用户名: 密码: 验证码:
基于GPU的多点地质统计逐点模拟并行算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油气储层的地质结构及储层参数是决定着储层的储量及产能的关键因素。因此,建立能够表征储层结构及性质的三维数字化模型已经成为油田勘探开发中的一项重要工作。目前,进行三维建模主要依赖于研究区域化变量空间结构性和随机性的地质统计学理论。由于传统的基于变差模型的随机模拟方法在描述复杂地质对象空间几何特征方面的局限,能够表征空间多点之间相关关系的多点地质统计理论应运而生。它结合了基于对象和基于像素随机模拟方法优点,近十年来一直是储层三维建模领域研究的热点。
     随着研究的深入,对于地质三维模型的规模和精细程度的要求日益提高。在进行大规模精细地质模拟时,逐点模拟的串行多点地质统计模拟方法中存在的不足日益突出。首先,串行多点地质统计方法的模拟效果受输入参数的影响。高质量的模拟效果受到严格参数的限制,从而需要大量计算,导致运行效率严重下降。其次,串行多点地质统计方法在对地质模式进行建模时,需要大量的内存空间。有限的物理内存会使大规模的模拟失败。逐点模拟的串行多点地质统计模拟方法中的局限性使算法的实用性受到了严重影响。
     本文从大规模三维精细地质模拟的需要出发,重点研究了基于通用图形处理器(GPGPU)和计算统一设备架构上(CUDA)的多点地质统计领域的并行计算方法,包括应用于离散变量和连续变量的并行随机模拟方法及地质统计模型的并行计算方法。本文的工作和创新主要体现在:
     1.提出了应用于离散地质变量的并行SNESIM方法
     ⅰ)根据GPU计算架构的特点,提出SNESIM并行方法的问题分解策略,实现了线程级别的问题划分和计算任务的高度并行,显著提高了计算效率。并且该并行策略不需要大量的内存空间,增强了算法的适应性。
     ⅱ)为了减少GPU和CPU之间通信交互而造成的计算瓶颈,提出了基于GPU内部数据缓冲的合并方案,并给出了两种子问题并行合并策略,考虑了兼容性和内存访问冲突问题。实验结果表明了并行问题合并策略的有效性和计算效率。
     ⅲ)考虑算法的特性和GPU的内存模型,进一步改进了并行方法的GPU实现。不仅避免了对于模板偏移的大量复杂和重复的计算量,并且对高速共享内存和只读纹理内存的使用进行了优化。
     2.提出了应用于连续地质变量的并行Direct Sampling方法ⅰ)针对可变大小邻域节点的搜索问题,改进了对并行邻域条件节点的搜索策略。通过稳定的并行排序算法和辅助变量,显著提高了邻域条件节点的搜索效率。
     ⅱ)针对对训练图像上目标点的选择问题,提出了一种并行选取策略。通过改进的并行规约二元函数算法,实现了训练图像上目标点选择的并行化和确定性。
     ⅲ)针对模拟大范围地质体的连续性的不足,提出了将搜索椭球概率与搜索领域结合的改进方法,实验结果表明了模拟结果的连续性得到显著改善。
     3.对于表征区域化变量相关关系的两点地质统计模型,提出了基于研究区域和统计量的两种并行策略。实验结果表明了基于统计量的并行策略在计算效率方面优于基于研究区域的策略。
     总而言之,多点地质统计逐点并行模拟方法与现有的串行方法相比,在并行计算与多点地质统计模拟方法的结合中提出了新的思路,改进了多点地质统计随机模拟方法在大规模三维建模中的适应性,且大幅度提高了模拟效率。
The geological structure of the oil and gas reservoir and the reservoir parameters are the key factors which determine the reserves and production capacity of the reservoir. Therefore, the establishment of a three-dimensional digital model which is able to characterize the structure and nature of the reservoir has become an important task in the oil exploration and development. Currently, three-dimensional modeling mainly depends on the geostatistical theory which focuses on the researches of regionalized variable spatial structure and randomness. Due to the limitations for the variogram-based stochastic methods to describe the geometric characteristics of complex geological objects, multiple point geostatistical theory which could characterize the spacial corelations between multiple points came into being. It combines the advantages of object-based and pixel-based stochastic simulation method, and it has been the research focus of the area of3D reservoir modeling over the past decade.
