用户名: 密码: 验证码:
日本沼虾(Macrobrachium nipponense)卵子和胚胎发育相关基因的克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精子卵子成熟后,经过受精进入胚胎发育阶段。在这一过程中,卵子不仅将母体的遗传物质传递给子代,而且其细胞质中储存的母体效应因子是动物胚胎发育所需营养的主要源泉。卵巢是卵子发生的场所,因而卵巢和胚胎的发育成为发育生物学研究的重要内容。大型十足目虾蟹类由于具有较高的经济价值和营养价值,其卵巢和胚胎发育研究自然成为众多学者关注的一个热点。目前,虾蟹类的卵巢和胚胎发育研究主要集中在形态学和生理学方面,而有关发育的进程及其相关机理的研究甚少。本研究首先克隆了日本沼虾卵子发生和胚胎发育的5个相关基因,分析了这些基因的分子特征。通过研究它们在卵子发生和胚胎发育过程中的时空表达模式,探讨了这些基因在日本沼虾卵子发生和胚胎发育中的作用,以期为日本沼虾乃至甲壳类发育的分子调控机理提供有益的借鉴。本研究主要包括以下四个部分:
     1、日本沼虾Mago nashi和Tsunagi基因在卵子发生和胚胎发育中的表达模式
     采用RACE技术克隆得到日本沼虾Mago nahi和Tsunagi cDNA全长序列,分别命名为MnMago和MnTsu。试验获得了2个MnMago基因的转录本,cDNA全长分别是746bp和683bp,两个序列只是在5’-非翻译区(5'-UTR)长度不同,两者之间相差63bp,开放阅读框(ORF)和3’-非翻译区(3'-UTR)则完全相同,该ORF编码147个氨基酸。MnMago两个转录本的5'-UTR长度不同,表明MnMago基因在日本沼虾体内存在不同的剪切方式。MnTsu cDNA全长为847bp,ORF长度为486bp,编码161个氨基酸。通过对这两个蛋白的序列分析发现它们分别含有Mago和Tsunagi蛋白相应的功能域:Mago superfamily和RNA recognition motif (RRM)。利用蛋白重叠软件对这两个蛋白进行相互作用预测,结果表明它们能嵌合成为一个完整的蛋白复合体,提示这两个蛋白可能与其它模式生物一样也以复合体的形式参与日本沼虾发育过程。荧光定量PCR(RT-QPCR)结果表明,这两个基因在卵巢和胚胎发育过程中的表达模式完全一致。MnMago和MnTsu基因在卵巢的增殖期表达量很低。随着卵巢的发育,其表达量逐步升高,至次级卵黄发生期达到最高,而到了成熟期显著下降,至恢复期又有所升高,说明MnMago和MnTsu基因对日本沼虾卵子的发生、成熟具有调节作用。胚胎发育过程的RT-QPCR分析表明,在胚胎发育早期MnMago和MnTsu基因的表达量处于比较平稳的状态,至原蚤状幼体期急剧升高,提示这两个基因与日本沼虾胚胎后期的形态发生紧密相关。MnMago和MnTsu基因在胚胎和卵巢发育过程中表达模式的高度一致性,提示它们在胚胎和卵巢发育过程中协同发挥作用。成体组织的RT-QPCR结果显示,MnMago和MnTsu基因在肌肉中表达量最高,而在精巢中的表达量很低。在肌肉中表达量高的原因可能是肌细胞处于增殖状态,与MnMago和MnTsu参与活跃mRNA转录、翻译和核质定位有关。以上结果说明MnMago和MnTsu基因具有多样的生物学功能,同时提示它们与日本沼虾卵子形成紧密相关。
     2、日本沼虾Gustavus基因在卵子发生和胚胎发育中的时空表达分析
     Gustavus是与Vasa蛋白相互作用的一种蛋白,在生殖质的定位和生殖细胞的形成中具有重要作用。Gustavus蛋白具有SPRY和SOCS功能域,研究认为SPRY功能域与肌质网中Ca2+释放调节有关,而SOCS功能域与蛋白质降解有关。本试验从日本沼虾卵巢中克隆得到Gustavus cDNA序列(MnGus),序列全长为1099bp,其ORF长度为786bp,编码261个氨基酸。通过对其氨基酸序列功能域分析结果显示,日本沼虾MnGus具有Gustavus蛋白特有的SPRY和SOCS功能域。卵巢发育的RT-QPCR分析表明,MnGus基因在卵巢发育过程中表现为先升高后降低的表达模式,至初级卵黄发生期表达量达到最高值,这提示MnGus基因参与了卵子发生过程,而与卵子的最后成熟关系不大。胚胎发育的RT-QPCR分析表明,在卵裂期有一定表达量,至囊胚期表达量下降,到原肠期又逐渐升高,一直到蚤状幼体期达到最高值,这种逐渐上调的表达模式提示MnGus基因在日本沼虾胚胎发育后期的腹部形成中具有重要的调节作用。成体组织的RT-QPCR表明该基因在肌肉中的表达量非常高,这可能是因为MnGus蛋白中SPRY功能域参与了肌质网中Ca2+活动,并在其中起着主要的作用。
     3、日本沼虾泛素化结合酶Ubc9基因的时空表达及其作用
     泛素(ubiquitin, Ub)介导的蛋白质降解通路是蛋白质功能的主要调节者和终结者,控制着几乎所有动植物的生命活动,包括细胞增殖、分化、凋亡、DNA复制和修复、转录和蛋白质质量控制等。而泛素结合酶(ubiquitin conjugating enzyme, E2)是泛素化过程中介导泛素活化酶(activating enzyme, E1)和泛素连接酶(ligase, E3)之间的关键酶。Ubc9是其中一种结合酶,它参与类泛素化修饰(small ubiquitin-like modifier, SUMO)途径,这个途径参与转录调控和细胞周期进程。本研究克隆得到日本沼虾Ubc9 cDNA全长序列(MnUbc9),其ORF长度为483bp,编码160个氨基酸。经生物信息学分析发现,MnUbc9蛋白结构中具有泛素结合酶的UBC功能域和泛素连接酶的结合位点。RT-QPCR结果表明,除在血液和精巢中表达量较低外,MnUbc9基因广泛分布于其它组织。随着卵巢的发育,MnUbc9基因表达量逐渐增强,至次级卵黄发生期达到最高值,而后显著下降,这与日本沼虾卵母细胞增殖、成熟过程是高度一致的。MnUbc9基因在胚胎的卵裂期有一定的表达量,至囊胚期下降,而后又逐渐升高,到胚胎发育后期达到最高。这可能是因为随着胚胎体积的增大,细胞有丝分裂活动逐渐增强,因而MnUbc9基因表达量逐渐升高。综上所述,结合酶MnUbc9基因通过类泛素化修饰途径调节着日本沼虾的卵子发生和胚胎发育过程。
     4、日本沼虾MnvWD-Kazal基因在卵子发生过程中的表达分析
     从日本沼虾卵巢中克隆到一个具有von Willebrand factor D domain (vWD)和Kazal型两种功能域的新基因,将其命名为MnvWD-Kazal。vWD功能域存在于多种蛋白中,如血浆糖蛋白、载脂蛋白、黏液素、整联蛋白和透明带粘附素,一般具有粘附作用。Kazal功能域是Kazal型蛋白酶抑制剂的主要结构域。本研究获得的日本沼虾MnvWD-Kazal cDNA全长2713bp,其ORF长度为2574bp,编码857个氨基酸。生物信息学分析发现MnvWD-Kazal蛋白的氨基端有一个长173个氨基酸的vWD功能域,在羧基端有3个Kazal功能域。RT-QPCR结果表明,MnvWD-Kazal基因在整个日本沼虾胚胎期表达量甚微,在成体组织如肠、卵巢、心脏、胸神经节等都有一定表达量,从卵巢的增殖期开始MnvWD-Kazal基因的表达量稳步上升,至次级卵黄发生期达到最高值,提示该基因参与了日本沼虾卵细胞的成熟过程。
     综上所述,本研究首次克隆得到5个与日本沼虾卵子发生和胚胎发育相关基因的cDNA全长,并采用RT-QPCR技术研究了它们在日本沼虾卵巢和胚胎发育过程的时空表达模式,分析了它们在发育过程中的生物学功能,为日本沼虾的发育生物学提供了有价值的资料。由MnMago和MnTsu等蛋白组成的外显子拼接复合体可以识别转录时mRNA中提前出现的无义终止密码子,在转录的水平上调节细胞增殖活动,而MnUbc9在蛋白质水平上调节细胞的有丝分裂和减数分裂活动。虽然迄今尚没有足够的证据表明MnvWD-Kazal与日本沼虾胚胎发育直接相关,但与其它4个基因相同的是在卵细胞形成和增殖过程中具有重要作用。通过对这几个基因分子特征和RT-QPCR表达的研究,为日本沼虾等十足类的卵子发生、胚胎发育等生殖生理过程提供更为全面的参考资料。尤其是新基因MnvWD-Kazal的发现为甲壳类卵细胞成熟的调节机理研究提供了新的契机。综上所述,本研究为日本沼虾胚胎发育和卵子发生分子调控机制提供了线索,结果可为日本沼虾苗种种质改良提供必备的基础。同时,本研究为虾蟹类的发育机理研究提供有益的借鉴,并进一步丰富了虾蟹类的发育生物学资料。
Sexual gametes combine to form fertilized eggs, which develop to adult through embryonic development. Oocytes play an important role in the process because they carry the genetic information and nutritious material. Oocytes are formed in the ovary. So ovary and embryonic development is the core of developmental biology research. Because large-scale shrimps and crabs have high economic and nutritional value, their developmental research has naturally been concerned by many scientists. However, researchers tend to focus on the morphology and physiology in recent years, and the molecular mechanisms on development has been little studied. In this study, five genes related to the development of oogenesis and embryos were cloned from M. nipponense. At the same time their molecular characterization and expression patterning in the process of ovary and embryo development were analyzed. We further discussed their role on oogenesis and embryonic development of M. nipponense. This study provides a useful reference for molecular mechanism of development of M. nipponense as well as crustaceans. This study includes the four parts as follows:
     1. Molecular cloning, characterization and expression of Mago nashi and Tsunagi in M. nipponense
