humicacids from stabilized landfillleachtes [J].Journal of Environmental Management, 2004, 70: 35~41
    19 S.P.Vijayalakshmi, A.M.Raichur.The utility of Bacillus subtilis as a bioflocculant for fine coal[J]. Colloids and Surfaces B:Biointerfaces, 2003,29: 265~275
    20 R Kurane. Screening for and Characteristics of Microbial Flocculant. Agric. Biol. Chem. 1986,50(9): 2309~2313, 2301~2307
    21 J.Sousa M, A.Teixeira J, M.Mota. Difference in the Flocculation mechanism of Kluyveromyces Marxianus and Saccharomyces cerevisial. Biotechnology Letters. 1992,14(3):213~218
    22 Takeda Minoru . Factors affecting the Activity of a Protein Bioflocculant produced by Nocardia Amarae. Journal of Fermentation and Bioengineering. 1992,74(6):408~409
    23 N. Levy et al. Physico-chemical aspects in Flocculation of Bentonite Suspensions by a Cyanobacterial Bioflocculant. Water Research. 1992, 26 (2):249~254
    24 李兆龙, 虞杏英. 微生物凝剂[J].上海环境科学,1991,10(9):45~ 46
    25 Jin-Ho Jang ,Michihiko Ike ,Shin Myoung Kim , et al . Production of a novel bioflocculant by fed2batch culture of Cit robacter sp. [J] .Biotechnology Letters, 2001, 23 :593~597
    26 程树培, 耿小六, 史阳巍,等. 球形红假单胞菌沉降性能诱导及凝效率研究[J].南京大学学报, 1994 , 30(3):469~476
    27 Haruhiko Yokoi, Tomoteru Aratake, Jun Hirose, et al. Simultaneous producti- on of hydrogen and bioflocculant by Enterobacter sp. BY-29 [J]. World Journal of Microbiology & Biotechnology,2001,17:609~ 613
    28 马放, 杨基先, 金文标等.环境生物制剂的开发与应用[M].北京:化学工业出版社、环境科学与工程出版中心,2004. 220-229 ,244~248
    29 R Kurane , K Takeda , K Toead , et al. Culture conditions for production of microbial flocculant by Rhodocoction erythropolis. [J]. Agric.Biol. Chem. , 1986 , 50 (9) : 2309~2313
    30 程树培, 崔益斌, 杨柳燕. 高凝性微生物育种生物技术研究与应用进展. 环境科学进展. 1995, 3(1): 65~69
    31 R Kurane, K Todea, K Takeda. Agric. Biol. Chem. 1986,50(9):2039~2313
    32 R Kurane. Correlation Between Flocculant Productionand Morphological Changes in Rhodococcus erythropolis S-1. J. Ferment. Bioengin. 1991, 72(6): 498~500
    33 R Kurane, K Hatamochi, T Kakumo. Production of a Bioflocculant by Rhodococcus Erythropolis S-1 Grown on Alcohols. Biosci. Biotech. Biochem. 1994, 58(2): 428~429
    34 徐斌, 田旸, 王竞等. 假单细菌 GX4-1 利用鱼粉废水产絮凝剂的研究. 微生物学报. 2001, 28(3): 68~71
    35 周旭, 王竞, 周集体,等. 利用鱼粉废水生微生物凝剂的性能研究. 环境科学研究. 2003, 16(3): 31~34
    36 周旭, 王竞, 周集体,等. 利用废弃物生生物凝剂的研究. 化工装备技术. 2003, 24(4): 48~51
    37 刘晖, 周康群, 胡勇有,等. 青霉菌 HHE-P7 利用桔水培养微生物凝剂的研究. 水处理技术. 2005, 31(2): 51~54
    38 尹华, 余莉萍, 彭辉. 固氮菌 J-25 利用味精废水凝剂的研究. 环境化学. 2003, 22(6): 582~587
    39 吴波. 纤维素降解菌的筛选及其发酵效果试验研究. 哈尔滨工业大学硕士论文. 2005: 30~55
    40 李淑更. 复合型生物凝剂的开发. 哈尔滨工业大学硕士论文. 2002: 12~23
    41 王琴. 复合型生物凝剂的凝机理与生工艺研究. 哈尔滨工业大学博士论文. 2005: 19~26
