用户名: 密码: 验证码:
测井储层评价新技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
测井储层评价研究是剩余油研究的核心内容之一,本文结合“新疆克拉玛依油田八区克上组砾岩油藏中高含水期剩余油研究”(地质模型部分)课题,开展了测井储层评价新技术的应用研究,研究内容包括测井解释方法研究、储层评价方法研究、储层非均质性研究、储层流动单元研究、储层三维建模等。
     测井解释方法研究主要侧重于神经网络测井解释方法的研究,通过对BP算法的分析,结合测井解释的特点,提出了改进方案:采用变学习率、增加“动量”项、S函数输出限幅、增加陡度因子,并在学习样本选取方面采取了剔除异常点、减少具有相同特征的样本的数量、加入反算样本等措施,通过区块测井数据分析、岩心资料深度归位及饱和度校正,提取出有代表性的学习样本,建立了能够适应研究区砾岩油藏克上组S1-3、S4-5层组测井储层参数提取计算的统计分析解释模型和神经网络解释模型,改进后的BP神经网络用于测井解释时达到了项目测井储层参数计算精度的要求;
     测井储层评价研究是本文研究的重点,这一部分的方法研究主要有两部分:灰色系统理论方法研究和CP神经网络方法研究。利用灰色系统理论新的思维方式,建立测井地质关系数据库,选择、匹配、拟合和提取砾岩油藏岩性、物性和含油气性评价的特征性参数,建立评价砾岩油藏储层的解释标准及权系数,利用矩阵作数据列处理并采用最大隶属原则得出灰色评价预测结论;CP神经网络方法为首次引入,针对测井储层评价的特点,对CP神经网络进行了改进研究,采取了打乱学习样本输入顺序、增加误差处理过程、增设网络测试功能、提出中间层神经元的经验取值等措施,开发了相应的应用软件,在实用中取得了很好的效果;最后,根据研究区的具体情况采用灰色系统理论和CP神经网络相结合的方法开展了测井储层评价研究,经与试油、试采情况进行对比,符合率达到了85%;
     本研究区的一大特点是储层非均质性十分严重,为此展开了储层非均质性研究,研究重点是采用分形理论研究本区的平面非均质性,应用分形克里金方法进行井间插值,制作了各小层的孔隙度、渗透率、含油饱和度、有效厚度平面分布图件和隔、夹层厚度平面分布图,这些研究有效地了解了储层参数在储层空间上的分布情况和储层各层组的连通情况以及隔夹层的分布情况,为该区进一步开发调整提供了较可靠的依据;
     为了进一步了解研究区储层及其内部流体流动特征,本文还开展了储层流动单元研究;从储层孔喉几何学角度出发,采用储层流动带指标(FZI)来划分流动单元,采用聚类分析的方法并结合岩性、物性等资料划分出了五类流动单元,并通过对取心井流动单元对应的测井参数的统计分析,建立起未取心井的流动单元预测模型,计算了各井的流动单元指标值;最后结合项目的沉积微相研究成果,制作了各小层流动单元分布图并进行了描述,这些研究对储层岩性、物性及非均质性、小层连通性等均有了进一步的认识,为油田的开发及调整挖潜提供了依据,也为后面的储层地质建模研究奠定了基础;
     最后,在前面各项研究工作的基础上开展了储层三维地质模型研究;采用“二次建模”的方法进行储层参数建模,采用地质统计学克里金方法进行井间插值,建模软件采用的是Gridstat,按照软件运行的要求组织了各种数据,分别建立了储层孔隙度、渗透率、含油饱和度、泥质含量的三维地质模型,并分东北—西南向的8215—151井和东南—西北方向的8289—8237井制作了参数分布剖面图,这些图件形象直观的展示了研究区的储层属性;利用网络积分法,结合克里金估值技术和储层三维地质建模的成果,进行了研究区油藏储量计算研究,分两次进行了储量计算,与射孔方案计算的储量(1266.0×10~4t)相比,第
    
     0
     一次储量计算 (123.gX10‘t)偏低,第二次储量计算 (135刀X104 t)偏高,第二次储量
     计算结果与当前实际生产状况趋于吻合;最后对研究区各小层油藏储量及采出情况进行了
     分析研究,指出本区真正具有挖潜潜力的主要对象已不在S4‘-S。‘层组,而应在上部的S;’-
     S。‘层组(占整个剩余可采储量的74.5%),其次在S。’-S。’层组(它的剩余可采储量占整个
     S。’-S。’层组剩余开采储量的85.3%)。
     本文直接针对油田生产中的一些实际问题,较系统地将神经网络、灰色理论、分形理
     论、流动单元、三维建模等新技术方法综合应用于测井储层评价研究,为油田生产提供了
     相应的技术理论和方法并促进了这些新技术方法的推广和应用,本文的研究也将为其他研
     究者提供借鉴和参考。
The logging reservoir evaluation is one of the main contents of the remaining oil research. This dissertation develops the new technique applied research in logging reservoir evaluation based on the research project "The middle-high containing water oil field's remaining oil research of conglomerate petroleum deposit in Keshangzu, No.8 district, Xinjian Karamay oil field", the research includes the logging interpretation, the reservoir evaluation, inhomogeneity, flow unit, 3D modeling, and so on.