     With further research, the requirement for more large and more sophistication three-dimensional models increases. In the applications of large-scale and sophisticate geologic modeling, deficiencies become increasingly prominent for the current serial mutiple-point statistical simulation methods. Firstly, the quality of the multiple point geostatistical simulation results is influenced by the input parameters. High-quality simulation realizations are produced by the severe parameters, which require a lot of calculation, leading to a serious decline in computational efficiency. Secondly, when performing geostatistical tasks on geological model, the serial multiple point geostatistical method need a lot of memory space. The limitations in the traditional multiple point simualtion methods have severely affected the practicality of the algorithms.
     This article focuses on the needs of the large-scale three-dimensional geologic simulation, and the reseaches of the prallel multiple point stochastic simulation algorithms which is based on general-purpose graphics processor(GPGPU) and Compute Unified Device Architecture (CUDA), including the parallel stochastic simulation methods for discrete and continuous variables and the parallel computational methods for the geostatistical model. The work and innovation is mainly reflected in:
     1. We proposed a parallel SNESIM method for discrete geological variables simulation. i) According to the characteristics of GPU computing architecture, we proposed a parallel decomposition strategy for the SNESIM method, and implemetated thread-level problem partition and highly parallel computing tasks. The parallel strategy significantly improves the computational efficiency, and it does not require a lot of memory space, so it enhanced the adaptability of the algorithm
     ii) In order to avoid the computational bottleneck caused by the communications between the GPU and CPU, we proposed a problem merge strategy based on internal data buffer and two parallel implementations considering the compatibility and memory access conflict. The experimental results shows the effectiveness and efficiency of the parallel consolidation strategy
     iii) Considering the characteristics of the algorithm and the GPU memory model, we raised further optimization strategies for the parallel implementation of the method. The strategies not only avoid the large number of complex and repetitive computation for the template offset, but also optimize the usage of high-speed shared memory and read-only texture memory.
     2. We proposed a parallel Direct Sampling method for continous geological variables simulation. i) A parallel search strategy is proposed for the searching tasks in the variable-sized neighborhood. Stable parallel sorting algorithm and auxiliary variables, significantly improves the efficiency of the search of the neighborhood conditions node. ii) A parallel selecting strategy is proposed for the selection tasks of the target node in the training images. Through the improved dual function in the parallel reduction algorithm, the parallelization and certainty of the target point selected on the training images could be achieved,
     iii) For lack of large scale continuity in the simulations of geological bodies, search ellipsoid is combined with neighborhood seach area. Experimental results show that the continuity in the simulation results can be significantly improved
     3. For the two-point geostatistical model which characterizes the relationship of regionalized variables, parallel strategies of area-based and statistics-based methods are proposed. The experimental results show that the statistics-based parallel strategy can be much more efficient than the area-based strategy.
     In conclusion, comparing the parallel multiple-point geostatistics methods proposed in this thesis with the existing serial methods, this thesis put forward new ideas in the combination of the parallel computing and multi-point geostatistical simulation methods, improved the adaptability of multiple-point geostatistics stochastic simulation in the applications of the large-scale three-dimensional modeling, and greatly improve the efficiency of the simulation.
引文
Abarca-Hemhndez, F. and M. Chlca-Olmo (1999). "Evaluation of geostatistical measures of radiometric spatial variability for lithologic discrimination in Landsat TM images." 65 (6): 705-711.
    Arpat, G. B. (2005). Sequential simulation with patterns. Stanford, CA, Stanford University. Ph.D.: 166pp.
    Arpat, G. B. and J. Caers (2007). "Conditional Simulation with Patterns." 39 (2):177-203.
    Boucher, A. (2009). "Considering complex training images with search tree partitioning." Computers and Geosciences 35 (6):1151-1158.
    Caers, J. K. and S. Srinivasan, et al. (2000). "Geostatistical Quantification of Geological Information for a Fluvial-Type North Sea Reservoir." SPE Reservoir Evaluation & Engineering(10).
    Caers, J. and A. Journel (1998). Stochastic reservoir simulation using neural networks trained on outcrop data. SPE Annual Technical Conference and Exhibition.