    42 孟路. 复合型微生物凝剂发酵条件的优化及凝效果研究. 哈尔滨工业大学硕士论文. 2005: 30~41
    43 王博. 复合型生物凝剂的凝效能研究及安全性评价. 哈尔滨工业大硕士论文. 2005: 19~26
    44 迟熠. 复合型生物凝剂(CBF)凝特性研究. 哈尔滨工业大学硕士论文. 2006: 24~48
    45 张金凤. 复合型生物凝剂的成分分析及凝机理研究. 哈尔滨工业大学硕士论文. 2005: 11~56
    46 Ichiro Yamashita, Sakuza Fukui. Isolation of Glucoamylase non producing Mutantsin the Yeast Saccharomyces Diastaticus[J].Agric.Biol. chem. ,1983, 47 (1) :131~135
    47 P Flammarion , A Devaux. Multibiomarker responses in fish from the moselle river ( France) [J] . Ecotoxicology and environmental safety , 2002 , 51:145~153
    48 Anders Gokso yr. Characterization of the cytochrome P-450 monooxygenase system in fish liver ,metabolism and effects of organic xenobiotics [D]. Trondheim: Ph. D. Thesis , Norwegian University of Science and Technology , 1987
    49 C Porte , Y Morcillo , M Sole. Evaluation of a suite of biomarkers of exposure in clams transplanted to a tributyltin polluted environment [J]. Marine Environmental Research , 2000 , 50 : 431~441
    50 Pavel Vodicka , Tatiana Tvrdik. An evaluation of styrene genotoxicity using several biomarkers in a 3-year follow-up study of hand-lamination workers [J] . Mutation Research , 1999, 445 :205~224
    51 S C Billi de Catabbi , C Aldonatti , L C San Martin de Viale. Heme metabolism after discontinued hexachlorobenzene administration in rats : Possible irreversible changes and biomarker for hexachlorobenzene persistence [J]. Comparative biochemistry and physiology Part C, 2000, 127:165~175
    52 Ryuichiro Kurane, Rhodococcus Culture Medium as Flocculant for Recovery of Products in Fermentation, Jpn Kokyo Koho JP, 02,215,387[90,215,387]: 20~25
    53 余 燕 春 . 加 快 纤 维 素 资 源 开 发 利 用 的 思 考 . 技 术 经 济 与 管 理 研究.1999,(4):42~43
    54 王镇,王孔星.微生物凝剂的研究概况[J]. 微生物通报, 1993, 20(6):362~ 367
    55 Y.Li, N.He, H.Guan, et al. A novel polygalacturonic acid bioflocculantREA-
    11 produced by Corynebacterium glutamicum: a proposed biosyntheticpathway and experimental confirmation [J].ApplMicrobiolBiotechnol, 2003, 69: 200~206
    56 Ryuichiro Kurane, Yasuhiro Nohata. Microbial Flocculant of Waste Liquids and Oil Emulsion by a Bioflocculant from Alcaligenes latus [J].Agric. Biol. Chem, 1991, 55(4):1127~1129
    57 Ryuichiro Kurane, Kiyoshi Takeda, Yomoo Suzuki. Screening for and Characteristics of Microbial Flocculants [J].Agric. Biol. Chem., 1986,50(9): 2301~2307
    58 Ishida Fujiik. Breeding of flocculant industrialalcohol yeast strains by self-cloning of the flocculation gene FLO1and repeated batch fermentation by transformants [J].Journalof General and Applied Microbiology, 1998, 44(5): 347~353