    The neural network application research is the main method used in the logging interpretation. Based on analyzing the BP neural network's algorithm and combing the feature of the logging, a scheme was put forward. It adopted variable learning rate, added a dynamic term and a steep factor, limited the S-function's output amplitude. In taking the learning samples, we eliminated the anomaly point, reduced the number of the samples with similar feature, and used the reconstruction samples. Through logging data analysis, rock depth immigration, saturation correction, some representative learning samples were selected, the model of the statistical analysis and the BP-neural network were established, and this model is applicable to the studied area.
    The reservoir evaluation is the major part of this dissertation. It is composed of two parts, the gray-theory and the CP-neural network. Using the new concept of gray-theory, the logging-geology database was built. The evaluation feature parameter, including the conglomerate petroleum deposit's lithology, geophysical properties and oiliness, was selected, matched, modeled and extracted, and used to establish the interpretation standard and weight coefficients. Then the evaluation result was got by using the matrix transformation and the max subjection principle. The CP-neural network is used firstly in the logging reservoir evaluation. For the features of logging reservoir evaluation, the CP-neural network is modified by confusing the learning-samples, adding the error processing and test phase, and supposing the experienced cell number of the middle layer in the CP neural network. Based upon the ideal above, the CP-neural network's software was developed. It works well in the research. Combining the gray-th
    eory with the CP-neural network, the logging reservoir evaluation in the studied area was complished. The coincidence between the evaluation and the oil testing is about 85%.
    One of the obvious features of the studied area is the reservoir's inhomogeneity. The fractal theory was used to deal with the problem. The plot in plane view of each thin layer's porosity, perm, oil saturation, net thickness and the separate/inter layer's thickness was obtained. This will help to understand the space distribution of the parameters, and provide evidences for the oil field development.
    In order to get more information about the reservoir's inner flow liquid, some
    
    
    research were done on the reservoir flow unit. Through the reservoir pore geometry, the flow zone index (FZI) was adopted to identify the flow unit. The flow unit is divided into 5 classes with the cluster analysis combined with its lithology and geophysical properties. The unlifting core well's FZI was forecast by statistical analyzed the lifting core well's FZI. Combined with the result of the micro-Sedimentary facies, each thin layer's flow unit distribution was obtained and descripted. This will help to get more information on the reservoir lithology, geophysical properties, inhomogeneities and the thin layer's connectivity.