     Mago nashi and Tsunagi genes, named as MnMago and MnTsu, were cloned from M. nipponense according to homogenous cloning and the established EST information using rapid amplification of cDNA ends (RACE). Two transcripts of Mago nashi were isolated from M. nipponense with the size of 746bp and 683bp respectively. It was found that the same open reading frame (ORF) and 3'-untranslated region (3'-UTR) but different 5'-UTR in the two cDNA sequences encoding 147 amino acids. The ORF of MnTsu cDNA was 486bp, encoding a protein of 161 amino acids. The Mago domain and RNA recognition motif (RRM) were detected in MnMago and MnTsu proteins respectively based on the motif scan at http://hits.isb-sib.ch/cgi-bin/motifscan and Blast p at http://blast.ncbi.nlm.nih.gov/Blast.cgi. Three-dimensional structure prediction of interaction between MnMago and MnTsu proteins showed that they apparently constituted a Mago-Tsunagi complex, which indicated that they may play a biological role in M. nipponense as in other model organisms. Real-time quantitative PCR (RT-QPCR) analyses revealed that the expression patterns of MnMago and MnTsu gene in the process of embryo and ovary development were consistent completely. In the early phase of embryo, their expression level kept steady, and increased substantially in the later, which suggested that MnMago and MnTsu were related to morphogenesis of later embryonic development. In the development of ovary, the expression level of MnMago and MnTsu gradually increased from the perinucleolus (PN) stage to the yolk granule (YG), and then decreased suddenly in the maturation stage (MA). However, the expression patterns of two genes in mature tissues were a little uniform. The maximum level of MnMago and MnTsu occurred in muscle tissue which indicated that the muscle cell may be in active proliferation. Interestingly, their expression levels in testis were both very low. These suggested that MnMago and MnTsu not only played critical roles in oocyte maturation but also performed multiple biological functions in oriental river prawn.
     2. Cloning, characterization and expression of gustavus in the development of M. nipponense
     The protein of the gustavus (GUS) gene contains a SPRY domain and a SOCS box. The SPRY domain is thought to mediate Ca2+release from the sarcoplasmic reticulum, and the SOCS box belongs to the suppressor of cytokines signaling family (SOCS) and functions on proteasomal degradation. In this study, the GUS gene was firstly indentified and termed as MnGus in oriental river prawn M. nipponense. Bioinformatics analyses showed that this gene encodes a protein of 261 amino acids with a predicted molecular mass of 29.70 kDa. Phylogenetic analysis showed that MnGus protein was clustered into the clade of SSB-1 in other species. Real-time quantitative PCR (RT-QPCR) analyses revealed that the expression level varied significantly in the process of embryo and ovary development and changed substantially in other tissues. In embryos, the expression level of MnGus was slightly higher in the cleavage stage (CS) than in the blastula stage (BS). Following an increase in the blastula stage (BS), the MnGus reached a maximum in the zoea stage (ZS). In the ovary, the minimum expression of MnGus occurred in the perinucleolus (PN) stage, while the maximum was in the oil globule (OG) stage. The MnGus gradually decreased from the yolk granule (YG) stage to the paracmasis (PM) stage. The expression level of MnGus in muscles was much higher than that in other tissues in a mature prawn. The differential expressions of MnGus in the embryo, ovary and other tissues suggest that the gustavus gene performs multiple biological functions in oriental river prawn.
     3. cDNA cloning and expression of Ubc9 in the developing embryo and ovary of M. nipponense
     Ubiquitin-mediated protein degradation pathway is the main regulator of protein function and the terminator. In the same way the small ubiquitin-like modifier (SUMO) pathway in eukaryotes is an essential biological process involving cellular processes, development and organelle biogenesis. In a sequential enzymatic action, Ubc9 is an important conjunction enzyme in the SUMO pathway. Although the Ubc9 has been found in vertebrates, its expression in crustaceans is little known. In this study, the Ubc9 was identified in the embryo and ovary of a freshwater prawn M. nipponense for the first time and it was denoted as MnUbc9. Bioinformatics analyses showed that this gene encodes a protein of 160 amino acids with predicted molecular mass of 18.32 kDa. Real-time quantitative PCR analyses demonstrated that the expression levels varied significantly in the developing embryo and ovary. In the embryo, the expression level of MnUbc9 was higher at the cleavage stage (CS) than at the blastula stage (BS), and reached even higher levels at the protozoea stage (PS) and the zoea stage (ZS). In the ovary, the MuUbc9 expression was low at the early stage, but reached the highest at the yolk granule stage (YG), and then abruptly declined at the maturation stage (MA). The differential expressions of MnUbc9 in the embryo and ovary suggest that MnUbc9 may play an important role in embryogenesis and oogenesis of M. nipponense.