    59 ChengShu-pei, Cui Yi-bin. Characteristics for the hybrid cell Foaz obtained from the protoplast fusion between yeast and photosynthetic bacteria in soybean processing wastewater [J]. Journal of Environmental Sciences, 1998, 10: 365~371
    60 陈坚, 任洪强, 堵国成,等.环境生物技术应用与发展 [M].北京:中国轻工业出版社,2001
    61 林稚兰, 黄秀梨. 现代微生物学与实验技术[M]. 北京:科学出版社,2000.111~116
    62 刘伊强, 王雅萍, 潘乃穟等. 1994. 芽孢杆菌原生质体的形成, 再生及种间融合的研究[J].微生物学报, 34(1):76~80
    63 张克旭, 陈宁, 张永志等. 用原生质体融合选育谷氨酸高菌[J].微生物学报, 1991, 31(2):180~186
    64 于自然, 黄熙泰.现代生物化学[M].北京:化学工业出版社, 2001:56
    65 王俊英, 孔显良, 姜丽萍,等. 用原生质体融合技术提高 β-淀粉酶稳定性[J].微生物学报, 1994, 34(3):231~235
    66 杨世辉, 方呈祥, 张珞珍. 一种光学显微镜下观察原生质体的染色方法[J]. 微生物学通报,2000, 27(1): 55~57
    67 韦革宏, 朱铭莪, 郭杰等. 苜蓿中华根瘤菌与鹰嘴豆中慢生根瘤菌原生质体的融合研究[J]. 西北农林科技大学学报, 2002,30(2): 18~22
    68 马放, 任南琪, 杨基先主编.污染控制微生物学实验[M]. 哈尔滨:哈尔滨工业大学出版社, 2002,6
    69 Buchanan R E, Gibbons N E. Bergey’s Manual of Determinative Bacteriology. 8th ed. Beijing : Science Press , 1984
    70 闵航. 微生物学实验(实验指导分册). 浙江大学出版社, 2005: 97~98, 33~35
    71 胡松年, 薛庆中. 基因组数据分析手册. 浙江大学出版社, 2003: 19~58
    72 李衍达, 孙之荣. 生物信息学基因和蛋白质分析的实用指南. 清华大学出版社, 2003. 16~43, 175~211
    73 J.萨姆布鲁克 D.W.拉塞尔著.黄培堂等译.2002.分子克隆实验指南[M]. 北京:科学出版社
    74 林红雨, 陈策实, 尹光琳. 1999. 欧文氏杆菌和棒杆菌的属间融合研究[J].微生物学通报, 26(1):3~6
    75 宋绍富, 张忠智, 兪理等. 原生质体融合技术构建高效驱油细胞工程菌的研究[J]. 油田化学,2004,21(2):187~191
    76 乔宝义, 徐浩. 棒状杆菌原生质体的形成、再生以及融合的初步探讨.微生物学报,1983,23(1):33~43
    77 Sambrook J, Fritsh E F, Maniatis T. Molecular Cloni ng : A L aboratory Manual, 2nd ed, Cold Spring Harbor, New York : Cold Spring Harbor Laboratory, 1989
    78 刘小琳, 贺鹏, 卢大军,等. 凝选择载体的构建及 β-葡萄糖苷酶基因在酿酒酵母中的表达.生物工程学报,2005,(21):167~170
    79 Nakamura J, Miyashiro S, Screening, iso lation and some properties of m icrobial cell flocculants. Agric. Biol. Chem , 1976, 46 (2) : 377~383
    80 Stratford M , Assinder S. Yeast ,1991,7 :559~574
    81 Dengis P b , Nelissen L R , Rouxhet P G. A ppl Envi ron Microbiol ,1995 ,61 (2) :718~728
    82 郭尧君.蛋白质电泳实验技术[M]. 北京:科学出版社,1999.2
    83 Righetti P G In Laboratory Techniques in Biochemistry and Molecular Biolo-gy.(ed. T. S. Work and E. Work), North-Holland, Amsterdam. 1983. Vol.11, p. 148
    84 马放. 复合型生物凝剂的开发与应用研究.哈尔滨工业大学环保科技股份有限公司博士后研究工作报告[M],2004,12
    85 张树政. 酶制剂工业[M]. 北京:科学出版社,1998,595~623
    86 王琳, 刘国生 王林嵩,等. 法测定纤维素酶活力最适条件研究[J].河南师范大学学报(自然科学版),1998,26(3):66~69
    87 天津轻工业学院, 大连轻工业学院, 无锡轻工业大学(天津大连无锡轻院). 工业发酵分析[M].北京:中国轻工业出版社,2004
    88 MA Fang,WANG Bo,FAN Chun, et al.Security valuation of compounded microbial flocculant[J].Journal of Harbin Institute of technology.2004, 11 (1):38~42
    89 吕向红.微生物凝剂[J].化工环保,1995,15(4):211~218
    90 J Nakamura. Purification and Chemical Analysis of Microbial Cell Flocculants Produced by Aspergillus Sojae AJ7002[J].Agric Biol Chem, 1976,40(3):619~624