    Finally, based on the research above, the 3D model was built. Using the Gridstat's software to build the 3D model of the reservoir's porosity, perm, oil saturation and mud content. Two cross-sections were acquired, one from Well-151 to Well-8215, another from Well-8237 to Well-8239. Combined with the Kriging techniques and the 3D modeling result, the petroleum deposit reserve was calculated two times by the grid-integral. Compared with the calculated result of the perforating technique (1266.0#10
引文
1.魏斌.高含水期剩余油分布研究[D].北京:中国地质大学(北京)博士论文,2000.5
    2.宋子齐、谭成仟、吴少波等 利用测井技术进行沈 84 块油藏描述研究[R].辽河石油勘探局、西安石油学院,1998,12
    3. Baldwin J. L., et al. Application of a neural network to the problem of mineral identification from well logs[J]. The Log Analysts, 1990, 31(5): 279-293
    4. Dereak H., et al. Comparative study of back-propagation neural network and statistical pattern recognition techniques in identifying sandstone lithofacies[J]. Texas A&M University, College station, 1990
    5. Runge R. J., et al. Obtaining lumped [blocked] well logs by simulated annealing[J]. The Log Analyst, 1991, 32(4)
    6. Wiener J., Rogers J. A., Rogers J. R. et al. Predicting carbonate permeabilities from wireline logs using a back-propagation network[C]. 1991,61st SEG meeting, Houston, USA, Expanded Abstracts, 285-288
    7. Samuel J. R., et al. Determination of litology from well logs using a neural network[J]. AAPG Bulletin, 1992, 76(5)
    8. Poulton M. M., Stenberg C. E., and Glass C. E., Location of subsurface tangets in geophysical data using neural networks[J]. Geophysics, 1992, 57, 1534-1544
    9. An P., Moon W. M. Reservoir characterization using feedforward neural networks[C]. 1993, 63rd SEG meeting, Washington DC, USA, Expanded Abstracts, 258-262
    10. Calderon-Macias C., Sen M. K. Geophysical interpretation by artificial neural systems: A feasibility study[C]. 1993, 63rd SEG meeting, Washington DC, USA, Expanded Abstracts, 254-257
    11. Carlos C. M., Mrinal K. S., and Paul L. S., Automatic NMO correction and velocity estimation by a feed forward neural network[J]. Geophysics, 1998, 63(5): 1696-1707
    12. Ridha B. C., Gharbi and Adel M. E. Neural Network Model for Estimating the PVT Properties of Middle East Crude Oils[J]. SPE Reservoir Evaluation & Engineering, 1999, 2(3): 255-265
    13. Calderon-Macias C., Sen M. K. and Stoffa P. L., Artificial neural networks for parameter estimation in geophysics[J]. Geophysical Prospecting, 2000, 48:21-47
    14. Rui-lin Liu, Cheng-Dang Zhou. A neural-network approach to the computation of permeability from well logs[J]. The Log Analyst, 1991; 32(4)
    15.周成当等,BP神经网络与模拟退火法在测井解秆中的应用[J].测井技术,1993,17(5):339-343
    16.刘瑞林等.神经网络在油气评价和预测方面的应用研究[J].地球物理学进展,1995,10(2)
    17.周成当.人工神经网络:测井解释新的希望-神经网络系列研究报告之一[J].测井技术,1993,17(1)
    18.于建华.应用人工神经网络自动识别岩性[J].石油地球物理勘探,1993,28(1):59-66
    19.肖慈珣等.神经网络在油藏描述关键井研究中的应用[J].测井技术,1993,17(1):36-41
    20.史晓芳等.井层判别的人工神经网络方法初探[J].石油物探,1993,32(3)
    21.许建华.反向传播神经网络模型及其在测井资料岩性自动识别中的应用[J].石油物探,1993,32(3)
    22.汪炳柱、王硕儒.神经网络法在测井曲线对比中的应用[J].石油地球物理勘探,1994,
    