    Caers, J. and T. Zhang (2004). "Multiple-point geostatistics:a quantitative vehicle for integrating geologic analogs into multiple reservoir models.'
    Cerny, V. (1985). "Thermodynamical approach to the traveling salesman problem:An efficient simulation algorithm." Journal of optimization theory and applications 45 (1):41-51.
    Cooley, D. and J. Cisewski, et al. (2012). "A survey of spatial extremes:Measuring spatial dependence and modeling spatial effects." 10 (1):135-165.
    Dagum, L. and R. Menon (1998). "OpenMP:An Industry-Standard API for Shared-Memory Programming." IEEE Comput. Sci. Eng.5 (1):46-55.
    Daly, C. (2005). Higher Order Models using Entropy, Markov Random Fields and Sequential Simulation. Geostatistics Banff 2004. O. Leuangthong and C. Deutsch, Springer Netherlands. 14:215-224.
    Deutsch, C. V. (1992). Annealing Techniques Applied to Reservoir Modeling and the Integration of Geological and Engineering (Well Test) Data. California of USA, Stanford University. Ph.D.
    Deutsch, C. V. and A. G. Journel (1992). GSLIB:geostatistical software library and user's guide., Oxford University Press; Applied Geostatistics Series.
    Deutsch, C. and X. Wen (2000). "Integrating Large-Scale Soft Data by Simulated Annealing and Probability Constraints." Mathematical Geology 32 (1):49-67.
    Dimitrakopoulos, R. and H. Mustapha, et al. (2010). "High-order Statistics of Spatial Random Fields:Exploring Spatial Cumulants for Modeling Complex Non-Gaussian and Non-linear Phenomena." Mathematical Geosciences 42 (1):65-99.
    Dimitrakopoulos, R. and X. Luo (2004). "Generalized sequential Gaussian simulation on group size v and screen-effect approximations for large field simulations." Mathematical Geology 36 (5):567-590.
    Edward, H. I. and R. M. Srivastava (1989). Applied Geostatistics, Oxford University Press.
    Farber, R. (2011). CUDA application design and development, Morgan Kaufmann.
    Farmer, C. L. (1989). The mathematical generation of reservoir geology. Numerical Rocks, 銶?Joint IMAISPEEuropean Conference on the Mathematicsof OilRecovery, Robinson College, Cambridge University,(July,1989j.
    Flynn, M. J. (1966). "Very high-speed computing systems." 54 (12):1901-1909.
    Gneiting, T. and H. Sevcikova, et al. (2012). "Estimators of fractal dimension:Assessing the roughness of time series and spatial data." 27 (2):247-277.
    Guardiano, F. B. and R. M. Srivastava (1993). "Multivariate geostatistics:beyond bivariate moments." Geostatistics Troia'92. Vol.1:133-144.
    Haldorsen, H. H. and E. Damsleth (1990). "Stochastic Modeling (includes associated papers 21255 and 21299)." Journal of Petroleum Technology 42 (4):404-412.
    Harris, M. and G. E. Blelloch, et al. (2007). "Optimizing parallel reduction in CUDA." Proc. of ACM SIGMOD},2113:104-110.
    Haugen, M. and G. Mariethoz, et al. (2010). Exploring Direct Sampling and Iterative Spatial Resampling in History Matching. Proceedings of 23nd SCRF annual affiliates meeting, Stanford University.
    Honarkhah, M. and J. Caers (2010). "Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling." 42 (5):487-517.
    Huang, T. and D. Lu, et al. (2013). "GPU-based SNESIM implementation for multiple-point statistical simulation." 54 (0):75-87.
    Isaaks, E. H. and R. M. Srivastava (1988). "Spatial continuity measures for probabilistic and deterministic geostatistics." 20 (4):313-341.
    Journel, A. G. (1993). Geostatistics:roadblocks and challenges. Geostatistics Troia'92.
    Journel, A. G. (2002). "Combining Knowledge from Diverse Sources:An Alternative to Traditional Data Independence Hypotheses." 34 (5):573-596.
    Journel, A. G. (2005). Beyond Covariance:The Advent of Multiple-Point Geostatistics, Geostatistics Banff 2004. O. Leuangthong and C. V. Deutsch, Springer Netherlands.14: 225-233.
    Journel, A. G. and C. J. Huijbregts (1981). Mining geostatistics, Academic Press.