    91 Zhang Tong, Lin Zhe. Microbial Flocculant and Its Application in Environmental Protection [J].Environmental Sciences, 1999, 1(1):1~12
    92 马放, 李淑更, 金文标, 等. 微生物凝剂的研究现状及发展趋势.工业用水与废水.2002, 33(1): 7~9
    93 周晓宏, 陈洪章, 李佐虎. 固态发酵中纤维素基质降解过程初步研究. 过程工程学报.2003,3(5):447~452
    94 蹇文婴, 东秀珠. 定向进化同源基因在细菌进化系统研究中的应用. 微生物学报,2000,(27)5:377~388
    95 Drancourt M, Bollet C, Carlioz R, et a1. 16S ribosomal DNA sequence analysis ofa large collection of environmental and clinical unidentifiable bacterial isolates.J Clin Microbiof. 2000,38:3623~630
    96 Janda J M, Abbo tt S L. Bacterial identification for publication:when is enough enough J Clin Microbiol, 2002,40:1887~1891
    97 Ryuichiro Kurane. Culture condition for production of microbial flocculant by Rhodococcus erythropolis J. A gric Biol Chem, 1986 , 50(9) : 2309~2313
    98 Hiroaki Takagi. Purification and chemical propertiesof aflocculant produced by Paecilomyces sp. J. A gric Biol Chem,1985 ,49 (11): 3159~3164
    99 胡筱敏, 邓述波, 牛力东,等. 一株芽孢杆菌所产絮凝剂的研究[J]. 环境科学研究, 2001,14(1) :36~40
    100 N. He, Y. Li, J. Chen, Sh-Y. Lun. Identification of a Novel Bioflocculant from a Newly Isolated Corynebacterium glutamicum. Biochemical Engineering Journal,2002, 11:137~148
    101 张博润, 任健, 刘玉方.酵母菌凝机理研究进展及应用前景. 微生物学通报,1996 ,23 (5) :307~311
    102 杨扶华主编. 医学细胞生物学概论.成都:四川科学技术出版社,1991.25
    103 汪德耀主编. 普通细胞生物学.上海科技出版社,1988.37
    104 Rentato Baseraa 著, 薛绍白译.细胞繁殖的生物学.北京师范大学出版社,1985.88~91
    105 Zimmermann U. Electric Fieldmediated Fusion and Related Electrical Phenomena. Biochem Biophys Acta 1982;694: 227
    106 Okada Y, Biken s J. The in troduction of cell fusion with non-activity Xitai virus Nature〔J〕,1958,(1): 103~110
    107 HollaenderA. The method of cell fusion with the electric pulse〔M〕.New York:Plenum Press,1982,59~67
    108 王洪洲, 郑幼霞. 庆丰链霉菌原生质体的形成、再生及融合重组的研究[J].遗传学报, 1982,9(3):172~179
    109 韦革宏, 贺学礼, 郭杰等. 豌豆根瘤菌与新疆中华根瘤菌原生质体的属间融合研究[J]. 生物工程学报, 2001,17(5): 534~358
    110 王静岩, 朱圣庚, 徐长法主编. 生物化学.上册,第 3 版,北京:高等教育出版社,2002.9
    111 王克明. 细胞融合技术及其进展.浙江科技学院学报, 2004(6):113~116
    112 马立宪, 邵丽华, 吕敏和, 等. EHF 病毒在人肾细胞融合中的结构蛋白分子 定 位 分 析 和 人 胚 肾 细 胞 融 合 的 电 镜 观 察 . 山 东 医 科 大 学 学 报 , 1995(6):122~124
    113 Ichiro Yamashita, Sakuza Fukui. Isolation of Glucoamylase nonproducing Mutantsin the Yeast Saccharomyces Diastaticus [J].Agric.Biol. chem. ,1983, 47 (1):131~135
    114 Ichiro Yamashita, Sakuza Fukui. Mating signals Control Expression of both Starch Fermentation Genes and a Noval Flocculation Gene FLO8 in the Yeast Saccharomyces [J].Agric.Biol. chem. ,1983,47 (12):2 889~2 896