     4. Molecular cloning, characterization and expression of MnvWD-Kazal gene in M. nipponense
     A new gene, named as MnvWD-Kazal, containing the von Willebrand factor D (vWD) and Kazal-type domain was cloned from the ovary of M. nipponense. The full length of MnvWD-Kazal cDNA was 2713bp with the ORF of 2574bp encoding a protein of 857 amino acids. Bioinformatics analyses showed that there were a vWD domain at amino terminal and three Kazal domains at carboxyl terminal of MnvWD-Kazal protein. Real-time quantitative PCR (RT-QPCR) analysis revealed that the expression level of MnvWD-Kazal was very low in the process of embryo, but a regular expression in ovary development. The level of MnvWD-Kazal gene increased gradually from perinucleolus stage to yolk granule stage, and decreased suddenly at maturation. This suggested that MnvWD-Kazal may participate in the process of oocyte maturation of M. nipponense. RT-QPCR analysis of mature tissues showed that the high level MnvWD-Kazal transcript occurred in these tissues, such as intestines, thoracicganglia, yolk granule and heart, especially in intestines. The high expression level in intestines may be related to Kazal domain because the proteinase inhibitor with Kazal domain can restrain prematurity of insulin-activated enzyme zymogen.
     This is the first report that five genes related to oogenesis and embryo development were cloned from M. nipponense, and their spatio-temporal expression patterns were studied in the development of embryo and ovary by RT-QPCR technique. The two genes of MnGus and MnUbc9 participated in the whole process of embryonic development, while the other two genes of MnMago and MnTsu were extremely relevant to late morphogenesis of embryo. The five genes were all involved in formation and proliferation of oocytes. However the new gene, MnvWD-Kazal, was little to do with the embryo development of M. nipponense. In conclusion, this research not only provided clues to molecular mechanism of oogenesis and a theoretical basis for seedling quality improvement from M. nipponense, but also enriched the developmental biological resources of crustacean.
引文
蔡雪峰,罗琳,李权,李淑珍.2000.日本沼虾血细胞的初步研究.水生生物学报,24(3):289-292.
    蔡生力.中国对虾大额腺的结构和生理功能及卵巢发育的内分泌调控.青岛海洋大学博士学位论文.2001.
    蔡生力,戴习林,臧维玲,徐桂荣.2002.南美白对虾的性腺发育、交配、产卵和受精.中国水产科学,9(4):335-339.
    柴春利.家蚕胚胎发育相关基因的克隆、表达及功能研究.西南大学博士论文.2007.
    陈孝煊,吴志新,张志华.1997.红螯螯虾胚胎发育的初步研究.华中农业大学学报,25(增刊):32-35.
    邓道贵,高建国.2002.粗糙沼虾卵巢发育的组织学.动物学杂志,37(5):59-61.
    董双林,堵南山,赖伟.1994.PH值和Ca2+浓度对日本沼虾生长和能量收支的影响.水产学报,18(2):118-123.
    堵南山.甲壳动物学(下册).北京:科学出版社,1993.
    高祥刚,刘红,徐佳念,蔡生力.2006.日本沼虾卵黄蛋白原合成部位的初步研究.生物技术通报(增刊),438-444.
    顾志敏,何林岗.1997.中华绒鳌蟹卵巢发育周期的组织学细胞学观察.海洋与湖沼,28(2):138-145.
    桂建芳,易梅生.发育生物学.北京,科学出版社,2002.
    郭晓鸣,朱松泉.1997.克氏原螯虾幼体发育的初步研究.动物学报,43(4):372-381.
    韩希福,王军萍,张建晖.1995.甜菜碱和二甲亚砜对日本沼虾生长的影响.河北大学学报(自然科学版),15(2):67-70.
    何绪刚,张训蒲,龚世园,刘军,胡艾国,胡秋元,王红辉,陶仁勇.2002.武湖日本沼虾卵巢发育研究.华中农业大学学报,21(2):148-151.
    姜永华,颜素芬.2004.南美白对虾卵子发生的组织学.动物学杂志,39(4):59-62.
    康现江,孙天才,王所安.1996.日本沼虾受精卵的离体培养及其胚胎发育的初步观察.河北大学学报(自然科学版),4:41-45.
    李红,赵云龙,王群,罗文,堵南山.2003.日本沼虾胚胎发育不同阶段主要生化成分的变化.水产学报,27(6):545-549.
    李文艳,康现江,郭明申,穆淑梅,工燕.2008.中华绒螯蟹卵子发生中卵母细胞表面和滤泡细胞的超微结构.河北大学学报(自然科学版),28(3):295-299.
    吕建林,龚世园,李浪平.2006.克氏原螯虾胚胎发育的初步研究.长江大学学报(自然科学版),3(4):179-182.
    廖家遗,秦照萍.1999.雄性日本沼虾个体发育的研究.动物学杂志,34(6):21-24.
    盂凡丽,赵云龙,陈立侨,顾志敏,徐谷星,刘启文.2001.红螯螯虾胚胎发育的研究Ⅱ.消化系统的发生.动物学研究,22(5):383-387.
    曲淑惠,等.动物胚胎学.北京:高等教育出版社,1989.
    邱高峰,堵南山,赖伟.1997.热休克诱导日本沼虾四倍体的初步研究.水产学报,21(1):13-17.
    邱高峰,堵南山,赖伟.1994.日本沼虾染色体及其核型的研究.海洋与湖沼,25(5):493-498.
    邱高峰,堵南山,赖伟.1995.日本沼虾雄性生殖系统的研究-雄性生殖系统的结构与发育.上海水产大学学报,4(2):107-111.
    孙世杰,范成功,李凤超,穆淑梅,汤海泉,张华,康现江.2007.中华锯齿米虾形态发育的初步研究.河北渔业,168:22-25.
    ■.萨姆布鲁克,D.W拉塞尔著.黄培堂等译.分子克隆实验指南第二版,科学出版社2002.
    任素莲,王德秀,王如才.1999.太平洋牡蛎卵母细胞发育及卵黄发生的超微结构.中国水产科学,6(4):4-6.
    施正峰,梅志平,罗其智,张饮江,宋卫红,沈莹熙,龚荣顺.1994.日本沼虾能量收支和利用效率的初步研究.水产学报,18(3):191-197.
    工诚,杨利国,工锋.2000.卵泡抑素的生物学作用及其机制的研究.动物医学进展,4:9-12.
    王维娜,工安利,魏渲辉,郭明申.1997.日本沼虾肝胰腺细胞超微结构的研究.动物学报,43(增刊):39-44.
    王艺磊,张子平.2003.日本沼虾精巢和卵巢全长cDNA文库的构建.动物学杂 志,38(2):9-13.