    29(增刊1):80-85
    23.肖慈珣等.以石油测井资料解释为例谈神经网络的预测能力[J].神经网络理论与应用 西南交大出版社,1996
    24.侯俊胜、尉中良.自组织神经网络在测井资料解释中的应用[J].测井技术,1996,20(3):197-200
    25.夏宏泉、刘红歧.BP神经网络在测井资料标准化中的应用[J].测井技术,1996,20(3):201-206
    26.张玎等.应用人工神经网络识别水淹层[J].测井技术,1996,20(3):210-214
    27.王彦春、段云卿.最小曲率神经网络在油气预测中的应用[J],石油地球物理勘探,1996,31(6):885-891
    28.唐立章、邓永富.应用神经网络技术求取碎屑岩储层参数[J].石油地球物理勘探,1997,32(增刊1):35-40
    29.张志华等.一种自构神经网络及其在测井资料解释中的应用[J].石油地球物理勘探,1997,32(3):418-427
    30.张向君等.双重神经网络预测储层及油气[J].石油地球物理勘探,1997,32(5):717-723
    31.邹长春等.神经网络在枣北地区火成岩储层测井解释中的应用[J].石油地球物理勘探,1997,32(增刊2):27-33
    32.张永贵等.BP神经网络在气井储量计算及动态分析中的应用[J],天然气工业,1998,18(6):65-67
    33.范训礼等.神经网络在岩性识别中的应用[J].测井技术,1999,23(1):50-52
    34.卢新卫、金章东.前馈神经网络的岩性识别方法[J].石油与天然气地质,1999,20(1):82-84
    35.宋子齐、谭成仟、吴少波.灰色系统与神经网络技术在水淹层测井评价中的应用[J].石油勘探与开发,1999,26(3)
    36.邱立伟、康志江.人工神经网络技术在储层描述中的应用[J].石油实验地质,1999,21(2):166-168
    37.彭敦陆等.神经网络专家系统在预测单井日产量上的应用研究[J].石油实验地质,1999,21(2):156-160
    38,谢丛姣、关振良.用人工神经网络描述丘陵油田油层非均匀性[J].石油实验地质,1999,21(2):161-165
    39.王向公等.利用BP网络模型确定水淹层参数[J],江汉石油学院学报,1999,21(4)
    40.李云省、李士伦.BP网络快速识别油气层初探[J].天然气工业,1999,19(4):40-42
    41.肖慈珣等.神经网络技术用于测井解释的评述[J].测井技术,1999,23(5):389-392
    42.胡俊.BP人工神经网络在计算含水饱和度中的应用研究[J].天然气工业,2000,20(2):39-41
    43.杨斌等.基于神经模糊系统的储层参数反演[J].石油与天然气地质,2000,21(2):173-176
    44.蔡永香、肖慈珣、侯庆功等.应用神经网络识别地层特性[J].测井技术,1994,18(6):424-430
    45.蔡煜东、姚林声.用人工神经网络建立油田采收率模型[J].石油地球物理勘探,1994,29(2):166-169
    46.孙效功、王硕儒.函数型连接神经网络的算法改进及其应用[J].石油地球物理勘探,1994,29(5):552-557
    47.陈广义、刘铁男、刘延力等.油藏系统辨识的人工神经网络方法和应用[J].石油学报,
    
    1999,20(6)
    48.陈伟、段永红等.基于遗传算法的神经网络结构设计[J].西南石油学院学报,1998,(1)
    49.刘力辉、常德双、殷学军等.人工神经网络在预测储层中的应用[J].石油地球物理勘探,1995,30(6):811-822
    50.宋子齐、谭成仟、吴少波等.灰色理论与神经网络技术分析软件在油田勘探开发中的应用[J].测井技术,2000,24(6):423-427
    51.原福堂等.应用神经网络计算储层参数[J].测井技术,1995,19(5):
    52.邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1987
    53.宋子齐、袁福文、宋华超.多参数储层综合评价自动分析处理方法和程序[J].石油学报,1990,11(2)
    54.易德生、郭萍.灰色理论与方法—提要.题解.程序.应用[M].北京:石油工业出版社,1992
    55.赵旭东.灰色理论与方法[M].北京:石油工业出版社,1992
    56.傅立.灰色系统理论及其应用[M].北京:科学技术出版社,1992
    57.宋子齐.测井多参数的地质应用[M].西安:西北工业大学出版社,1993
    58.宋子齐、谭成仟等.测井多参数及其灰色理论处理方法在埕岛油田的应用[J].石油物探,1994,33(4):93-105
    59.宋子齐、谭成仟.灰色理论油气储层评价[M].北京:石油工业出版社,1995
    60.宋子齐、谭成仟、曲政.利用灰色理论精细评价油气储层的方法[J].石油学报,1996,17(1):25-31
    61.宋子齐、谭成仟.灰色系统理论精细评价油气储层的标准利权系数[J].地质论评,1996,45(1)
    62.毛宁波、信荃麟.灰色聚类分析方法在储层含油性预测中的应用[J].江汉石油学院学报,1996,18(2):52-54
    63.郭少斌、董清水、刘忠群.灰色聚类自动识别岩性及微相[J].沉积学报,1996,14(2):124-130
    64.胡远来.灰色油气预测系统[J].石油地球物理勘探,1996,31(6)
    65.谭成仟、宋子齐.关联分析方法在哈南地区砾岩储层油气评价中的应用[J].物探与化探,1997,27(2)
    66.宋子齐、谭成仟.灰色系统理论精细评价油气储层的分析准则、处理方法及其应用[J].系统工程理论与实践,1997,17(3):74-82
    67.刘明哲等.一种基于二次灰关联分析的数列预测法[J].物探化探计算技术,1997,19(4)
    68.宋子齐、谭成仟等,灰色系统理论在高含水期水淹层解释中的应用[J].测井技术,1998,22(5):341-348
    69.胡远来、刘明哲.灰色遗传识别在××气田储层预测中的应用[J].成都理工学院学报,1998,25(增刊)
    70.毛宁波、彭红波,用灰色模型理论对测井信号进行滤波处理[J].江汉石油学院学报,1999,21(4)
    71.侯俊胜、黄智辉、汪嘉联.测井多参数模糊综合评判和灰色综合评判的对比分析[J].测井技术,2000,24(1):32-35
    72.赵军.模糊灰关联分析法在测井识别油气水层中的应用[J].测井技术,2000,24(5):337-339
    73.宋子齐、谭成仟、吴少波等.灰色理论与神经网络技术分析软件在油田勘探开发中的应用[J].测井技术,2000,24(6):423-427
    74.谭成仟、宋子齐、吴少波.灰色关联分析在辽河小洼油田储层油气产能评价中的应用[J].