    Kirk, D. B. and W. H. Wen-mei (2010). Programming massively parallel processors:a hands-on approach, Morgan Kaufmann.
    Kirkpatrick, S. and M. P. Vecchi (1983). "Optimization by simmulated annealing." science 220 (4598):671-680.
    Krishnan, S. and A. G. Journel (2003). "Spatial connectivity:From variograms to multiple-point measures." Mathematical Geology 35 (8):915-925.
    Liu, Y. (2005). An Information Content Measure Using Multiple-point Statistics. Geostatistics Banff 2004. O. Leuangthong and C. V. Deutsch, Springer Netherlands.14:1047-1056.
    Liu, Y. and A. Journel (2004). "Improving sequential simulation with a structured path guided by information content." Mathematical Geology 36 (8):945-964.
    Maharaja, A. and A. G. Journel (2005). Hierarchical Simulation of Multiple-Facies Reservoirs Using Multiple-Point Geostatistics. SPE Annual Technical Conference and Exhibition, Dallas, Texas, Society of Petroleum Engineers.
    Mariethoz, G. (2009). Geological stochastic imaging for aquifer characterization, Universite de Neuchatel. Ph.D.:225 pp.
    Mariethoz, G. (2010). "A general parallelization strategy for random path based geostatistical simulation methods." Computers and Geosciences 36 (7):953-958.
    Mariethoz, G. and P. Renard (2010). "Reconstruction of Incomplete Data Sets or Images Using Direct Sampling." Mathematical Geosciences 42 (3):245-268.
    Mariethoz, G. and P. Renard, et al. (2010). "The Direct Sampling method to perform multiple-point geostatistical simulations." Water Resour. Res.46 (11):Wl 1536.
    Matheron, G. (1965). Les variables regionalisees et leur estimation:une application de la theorie de fonctions aleatoires aux sciences de la nature, Masson et Cie.
    Mattson, T. and B. Sanders, et al. (2004). Patterns for parallel programming, Addison-Wesley Professional.
    Meerschman, E. and G. Pirot, et al. (2012). Guidelines to Perform Multiple-Point Statistical Simulations with the Direct Sampling Algorithm. The 9th International Geostatistics Congress, Oslo.
    Meerschman, E. and G. Pirot, et al. (2013). "A practical guide to performing multiple-point statistical simulations with the Direct Sampling algorithm." Computers & Geosciences 52 (0): 307-324.
    Metropolis, N. (1987). "The beginning of the Monte Carlo method." Los Alamos Science 15 (584): 125-130.
    Mustapha, H. and R. Dimitrakopoulos (2010). "A new approach for geological pattern recognition using high-order spatial cumulants." Computers & Geosciences 36 (3):313-334.
    Mustapha, H. and R. Dimitrakopoulos, et al. (2011). "Geologic heterogeneity representation using high-order spatial cumulants for subsurface flow and transport simulations." Water Resour. Res. 47 (8):W08536.
    Mustapha, H. and R. Dimitrakopoulos (2011). "HOSIM:A high-order stochastic simulation algorithm for generating three-dimensional complex geological patterns." Computers & Geosciences 37 (9):1242-1253.
    Nguyen, H. (2007). Gpu gems 3., Addison-Wesley Professional.
    Nunes, R. and J. A. Almeida (2010). "Parallelization of sequential Gaussian, indicator and direct simulation algorithms." Computers and Geosciences 36 (8):1042-1052.
    Nvidia, C. (2011). "C Programming Guide v4.0." Nvidia Corp.
    Okabe, H. and M. J. Blunt (2004). "Prediction of permeability for porous media reconstructed using multiple-point statistics." Physical Review E-Statistical, Nonlinear, and Soft Matter Physics 70 (62):066135/1-066135/10.
    Okabe, H. and M. J. Blunt (2005). "Pore space reconstruction using multiple-point statistics." Journal of Petroleum Science and Engineering 46 (1-2):121-137.
    Ortiz, J. and O. Peredo (2010). Multiple Point Geostatistical Simulation with Simulated Annealing: Implementation Using Speculative Parallel Computing. geoENV Ⅶ-Geostatistics for Environmental Applications. P. M. Atkinson and C. D. Lloyd, Springer Netherlands.16: 383-394.