    席贻龙,谈奇坤.1997.日本沼虾输精管的结构及其在精荚形成中的作用.水生生物学报,21(2):163-168.
    燕飞,李彦芹,康现江,张春光,刘龙.2001.日本沼虾卵巢发育特征及其蛋白质的变化.河北大学学报,21(4):411-414.
    杨频,张浩,陈立侨,叶金云,禹娜,顾志敏,宋大祥.2007.利用COI基因序列分析长江和澜沧江水系日本沼虾群体的遗传结构.动物学研究,28(2):113-118.
    杨万喜,赖伟,堵南山.1997.日本沼虾行为研究.动物学杂志,32(3):51-54.
    尤永隆,林丹军,苏敏.2004.黑脊倒刺卵子发生中生殖质的产生.动物学报,50:231-239.
    张建森,孙小异.1965.关于青虾繁殖和发育初步研究.动物学杂志,7(4):181-185.
    张占会,张其中.2006.日本沼虾Hsp70基因cDNA的克隆与序列分析.生态科学,25(5):440-444.
    赵晓勤,倪娟,陈立侨,顾志敏,周志明.2006.日本沼虾4种群的形态差异分析.中国水产科学,13(2):224-229.
    赵艳民.日本沼虾(Macrobrachium nipponense)胚胎发育研究.华东师范大学硕士学位论文,2005.
    赵艳民,赵云龙,王群,姚俊杰,安传光,段晓伟.2006.日本沼虾胚胎发育时期消化酶活力和氨基酸含量.华东师范大学(自然科学版),2:75-81.
    赵云龙,堵南山,赖伟.日本沼虾雌性生殖系统超微结构的研究.中国动物学会成立60周年纪念论文集.北京,中国科学技术出版社,1994,5-11.
    朱冬发,王春琳,余红卫.2005.三疣梭子蟹(Portunus trituberculatus)卵子发生、激活与早期卵裂的细胞学观察.海洋与湖沼,36(5):423-429.
    Abdu U, Yehezkel G, Sagi A.2000. Oocyte development and polypeptide dynamics during ovarian maturation in the red claw crayfish Cherax quadricarinatus. Invertebr. Repro. Dev.37,75-83.
    Arnold K, Bordoli L, Kopp J, Schwede T.2006. The SWISS-MODEL Workspace:A web-based environment for protein structure homology modelling. Bioinformatics.22,195-201.
    Artus J, Babinet C, Cohen-Tannoudji M.2006. The cell cycle of early mammalian embryos lessons from genetic mouse models. Cell Cycle.5,499-502.
    Asaoka-Taguchi M, Yamada M, Nakamura A, Hanyu K, Kobayashi S.1999. Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nat Cell Biol.1(7),431-437.
    Ashley C C, Mulligan J P, Lea T J.1991. Ca2+and activation mechanisms in skeletal muscle. Q. Rev. Biophys.24,1-73.
    Baker M E.1988. Invertebrate vitellogenin is homologous to human von Willebrand factor. Biochemical Journal.256,1059-1061.
    Bezier A, Herbiniere J, Serbielle C, Lesobre J, Wincker P, Huguet E, Drezen J M. 2008. Bracovirus gene products are highly divergent from insect proteins. Arch. Insect Biochem. Physiol.67 (4),172-187.
    Blencowe B J, Issner R, Nickerson J A, Sharp P A.1998. A coactivator of pre-mRNA splicing. Genes Dev.12,996-1009.
    Bocock J P, EdgeH C J, Marr H S, et al.2003. Human proteoglycan testican-1 inhibits the lysosomal cysteine protease cathepsin L. Eur. J. Biochem.270, 4008-4015
    Boggio R, Chiocca S.2005. Gaml and the sumo pathway. Cell Cycle.4,533-535.
    Boitani C, Tefanini M, Fragale A.1995. Activin stimulates sertoli cell proliferation in a defined period of rat testis development. Endocrinology.136,5438-5444.
    Bono F, Ebert J, Unberholzner L, Guttler T, Izaurralde E, Conti E.2004. Moleculor insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep.5(3),304-310.
    Bonthron D T, Handin R I, Kaufman R J, Wasley L C, Orr E C, Mitsock L M, Ewenstein B, Loscalzo J, Ginsburg D, Orkin S H.1986. Structure of pre-pro-von Willebrand factor and its expression in heterologous cells. Nature (London).324,270-273.
    Boswell R E, Prout M E, Steiehen J C.1991. Mutations in a newly identified Drosophila melanogasler gene, mago nashi, disrupt germ cell formation and result in the formation of mirror-image symmetrical double abdomen embryos. Development.113(1),373-384.
    Bounoure L.1934. Recherches sur la lignee germinale chez la Grenouille rousse aux premiers stades du developpment. Ann.Sci. Natl, 10e Ser.17,67-48 (in French).
    Breitkreutz B J, Stark C, Tyers M.2003. ″Osprey:A Network Visualization System.″ Genome Biology.4(3), R22.
    Cabrera A R, Donohue K V, Khalil S M S, Sonenshine D E, Roe R M.2009. Characterization of vitellin protein in the twospotted spider mite, Tetranychus urticae (Acari:Tetranychidae). Journal of Insect Physiology.55,655-661.
    Calado R, Dinis M T.2007. Minimization of precocious sexual phase change during culture of juvenile ornamental shrimps Lysmata seticaudata (Decapoda: Hippolytidae). Aquaculture.269,299-305.
    Celia C, Philip S, Knight G.1998. Modulatory action of activin A and follistatin on the developmental competence of in vitro matured bovine oocytes. Biol Reprod, 58,558-565.
    Chu S L, Weng C F, Hsiao C D, Hwang P P, Chen Y C, Ho J M, Lee S J.2006. Profile analysis of expressed sequence tags derived from the ovary of tilapia, Oreochromis mossambicus. Aquaculture.251,537-548.
    Cole C N.2000. mRNA export:the long and winding road. Nat. Cell Biol.2, E55-E58.
    Coux O, Tanaka K, Goldberg A L.1996. Structure and functions of the 20S and 26S proteasomes. Annu. Biochem.65,801-847.
    Culbertson M R.1999. RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet.15,74-80.
    DeSalle L M, Pagano M.2001. Regulation of the Gl to S transition by the ubiquitin pathway. FEBS Lett.490,179-189.
    Desterro J M, Thomson J, Hay R T.1997. Ubc9 conjugates SUMO but not ubiquitin. FEBS Lett.417,297-300.
    Eddy E M.1975. Germ plasm and the differentiation of the germ cell line. Int. Rev. Cytol.43,229-280.
    Epps J L, Tanda S.1998. The Drosophila semushi mutation blocks nuclear import of bicoid during embryogenesis. Curr. Biol.8,1277-1280.
    Finn R N.2007. Vertebrate Yolk Complexes and the Functional Implications of Phosvitins and Other Subdomains in Vitellogenins. Biology of reproduction 76, 926-935.
    Fribourg S, Gatfield D, Izaurralde E, Conti E.2003. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat. Struct. Biol.10,433-439.
    Fu H T, Gong Y S, Wu Y, Xu P, Wu C J.2004. Artificial interspecific hybridization between Macrobrachium species. Aquaculture.232,215-223.