    115 Takazu Endo, Hajime Takahasi. Genetic Evidence for the Evolvement of Aggregation Factor and other Componentsin Flocculation of Flavobaterium Strain B [J]. Agric.Biol. Chem. ,1981,45 (2) :379~383
    116 Takazu Endo, Hajime Takahasi. Partial Purification and Some Properties of Aggregation Factor from Pronase susceptible Floc Forming Flavobaterium Strain B [J]. Agric. Biol. Chem. ,1981,45 (2):513~516
    117 Takagi H. Agric.Biol. Chem, 1985,49(11):3151~3157
    118 Kurane R. Agric. Biol. Chem, 1986,50(9): 2301~2313
    119 Nakamura J . Agric.Biol. Chem, 1976, 40(2): 377~383
    120 秦培勇, 张通, 陈翠仙. 微生物凝剂 MBFTRJ21 的凝机理[J]. 环境科学, 2004,25 (3) :69 ~72
    121 Junji W, Yoshihiro T, Mahiro O et al. Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast, 1994, 10:211~225
    122 贺超兴. 盐藻的生物学特性与开发利用[J]. 生物学通报,1998 ,33(2) :12
    123 朱艳彬, 马放, 任南琪, 等.2 株芽孢杆菌利用不同碳源生产絮凝剂的研究.环境科学, 2005(9):152~155
    124 Maurice P A. Applications of atomicforce microscopy in environmental colloid and surface chemistry [J]. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 1996, 107:57~75
    125 Raichur A M, Misra M. Flocculation and flotation of coal by adhesion of hydrophobic Mycobacteriumphlei [J]. Colloids and Surfaces B: Biointerfaces, 1996, 8(11212) :13~24
    126 Liu H, Fang H H P. Extraction of extracellular polymeric substances (EPS) of sludges [J]. Journal of Biotechnology, 2002,95 (3):249~256
    127 Aliyu M, Hepher M J. Effects of ultrasound energy on degradation of cellulose material [J]. Ultrasonies Sono chemistry ,2000 ,7 :265~268
    128 大连轻工业学院. 放线菌降解纤维素机理的研究取得重要成果, 科学时报,2006,06.06
    129 WOOD T M, MACCPAE S I. In bioconversion of cellulose substance into energy, chemicals and microbial protein[M] .T. K. Ghose Gall, India, 1978:111~141
    130 史玉英.纤维素分解菌群的分离和筛选[J].南京农业大学学报,1996, 19 (3) :59~62
    131 胡利勇, 钟卫鸿. 纤维素酶基因克隆及其功能性氢基酸研究进展[J]. 生物技术, 2003,13(2):43~45
    132 燕红, 杨谦, 王希国. 两株芽孢杆菌纤维素酶的研究[J].林化学与工业, 2006,26(2) :83~86
    133 王春卉,汪天虹,高培基. 纤维素酶分子的纤维素吸附区的研究进展.纤维素科学与技术.1997,5(4):1~10
    134 阎伯旭, 齐飞, 张颖舒,等. 纤维素酶分子结构和功能的研究进展.生物化学与生物物理进展.1999,26(3):233~235
    135 吴显荣, 穆小民.纤维素酶分子生物学研究进展及趋向.生物工程进展.1994, 14(4):25~27
    136 郑成. 植物纤维素的水解利用研究进展. 中国物资再生.1997,(4):12~13
    137 王体科. 世界植物纤维水解概况.世界林业研究,1993(6):51~57
    138 何源禄, 贾眉, 鲁淑霞, 等. 电离辐射对马尾松及玉米芯烯酸水解影响的初步研究. 林化学与工业,1990, 10 (4): 249~256
    139 杜宗军, 陈冠军, 高培基,等. 黑色葡萄状穗霉纤维素酶的纯化和性质. 青岛海洋大学学报, 2002,32(1):79~84
    140 Buchanan R E, Gibbons N E. Bergey’s Manual of Determinative Bacteriolo-gy. 8th ed. Beijing : Science Press , 1984
    141 Dong Xiuzhu, Cai Miaoying.Manual of Systematic Familiar Bacteriology. Beijing : Science Press, 2001
    142 陈春洪, 祁哲师, 陈蔽等. 里氏木霉纤维素酶生条件的研究[J]. 微生物学通报,1998,25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700