    
    测井技术,2001,25(2):119-122
    75.陈强、谢硕.测井曲线灰关联度计算[J].测井技术,2000,24(6):445-447
    76.卢颖忠.裂缝性砂砾岩储层裂缝特征的测井解释技术研究[D].北京:中国地质大学(北京)博士论文,1998.12
    77.桂峰.非均质油气储层流动单元的识别与空间分布研究[D].北京:中国地质大学(北京)博士论文,1999.5
    78.王志章.碳酸盐岩油藏描述及预测[D].北京:中国地质大学(北京)博士后研究工作报告,2000.9
    79.刘光萍.灰色模糊综合评判在地质中的应用[C].中国数学地质,1998(9):45-51
    80.冯晓杰、陆明德.灰色聚类法在圈闭评价中的应用[J].中国海上油气,2000,14(1):47-50
    81. B. B. Mandelbrot. Fractal: Form, Chance and Dimension[M]. San Francisco: Freeman, 1977
    82. B. B. Mandelbrot. The Fractal Geometry of Nature[M]. San Francisco: Freeman, 1982
    83. Hewett T. A. Fractal Distribution of Reservoir Heterogeneity and Their Influence on Fluid Transport[C]. SPE 15386, 1986
    84. Hewett T. A. Conditional Simulation of Reservoir Heterogeneity with Fractals[C]. SPE18326, 1988
    85. Turcotte D. L. Fractals in Geology and Geophysics[J]. Pure and Applied Geophysics, 1989, 131
    86. Gilbert L. E. Are Topographic Data Sets Fractal[J]. Pure and Applied Geophysics, 1989, 131
    87. B. B. Mandelbort. Multifractal measures, especially for the geophysicist[J]. Pure and Applied Geophysics, 1989, 131
    88. Emanuel A. S., et al., Reservoir performance prediction methods based on fractal geostatistics[C]. 1989, SPE Reservoir Engineering: 311-318
    89. Crane S. D.. Tubman K. M. Reservoir Variability and Modeling with Fractals[C]. SPE20606, 1990
    90. Perez G., Chopra A. K. Evaluation of Fractal Models to Describe Reservoir Heterogeneity and Performance[C]. SPE22694, 1991
    91. Aasum Y., et al. An Application of Geostatistics and Fractal Geometry for Reservoir Characterization[C]. SPE Formation Evaluation, 1991
    92. Harris C. K. Characterization of Surface Roughness in Porous Media[A]. Reservoir Characterization 2[C], Lake L. W., et al. 1991:2-26
    93. Hardy H. H. The Fractal Character of Photos of Slabbed Cores[J]. Math. Geol., 1992, 24(1):73-79
    94. Hardy H. H. The Generation of Reservoir Property Distributions in Cross Section for Reservoir Simulation Based on Core and Outcrop Photos[C]. SPE23968, 1992
    95. Yang Anping. A Geostatistical Interploation Method From Only Two or Three Wells[C]. SPE 22346, 1992
    96. Yang Anping. A Geostatistical Well Correlation Method That Can Identify Faults. SPE 22448, 1992
    97. Rongey Tony. Mapping with Fractal Geometry[J]. Geobyte, 1992, 7(5): 18-23
    98. Stolum Hans-Henrik. Fractal Heterogeneity of Clastic Reservoir[A]. Reservoir Characterization 2[C]. Lake L. W., et al. 1991:579~612
    99.王域辉、廖叔华.分形与石油[M].北京:石油工业出版社,1993
    100.李后强、汪富泉.分形理论及其在分子科学中的应用[M].北京:科学出版社,1993
    
    
    101.张济忠.分形[M].北京:清华大学出版社,1995
    102.杨新社.地球物理学中分形与分维研究进展[J].地球科学进展,1991,6(5):
    103.潘葆芝、薛林福.分数维及其在测井地质解释中的应用[J].测井技术,1992,16(3):
    104.纪发华、张一伟.分形几何在储层非均质性描述中的应用[J].石油大学学报,1994,18(5):161~168
    105.储冬红等.分形几何在应用地球物理中的应用[J].国外油气科技,1995(3):
    106.R.A.Berier等.王晓钦译,油藏模拟中二维及三维分形分布的比较[J].国外油气勘探,1996,8(4):495~503
    107.陆敬安、李舟波.测井曲线的自相似性研究[J].测井技术,1996,20(6):