    Gandhi T K, Zhong J, Mathivanan S, Karthick L, Chandrika K N, Mohan S S, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K, Shen B, Deshpande N, Nayak R, Sarker M, Boeke J D, Parmigiani G, Schultz J, Bader J S. Pandey A.2006. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat. Genet.38 (3), 285-293.
    Gerhard D S, Wagner L, Feingold E A, Shenmen C M, Grouse L H.2004.The status, quality, and expansion of the NIH full-length cDNA project:the Mammalian Gene Collection (MGC). Genome Res.14 (10B).2121-2127.
    Gill G.2004. SUMO and ubiquitin in the nucleus:different functions, similar mechanisms? Genes Dev.18,2046-2059.
    Gill G.2005. Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev. 15,536-541.
    Gong L, Kamitani T, Fujise K, Caskey L S, Yeh E T.1997. Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. J. Biol. Chem.272, 28198-28201.
    Gonzalez C I, Bhattacharya A, Wang W, Peltz S W.2001. Nonsensemediated mRNA decay in Saccharomyces cerevisiae. Gene.274,15-25.
    Gorlich D, Kutay U.1999. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell. Dev. Biol.15,607-660.
    Guex N, Peitsch M C.1997. SWISS-MODEL and the Swiss-PdbViewer:An environment for comparative protein modelling. Electrophoresis.18, 2714-2723.
    Gyorke S, Paladc P.1992. Calciuminduced calcium release in crayfish skeletal muscle. J. Physiol.457,195-210.
    Hamaguchi S.1982. A light-and electron-microscopic study on the migration of primordial germ cells in the teleost, Oryzias latipes. Cell Tissue Res.227, 139-151.
    Hamaguchi S.1985. Changes in the morphology of the germinal dense bodies in primordial germ cells of the teleost, Oryzias latipes. Cell Tissue Res.240, 240-569.
    Haren L, Normand C, Polard P, Alazard R, Chandler M.2000. IS911 Transposition is Regulated by Protein-Protein Interactions via a Leucine Zipper Motif. J. Mol. Biol.296,757-768.
    Harris A N, Macdonald P M.2001. Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128(14),2823-2832.
    Hashiyama K, Shigenob S, Kobayashi S.2009. Expression of genes involved in sumoylation in the Drosophila germline. Gene Expr Patterns.9,50-53.
    Haspel J, Sunderman F W, Jr., Hofper S M, Henjum D C, Brandt-Rauf P W, Weinstein I B, Nishimura S, Yamaizumi Z, Pincus M R.1993. A nickel-binding serpin, pNiXa, induces maturation of Xenopus oocytes and shows synergism with oncogenic ras-p21 protein. Research Communications in Chemical Pathology and Pharmacology.79,131-140.
    Hecker C M, Rabiller M, Haglund K, Bayer P, Dikic I.2006. Specification of SUMO1-and SUMO2-interacting Motifs. J. Biol. Chem.281,16117-16127.
    Hentze M W, Kulozik A E.1999. A perfect message:RNA surveillance and nonsense-mediated decay. Cell.96,307-310.
    Hershko A, Heller H, Elias S, Ciechanover A.1983. Components of ubiquitin-protein ligase system:resolution, affinity purification and role in protein breakdown. J. Biol. Chem.258,8206-8214.
    Hilleren P, Parker R.1999. mRNA surveillance in eukaryotes:Kinetic proofreading of proper translation termination as assessed by mRNP domain organization?. Cambridge University Press.5,711-719.
    Hochstrasser M, Ellison M J, Chau V, Varshavsky A.1991. The short-lived MAT alpha2 transcriptional regulator is ubiquitinated in vivo. Proc. Natl. Acad. Sci. USA,88,4606-4610.
    Hochstrasser M.2002. Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol.2, E153-157.
    Hubner G, Hu Q J, Smola H.1996. Strong induction of activin expression after injury suggests an important role of activin in wound repair. Dev Biol.173, 490-498.
    Hunt L T, Barker W C.1987. Von Willebrand factor shares a distinctive cysteine-rich domain with thrombospondin and procollagen. Biochem. Biophys. Res. Commun.144,876-882.
    Hurst H C.1995. Transcription factors 1:bZIP proteins. Protein Profile,2,101-168.
    Irving J A, Steenbakkers P J, Lesk A M, et al.2002. Serpins in prokaryotes. Mol. Biol. Evol.19,1881-1890.
    Jalkanen J, Kotimaki M, Huhtaniemi I, Poutanen M.2006. Novel epididymal protease inhibitors with Kazal or WAP family domain. Biochem. Biophys. Res. Commun.349,245-254.
    Jaswan S, Greffp A.1998. Immune histochemical distribution of follistatin in dominant and sub-ordinate folliceles and corpus luteum of cattle. Biol Reprod. 59,561-570.
    Jentsch S, Pyrowolakis G.2000. Ubiquitin and its kin:how close are the family ties? Trends Cell Biol.10,335-342.
    Johnson E S, Blobel G.1997. Ubc9 is the conjugating enzyme for the ubiquitin-like protein Smtp. J. Biol. Chem.272,26799-26802.
    Johnson E S.2004. Protein modification by SUMO. Annu Rev Biochem.73, 355-382.
    Jones J R, Macdonald P M.2007. Oskar controls morphology of polar granules and nuclear bodies in Drosophila. Development.134(2),233-236.
    Jones D, Crowe E, Stevens T A, Candido E P.2001. Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol.3, research 0002.1-0002.15.
    Jongens T A, Hay B, Jan L Y, Jan Y N.1992. The germ cell-less gene product:a posteriorly localized component necessary for germ cell development in Drosophila. Cell.70,569-584.
    Jorgensen P, Steen J A, Steen H, Kirschner M W.2009. The mechanism and pattern of yolk consumption provide insight into embryonic nutrition in Xenopus. Development.136,1539-1548
    Kamimura M, Kotani M, Yamagata K.1980. The migration of presumptive primordial germ cells through the endodermal cell mass in Xenopus laevis:a light and electron microscopic study. J Embryol Exp Morphol.59,1-17.
    Kamura T, Sato S, Haque D, Liu L, Kaelin W G, Jr. Conaway R C, Conaway J W. 1998. The elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev.12,3872-3881.
    Kanost M R.1999. Serine proteinase inhibitors in arthropod immunity. Dev. Comp. Immunol.23,291-301.
    Kataoka N, Diem M D, Kim V N, Yong J, Dreyfuss G.2001. Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. Eur. Mol. Biol. Org. J.20, 6424-6433.
    Kataoka N, Yong J, Kim V N, Velazquez F, Perkinson R A, Wang F, Dreyfuss G. 2000. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol. Cell.6,673-682.
    Kawakami Y, Goto S G, Ito K, Numata H.2009. Suppression of ovarian development and vitellogenin gene expression in the adult diapause of the two-spotted spider mite Tetranychus urticae. Journal of Insect Physiology.55, 70-77.
    Kawano T, Kataoka N, Dreyfuss G, Sakamoto H.2004. Ce-Y14 and MAG-1, components of the exon-exon junetion complex, are required for embryogenesis and germline sexual switching in Caenorhabditis elegans. Mech Dev.121(1),27-35.