    Pacheco, P. S. (1997). Parallel Programming With MPI, Morgan Kaufmann Publishers.
    Peredo, O. and J. M. Ortiz (2011). "Parallel implementation of simulated annealing to reproduce multiple-point statistics." Computers and Geosciences 37 (8):1110-1121.
    Pirot, G. and E. Meerschman, et al. (2011). Optimizing Direct Sampling algorithm's parameters to performing multiple-points geostatistical simulations. AGU Fall meeting, San Francisco.
    Rauber, T. and G. Rtinger (2010). Parallel Programming:for Multicore and Cluster Systems, Springer-Verlag New York Inc.
    Remy, N. and A. Boucher, et al. (2008). Applied geostatistics with SGeMS:A user's guide, Cambridge University Press.
    Remy, N. and A. Shtuka, et al. (2002). "GSTL:the geostatistical template library in C++." Computers & Geosciences 28 (8):971-979.
    Rezaee, H. and G. Mariethoz, et al. (2013). "Multiple-point geostatistical simulation using the bunch-pasting direct sampling method." 54 (0):293-308.
    Satish, N. and M. Harris, et al. (2009). Designing efficient sorting algorithms for manycore gpus, Rome.
    Shannon, C. E. and W. Weaver, et al. (1949). The mathematical theory of communication, University of Illinois press Urbana.
    Shi, X. and C. Li, et al. (2011). "Computing prestack Kirchhoff time migration on general purpose GPU." 37(10):1702-1710.
    Srivastava, M. (1992). Iterative methods for spatial simulation, Stanford Center for Reservoir Forecasting,Rep.:24.
    Srivastava, M. (1995). An overviewof stochastic methods for reservoir characterization. AAPG Computer Applications in Geology, Tulsa.
    Straubhaar, J. and A. Walgenwitz, et al. (2008). Optimisation Issues in 3D Multiple Point Statistics Simulation. Geostats 2008. Santiago, Chile.
    Straubhaar, J. and A. Walgenwitz, et al. (2013). "Parallel Multiple-Point Statistics Algorithm Based on List and Tree Structures." Mathematical Geosciences 45 (2):131-147.
    Straubhaar, J. and P. Renard, et al. (2011). "An improved parallel multiple-point algorithm using a list approach." Mathematical Geosciences 43 (3):305-328.
    Straubhaar, J. and P. Renard, et al. (2012). Parallel implementation of the Direct Sampling algorithm on GPU. geoENV2012, IX conference on geostatistics for environmental applications, Valencia, Spain.
    Strebelle, S. B. (2000). Sequential Simulation Drawing Structures from Training Images. Stanford, CA, Stanford University. Ph.D.:187pp.
    Strebelle, S. B. (2003). New multiple-point statistics simulation implementation to reduce memory and CPU-demand. Proceedings to the IAMG 2003, Portsmouth, UK.
    Strebelle, S. B. and A. G. Journel (2001). Reservoir Modeling Using Multiple-Point Statistics, New Orleans, LA.
    Strebelle, S. (2002). "Conditional simulation of complex geological structures using multiple-point statistics." Mathematical Geology 34 (1):1-21.
    Strebelle, S. and A. G. Journel (2000). Sequential simulation drawing structures from training images. Geostatistics Capetown 2000.
    Tahmasebi, P. and A. Hezarkhani, et al. (2012). "Multiple-point geostatistical modeling based on the cross-correlation functions." 16 (3):779-797.
    Tahmasebi, P. and M. Sahimi, et al. (2012). "Accelerating geostatistical simulations using graphics processing units (GPU)." Computers & Geosciences 46 (0):51-59.
    Takizawa, H. and H. Kobayashi (2006). "Hierarchical parallel processing of large scale data clustering on a PC cluster with GPU co-processing." 36 (3):219-234.
    Tjelmeland, H. and J. Eidsvik (2005). "Directional Metropolis:Hastings Updates for Posteriors with Nonlinear Likelihoods." 14:95-104.
    Tjelmeland, H. and T. U. I. F. Norges (1996). Stochastic Models in Reservoir Characterization and Markov Random Fields for Compact Objects, Department of Mathematical Sciences, Norwegian University of Science and Technology.