    108.唐俊伟、沈平平.分形插值模拟渗透率及孔隙度面分布(Ⅰ)—理论分析[J].石油勘探与开发,1997,24(3):
    109.唐俊伟、沈平平.分形插值模拟渗透率及孔隙度面分布(Ⅰ)—计算实例[J].石油勘探与开发,1997,24(4):
    110.鲁港、毛俊莉、李后强.分形理论在井间储层描述中的应用研究[J].中国海上油气(地层),1997,11(5):369-374
    111.陈亮、熊琦华、纪发华.用正演井间分形克里格方法预测储集层的非均质性[J].石油勘探与开发,1998,25(1):
    112.张占松、王冠贵、陈佩珍.井间非均质性渗透率分形预测[J].石油勘探与开发,1998,25(1):
    113.王天波、董春旭、徐丽萍等.用分形理论确定m、n值的方法及其应用[J].测井技术,1998,22(1):
    114.方战杰、郭海敏、沈世波.分形在油藏动态参数预测中的应用[J].测井技术,2001,25(1):21-23
    115. Hearn C. J., et al. Geological Factors Influencing Reservoir Performance of The Hartzog Draw Field, Wyoming. JPT (Aug. 1984): 1335~1344
    116. Ebank W. J. The Flow Unit Concept-An Integrated Approach to Reservoir Description for Engineering Projects[C]. AAPG, June, 1987
    117. Amaefule J. O., et al. Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic(Flow) Units and Predict Permeability In Uncored Intervals/Wells[C]. SPE 26436, 1993
    118. Maghsood Abbaszadeh, et al. Permeability Prediction by Hydraulic Flow Units-Theory and Application[C]. SPE 30158, 1995
    119. Shahab M., et al. Virtual Measurement of Heterogeneous Formation Permeability Using Geophysical Well Log Responses[J]. The Log Analyst, 1996, 37(2)
    120. Lucia F. J., et al. Defining Flow Units in Dolomitized Carbonate-Ramp Reservoirs[C]. SPE 24702, 1992
    121. Danielli H. M. C. Flow Units Vs Depositional Cycles in Field Development, Reeves San Andres Field, Yoakum County, TX[C]. SPE 35185, 1996
    122. Amare k., Mapping flow units in a heterogeneous carbonate reservoir: Reeves Field, Yoakum county, Texas. PHD Thesis, Texas A&M Univ., 1995
    123. Davies D. K., Vessell R. K., Flow unit characterization of a shallow shelf carbonate reservoir: North Robertson unit, West Texas[C]. SPE 35433, 1996
    124. Canas J. A., et al. Characterization of Flow Units in Sandstone Reservoir: La Cira Field, Colombia, Southern America[C]. SPE 27732, 1994
    
    
    125.吴胜和.温米油田侏罗系储层流动单元研究[D].北京:石油大学博士论文,1998
    126.魏斌、李能根.应用储层流动单元研究剩余油及其分布特征[J].地球学报,1999,增刊
    127.高兴军、吴少波、宋子齐等.真12块垛一段六油组流动单元划分与描述[J].测井技术,2000,24(4)
    128.雷启鸿、宋子齐、谭成仟等.利用流动单元建立渗透率模型的方法[J].新疆石油地质,2000,21(3)
    129.裘亦楠、薛叔浩.油气储层评价技术(修订版)[M].北京:石油工业出版社,1997
    130.王志章、石占中等.现代油藏描述技术[M].北京:石油工业出版社,1999
    131. B. B. Mandelbrot, J. W. Van Ness. Fractional Brownian Motions[J]. Fractional Noises and Applications, SIAMREVIEW 1968, 10(4): 422~437
    132.谢和平、薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社,1997
    133.桂峰、黄智辉、马正.利用相控模型进行井间参数预测[J].地球科学—中国地质大学学报,2001,26(1):49~53
    134.彭仕宓、黄述旺.油藏开发地质学[M].北京:石油工业出版社,1998.8
    135.吴胜和、金振奎、黄沧钿等.储层建模[M].北京:石油工业出版社,1999.9
    136. H. H. Haldorson, et al. Stochastic Modeling[J]. JPT, 1990, V.42:404~412
    137.张乃尧、阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1999
    138.焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社 1990.12
    139.王伟.人工神经网络原理—入门与应用[M].北京:北京航空航天大学出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700