    Kim V N, Yong J, Kataoka N, Abel L, Diem M D, Dreyfuss G.2001. The Y14 protein communicates to the cytoplasm the position of exon-exon junctions. Eur. Mol. Biol. Org. J.20,2062-2068.
    Kobayashi S, Yamada M, Asaoka M, Kitamura T.1996. Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature. 380,708-711.
    Komiya T, Itoh K, Ikenishi K, Furusawa M.1994. Isolation and characterization of a novel gene of the DEAD box protein family which is specifically expressed in germ cells of Xenopus laevis. Dev Biol.162(2),354-363.
    Kress T L, Yoon Y J, Mowry K L.2004. Nuclear RNP complex assembly initiates cytoplasmic RNA localization. J. Cell Biol.165,203-211.
    Lall S, Patel N H.2001. Conservation and divergence in molecular mechanism of axis formation. Annual review of genetics.35(1),407-437.
    Laoong-U-Thai Y, Zhao B P, Phongdara A, Ako H, Yang J Z.2009. Identifications of SUMO-1 cDNA and Its Expression Patterns in Pacific White Shrimp Litopeanaeus vannamei. Internat. J. Biol. Sci.5,205-214.
    Laskowski Jr M, Kato I.1980. Protein inhibitors of proteinases. Annu. Rev. Biochem.49,593-626.
    Lau C K, Diem M D, Dreyfuss G, Van Duyne G D.2003. Structure of the Y14-Magoh core of the exon junction complex. Curr Biol.13(11),933-941.
    Le Hir H, Gatfield D, Braun I.C, Forler D, Izaurralde E.2001. The protein Mago provides a link between splicing and mRNA localization. Eur. Mol. Biol. Org. Rep.2,1119-1124.
    Le Hir H, Gatfield D, Izaurralde E, Moore M J.2001. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. Eur. Mol. Biol. Org. J.20,4987-4997.
    Le Hir H, Izaurralde E, Maquat L E, Moore M J.2000. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. Eur. Mol. Biol. Org. J.19,6860-6869.
    Lee F Y, Chang C F.1997. The concentrations of vitellogenin (vitellin) and protein in hemolymph, ovary and hepatopancreas in different ovarian stages of the freshwater prawn, Macrobrachium rosenbergii, Comp. Biochem. Physiol. A. 117(4),433-439.
    Lee M C, Miller E A, Goldberg J, Orci L, Schekman R.2004. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol.20,87-123.
    Lehmann R, Ephrussi A.1994. Germ plasm formation and germ cell determination in Drosophila. Ciba Found Symp.182,282-96.
    Li J, Zhou Y, Zhen Y, Xu Y, Cheng P, Wang H, Deng F.2009. Cloning and characterization of the SSB-1 and SSB-4 genes expressed in zebrafish gonads. Biochem. Genet.47,179-190.
    Li P, Zha J, Zhang Z H, Huang H, Sun H Y, Song D X, Zhou K Y.2009. Molecular cloning, mRNA expression, and characterization of HSP90 gene from Chinese mitten crab Eriocheir japonica sinensis. Comp. Biochem. Physiol. B.153, 229-235.
    Li R, Philips D M, Mather J P.1995. Activin promotes ovarian follicle development in vitro. Endocrinology.136,849-856.
    Li Y, Ma W, Dai J, Feng C, Yang F, Ohira T, Nagasawa H, Yang W J.2007. Inhibition of a novel sperm gelatinase in prawn sperm by the male reproduction-related Kazal-type peptidase inhibitor. Molecular Reproduction and Development.1-11.
    Littlewood T D, Evan G I.1995. Transcription factors 2:helix-loop-helix. Protein Profile.2,621-702.
    Luo M J, Reed R.1999. Splicing is required for rapid and efficient mRNA export in metazoans. Proc. Natl Acad. Sci. USA.96,14937-14942.
    Magert H J, Standker L, Kreutzmann P, Zucht H D, Reinecke M, Sommerhoff C P, Fritz H, Forssmann W G.1999. LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J. Biol. Chem.274,21499-21502.
    Mahowald A P.1992. Germ plasm revisited and illuminated. Science.255, 1216-1217.
    Maiti R, Van Domselaar G. H, Zhang H, Wishart D S.2004. ″SuperPose:a simple server for sophisticated structural superposition″ Nucleic Acids Res.32 (Web Server issue), W590-W594.
    Manseau L J, Schüpbach T.1989. Cappuccino and spire:two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev.3(9),1437-1452.
    Markussen F H, Breitwieser W, Ephrussi A.1997. Efficient translation and phosphorylation of oskar require Oskar protein and the RNA helicase Vasa. Cold Spring Harb. Symp. Quant. Biol.62,13-17.
    Martei G, Richard-Parpaillon L, Kubiak J Z.2009. Role of oocyte quality in meiotic maturation and embryonic development. Reproductive Biology 9(3),203-224.
    Matsumoto K, Wassarman K M, Wolffe A P.1998. Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. Eur. Mol. Biol. Org. J.17,2107-2121.
    Matzuk M, Lu N, Vogel H.1995. Multiple defects and perinatal death in mice deficient in follistatin. Nature.374,360-363.
    Mayeda A, Badolato J, Kobayashi R, Zhang M Q, Gardiner E M, Krainer A R.1999. Purification and characterization of human RNPS1:a general activator of pre-mRNA splicing. Eur. Mol. Biol. Org. J.18,4560-4570.
    McGarvey T, Rosonina E, McCracken S, Li Q, Arnaout R, Mientjes E, Nickerson J A, Awrey D, Greenblatt J, Grosveld G, Blencowe B J.2000. The acute myeloid leukemia-associated protein, DEK, forms a splicing-dependent interaction with exon-product complexes. J. Cell Biol.150,309-320.
    McGrath ME.1999. The lysosomal cysteine proteases. Annu. Rev. Biophys. Biomol. Struct.28,181-204.
    Meeratana P, Sobhon P.2007. Classification of differentiating oocytes during ovarian cycle in the giant freshwater prawn, Macrobrachium rosenbergii de man. Aquaculture.270,249-258.
    Meissner G.1994. Ryanodine receptor/Ca2+release channels and their regulation by endogenous effectors. Ann. Rev. Physiol.56,485-508.
    Micklem D R, Dasgupta R, Elliott H, Gergely F, Davidson C, Brand A, Gonzalez-Reyes A, St Johnston D.1997. The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Current Biology.7,468-478.
    Mills J C, Andersson N, Hong C V, Stappenbeck T S, Gordon J I.2002. Molecular characterization of mouse gastric epithelial progenitor cells. PNAS, USA. 99(23),14819-14824.
    Mohr S E, Dillon S T, Boswell R E. 2001. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Gene Dev.15,2886-2899.
    Mosquera L, Forristall C, Zhou Y, King M L.1993. A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain. Development.117(1),377-386.
    Müller S, Hoege C, Pyrowolakis G, Jentsch S.2001. SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol.2,202-210.
    Nakahata S, Katsu Y, Mita K, Inoue K, Nagahama Y, Yamashita M.2001. Biochemical identification of Xenopus Pumilio as a sequence-specific cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog, Xcat-2, and a cytoplasmic polyadenylation element-binding protein. J Biol. Chem.276(24),20945-20953.