    Tran, T. T. (1994). "Improving variogram reproduction on dense simulation grids." Computers and Geosciences 20 (7-8):1161-1168.
    Vargas, H. S. and H. Caetano, et al. (2008). A New Parallelization Approach for Sequential Simulation
    geoENV VI-Geostatistics for Environmental Applications. A. Soares, M. J. Pereira and R. Dimitrakopoulos, Springer Netherlands.15:489-496.
    Vargas, H. S. and H. Caetano, et al. (2008). A New Parallelization Approach for Sequential Simulation, geoENV VI-Geostatistics for Environmental Applications. A. Soares, M. J. Pereira and R. Dimitrakopoulos, Springer Netherlands.15:489-496.
    Vargas-Guzman, J. A. (2008). "Unbiased Resource Evaluations with Kriging and Stochastic Models of Heterogeneous Rock Properties." 17 (4):245-254.
    Vargas-Guzman, J. A. (2011). "The Kappa model of probability and higher-order rock sequences." 15 (4):661-671.
    Walsh, S. D. and M. O. Saar, et al. (2009). "Accelerating geoscience and engineering system simulations on graphics hardware." 35 (12):2353-2364.
    Wu, E. (2004). "State of the art and future challenge on general purpose computation on GPU." Journal of Software 15 (10):1493-1504.
    Wu, J. and T. Zhang, et al. (2008). "Fast FILTERSIM simulation with score-based distance." Mathematical Geosciences 40 (7):773-788.
    Yan, S. and Y. Zhang, et al. (2011). "Reduction Algorithm Optimization Based on the OpenCL." Journal of Software 22 (Suppl. (2)):163-171.
    Yupeng, L. (2011). "A flexible lag definition for experimental variogram calculation." 21 (2): 207-211.
    Zeidenberg, M. (1990). Neural networks in artificial intelligence, Ellis Horwood.
    Zhang, T. and P. Switzer, et al. (2006). "Filter-based classification of training image patterns for spatial simulation." Mathematical Geology 38 (1):63-80.
    Zhang, T. and S. Bombarde, et al. (2006). "3D porosity modeling of a carbonate reservoir using continuous multiple-point statistics simulation." SPE Journal 11 (3):375-379.
    陈国良(2003).并行计算:结构·算法·编程,高等教育出版社.
    侯景儒,伊镇南(1998).实用地质统计学,地质出版社.
    纪发华,熊琦华(1995).”地质统计学在油藏描述中的应用.”石油大学学报(自然科学版)(01):115-120.
    李黎(2007).地质统计学在储层预测中的研究与应用,中国石油大学.
    李文克,吴胜和(2005).”多点地质统计学—理论、应用与展望.”古地理学报(01):137-144.
    刘喜武,年静波,et al.(2004).“地质统计分析在地震资料砂泥岩分布预测中的应用.”石油物探(03):278-282+6.
    吕连宏,张征,et al(2006).“地质统计学在环境科学领域的应用进展.”地球科学与环境学报
    (01):101-105.
    马晓鸽,王家华(2012).”多点地质统计学在储层建模中的应用.”石油工业计算机应用(02):15-16+3.
    牟子平,张林(2011).”地质统计学在水环境研究中的应用.”环境科学与管理(01):14-18.
    倪平泽(2010).铜矿床地质统计学模型构建及其应用模式研究,中国地质大学.
    孙海宁,史文东,et al(2002).“地质统计地震反演方法及其在民丰断裂带封堵中的应用研究.”石油地球物理勘探(04):407-411+432.
    孙洪泉(1990).地质统计学及其应用,中国矿业大学出版社.
    孙玉建(2008).地质统计学在固体矿产资源评价中的若干问题研究,中国地质大学(北京).
    王永刚,李黎(2006).“地质统计学应用综述.”勘探地球物理进展(03):163-169+4.
    吴胜和(2010).储层表征与建模,石油工业出版社.
    吴胜和,尹艳树(2006).“储层随机建模研究进展.”天然气地球科学(02):210-216.
    肖斌,赵鹏大,et al(2000).“地质统计学新进展.”地球科学进展(03):293-296.
    张林波(2006).并行计算导论,清华大学出版社.
    张挺(2009).基于多点地质统计的多孔介质重构方法及实现,中国科学技术大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700