    Nakamura A, Amikura R, Mukai M, Kobayashi S, Lasko P E.1996. Requirement for a noncoding RNA in Drosophila polar granules for germ cell establisment. Science.274(5295),2075-2079.
    Newmark P A, Mohr S E, Gong L, Boswell RE.1997. Mago nashi mediates the posterior folliele cell-to-ooeyte signal to organize axis formation in Drosophila. Development.124(16),3197-3207.
    Nirmala X, Kodrik D, Zurovec M, Sehnal F.2001. Insect silk contains both a Kunitz-type and a unique Kazal-type proteinase inhibitor. Eur J Biochem 268, 2064-2073.
    Nowak M, Hammerschmidt M.2006. Ubc9 Regulates mitosis and cell survival during zebrafish development. Mol. Biol. Cell.17,5324-5336.
    Oda S, Nishimatsu S I, Murrakami K.1995. Molecular cloning and functional analysis of a new activin b subunit:a dorsal mesodernr inducing activity in Xenopus. Biochem. Biophys. Res. Commun.210,581-588.
    Opresko L K, Wiley H S.1987. Receptor-mediated endocytosis in Xenopus oocytes I. Characterization of the vitellogenin receptor system. J. Biol. Chem.262, 4109-4115.
    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R,Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Sugano S.2004. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat. Genet.36, 40-45.
    Palacios I M, Gatfield D, St Johnston D, Izaurralde E.2004. An eIFAⅢ-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature.427(6976),753-757.
    Pan X, Li H, Zhang P, Jin B, Man J, Tian L, Su G, Zhao J, Li W, Liu H, Gong W, Zhou T, Zhang X.2006. Ubc9 interacts with SOX4 and represses its transcriptional activity. Biochem. Biophys. Res. Commun.344,727-734.
    Parma D H, Bennett Jr. P E, Boswell E.2007. Mago Nashi and Tsunagi/Y14, respectively, regulate Drosophila germline stem cell differentiation and oocyte specification. Developmental Biology.308,507-519.
    Pelegri F, Knaut H, Maischein H M, Schulte-Merker S, Nusslein-Volhard C.1999. A mutation in the zebrafish maternal-effect gene nebel affects furrow formation and vasa RNA localization. Curr. Biol.9,1431-1440.
    Perrimon N, Engstrom L, Mahowald AP.1985. A pupal lethal mutation with a paternally influenced maternal effect on embryonic development in Drosophila melanogaster. Dev Biol.110(2),480-491.
    Pichler A, Melchior F.2002. Ubiquitin-related modifier SUMO1 and nucleocytolplasmic transport. Traffic.3,381-387.
    Pickart C M.2001. Mechanisms underlying ubiquitination. Annu. Rev. Biochem.70, 503-533.
    Ponting C, Schultz J, Bor P.1997. SPRY domains in ryanodine receptors (Ca(2+)-release channels). Trends Biochem. Sci.22,193-194.
    Pozzolia O, Gilardellia C N, Sordinob P, Donisellia S, Lamiaa C L, Cotelli F.2004. Identification and expression pattern of mago nashi during zebrafish development. Gene Expression Patterns.5,265-272.
    Primavera J H.1985. A review of maturation and reproduction in closed thelycum penacids. Proc. First Inter. Conf. Culture Penaeid Prawns. Iloilo City, Philippines.
    Qiu G F, Yaman K.2005. Three forms of cyclin B transcripts in the ovary of the kuruma prawn Marsupenaeus japonicus:their molecular characterizations and expression profiles during oogenesis. Comp. Biochem. Physiol. B 141, 186-195.
    Raz E.2003. Primordial germ-cell development:the zebrafish perspective. Nature Rev. Genet.4,690-700.
    Reiss D, Josse T, Anxolabehere D, Ronsseray S.2004. Aubergine mutations in Drosophila melanogaster impair P cytotype determination by telomeric P elements inserted in heterochromatin. Mol. Genet. Genomics.272(3),336-343.
    Sadler J E, Shelton-Inloes B B, Sorace J M, Harlan J M, Titani K, Davie E W.1985. Cloning and characterization of two cDNAs coding for human von Willebrand factor. Proc. Nati. Acad. Sci. USA.82,6394-6398.
    Saffman E E, Lasko P.1999. Germline development in vertebrates and invertebrates. Cell Mol. Life Sci.55,1141-1163.
    Saitou N, Nei M.1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol.4(4),406-25.
    Sakaguchi K, Koshiyama A, Iwabata K.2007. Meiosis and small ubiquitin-related modifier (SUMO)-conjugating enzyme, Ubc9. FEBS Journal.274,3519-3531.
    Sadler J E.1998. Biochemistry and genetics of von willebrand factor. Annu. Rev. Biochem.67,395-424.
    Santos A C, Lehmann R.2004. Germ cell specification and migration in Drosophila and beyond. Curr. Biol.14(14), R578-R589.
    Schisa J A, Pitt J N, Priess J R.2001. Analysis of RNA associated with P granules in germ cells of C. elegans adults. Development.128,1287-1298.
    Schmidt D, Muller S.2003. PIAS/SUMO:new partners in transcriptional regulation. Cell Mol. Life Sci.60,2561-2574.
    Schupbach T, Wieschaus E.1986a. Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Rouxs Arch. Dev. Biol. 195,302-317.
    Schupbach T, Wieschaus E.1986b. Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev Biol.113(2), 443-448.
    Schwede T, Kopp J, Guex N, Peitsch M C.2003. SWISS-MODEL:an automated protein homology-modeling server. Nucleic Acids Research.31,3381-3385.
    Scok J H, Xu L, Kramarcy N R, Sealock R, Meissner G.1992. The 30 S lobster skeletal muscle Ca2+release channel (ryanodine receptor) has functional properties distinct from the mammalian channel proteins. J. Bioi. Chem.267, 15893-15901.
    Schwarz S E, Matuschewski K, Liakopoulos D, Scheffner M, Jentsch S.1998. The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc. Natl Acad. Sci. USA 95,560-564.
    Seufert W, Futcher B, Jentsch S.1995. Role of a ubiquitin-conjugating enzyme in degradation of S-and M-phase cyclins. Nature.373,78-81.
    Seydoux G, Strome S.1999. Launching the germline in Caenorhabditis elegans: Regulation of gene expression in early germ cells. Development 126, 3275-3283.
    Sellars M J, Lyons R E, Grewe P M, Vuocolo T, Leeton L, Coman G J, Degnan B M, Preston N P.2007. A PL 10 vasa-like gene in the kuruma shrimp, Marsupenaeus japonicus, expressed during development and in adult gonad. Mar. Biotechnol. 9,377-387.
    Shelton-Inloes B B, Broze G R, Jr. Miletich J P, Sadler J E.1987. Evolution of human von Willebrand factor:cDNA sequence polymorphisms, repeated domains, and relationship to von Willebrand antigen Ⅱ. Biochem. Biophys. Res. Commun.144,657-665.
    Shelton-Inloes B B, Titani K, Sadler J E.1986. cDNA sequences for human von Willebrand factor reveal five types of repeated domains and five possible protein sequence polymorphisms. Biochemistry.25,3164-3171.
    Shen B, Zhang Z, Wang Y, Wang G, Chen Y, Lin P, Wang S, Zou Z.2009. Differential expression of ubiquitin-conjugating enzyme E2r in the developing ovary and testis of penaeid shrimp Marsupenaeus japonicus. Mol. Biol. Rep. 36,1149-1157.
    Shi H, Xu R.2003. Crystal structure of the Drosophila Mago nashi-Y14 Complex. Gene Dev.17,971-976.
    Shigenobu S, Kitadate Y, Noda C, Kobayashi S.2006. Molecular characterization of embryonic gonads by gene expression profiling in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 103,13728-13733.
    Shu Y, Zhou J, Tang W, Lu K, Zhou Q, Zhang G.2009. Molecular characterization and expression pattern of Spodoptera litura (Lepidoptera:Noctuidae) vitellogenin, and its response to lead stress. J Insect Physiol.55(7),608-16.
    Spees J L, Chang S A, Mykles D L, Snyder M J, Chang E S.2003. Molt cycle-dependent molecular chaperone and polyubiquitin gene expression in lobster. Cell Stress Chaperones.8,258-264.
    Starr R, Willson T A, Viney E M, Murray L J, Rayner J R, Jenkins B J, Gonda T J, Alexander W S, Metcalf D, Nicola N A, Hilton D J.1997. A family of cytokine-inducible inhibitors of signalling. Nature.387,917-921.
    Strome S.1992. Developmental biology. The germ of the issue. Nature.358, 368-369.
    Styhler S, Nakamura A, Swan A, Suter B, Lasko P.1998. vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development 125,1569-1578.
    Styhler S, Nakamura A, Lasko P.2002. VASA localization requires the SPRY-domain and SOCS-box containing protein, GUSTAVUS. Dev. Cell.3, 865-876.
    Tanaka A S, Silva M M, Torquato R J S, Nogutic M A E, Sampaioa C A M, Fritzb H, Auerswaldb EA.1999. Functional phage display of leechderived tryptase inhibitor (LDTI):Construction of a library and selection of thrombin inhibitors. FEBS Lett.458,11-16.
    Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research,25 (24), 4876-4882.
    Titani K, Kumar S, Takio K, Ericsson L H, Wade R D, Ashida K, Walsh K A, Chonek M W, Sadler J E, Fujikawa K.1986. Amino acid sequence of human von Willebrand factor. Biochemistry.25,3171-3184.
    Tiu S H K, Hui H, Tsukimura B, Tobe S S, He J, Chan S.2009. Cloning and expression study of the lobster (Homarus americanus) vitellogenin: Conservation in gene structure among decapods. General and Comparative Endocrinology.160,36-46.
    Tomoaki N, Hiroaki Y, Akira G, Konrad B, Yasuo K.1999. A Drosophila gene encoding multiple splice variants of Kazal-type serine protease inhibitor-like proteins with potential destinations of mitochondria, cytosol and the secretory pathway. Eur J Biochem.266,282-292.
    Thomson T, Lasko P.2004. Drosophila tudor is essential for polar granule assembly and pole cell specification, but not for posterior patterning. Genesis.40 (3), 164-170.
    Trucco A, Gaspar I, Ephrussi A.2009. Assembly of endogenous oskar mRNA particles for motor-dependent transport in the Drosophila oocyte. Cell.139(5), 983-98.
    Uda K, Murata A, Nishijima J, Doi S, Tomita N, Ogawa M, Mori T.1994. Elevation of circulating monitor peptide/pancreatic secretory trypsin inhibitor-I (PSTI-61) after turpentine-induced inflammation in rats:hepatocytes produce it as an acute phase reactant. J. Surg. Res.57,563-568.
    Van der Vlerk I, Gloor H.1968. Evolution of an embryo. Genetica.39 (1):45-63.
    von Heijne G.1990. The signal peptide. J Membrane Biol.115,195-201.
    Wagner E, Lykke-Andersen J.2002. mRNA surveillance:the perfect persist. J. Cell Sci.115,3033-3038.
    Wang D, Li Z, Messing E M, Wu G.2005. The SPRY domain-containing SOCS box protein 1 (SSB-1) interacts with MET and enhances the hepatocyte growth factor-induced Erk-Elk-1-serum response element pathway. Journal of Biological Chemistry.280,16393-16401.
    Wang H C, Leu J H, Kou G H, Wang A H J, Lo C F.2007. Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev. Comp. Immunol.31,672-686.
    Wang Z, Qiu Q, Seufert W, Taguchi T, Testa J R, Whitmore S A, Callen D F, Welsh D, Shenk T, Deuel T F.1996. Molecular cloning of the cDNA and chromosome localization of the gene for human ubiquitin-conjugating enzyme 9. J. Biol. Chem.271,24811-24816.
    Watanabe T K, Fujiwara T, Kawai A, Shimizu F, Takami S, Hirano H, Okuno S, Ozaki K, Takeda S, Shimada Y, Nagata M, Takaichi A, Takahashi E, Nakamura Y, Shin S.1996. Cloning, expression, and mapping ofUBE2I, a novel gene encoding a human homologue of yeast ubiquitin-conjugating enzymes which are critical for regulating the cell cycle. Cytogenet Cell Genet. 72,86-89.
    Weissman A M.2001. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol.2,169-178.
    Williamson, A., Lehmann, R.1996. Germ cell development in Drosophila. Annu. Rev.Cell Dev. Biol.12,365-391.
    Wolke U, Weidinger G, K(?)prunner M, Raz E.2002. Multiple levels of posttranscriptional control lead to germ line-specific gene expression in the zebrafish.Curr. Biol.12(4),289-294.
    Wu P, Qi D, Chen L Q, Zhang H, Zhang X W, Qin J G, Hu S N.2009. Gene discovery from an ovary cDNA library of oriental river prawn Macrobrachium nipponense by ESTs annotation. Comp. Biochem. Physiol. D.4,111-120.
    Xing Y, Gosden R, Lasko P, Clarke H.2006. Murine homologues of the Drosophila gustavus gene are expressed in ovarian granulosa cells. Reproduction.131, 905-915.
    Yu H, King R W, Peters J M, Kirschner M W.1996. Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradation. Current Biology,6(4),455-466.
    Zenklusen D, Stutz F.2001. Nuclear export of mRNA. Fed. Eur. Biochem. Soc. Lett. 498,150-156.
    Zhang J G, Farley A, Nicholson S E, Willson T A, Zugaro L M, Simpson R J, Moritz R L, Cary D, Richardson R, Hausmann G, Kile B J, Kent S B H, Alexander W S, Metcalf D, Hilton D J, Nicola N A, Baca M.1999. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl. Acad. Sci. USA.96,2071-2076.
    Zhao X F, Colaizzo-Anas T, Nowak N J, Shows T B, Elliott R W, Aplan P D.1998. The mammalian homologue of Mago Nashi encodes a serum-inducible protein. Genomics.47,319-322.
    Zhao X F, Nowak N J, Shows T B, Aplan P D.2000. MAGOH interacts with a novel RNA-binding protein. Genomics.63,145-148.
    Zhou Y, King M L.1996. RNA transport to the vegetal cortex of Xenopus oocytes. Dev. Biol.179,173-183.
    Zhou Z. Luo M J, Straesser K, Katahira J, Hurt E, Reed R.2000. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature.407, 401-405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700