用户名: 密码: 验证码:
豫西毛堂群SHRIMP定年、大地构造属性及其对扬子地块裂解的约束
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扬子陆块北缘毛堂群记录了Rodinia裂解事件的重要地质信息,对约束扬子陆块裂解过程,研究扬子古陆的演化具有重要意义。
     经过野外地质调查,结合SHRIMP法和LA-ICP-MS法锆石U-Pb同位素测年,及岩石化学数据综合分析,获得如下主要认识:
     (1)毛堂群形成于760±10Ma,即新元古代中晚期,且其岩浆活动持续时间较长,上限可能在600Ma左右。
     (2)毛堂群形成于大陆板内裂谷环境。
     (3)毛堂群酸性火山岩系显示出壳源特点,原岩可能是上部陆壳岩石的重熔产物;其基性火山岩系显示出幔源特点,是源自大陆岩石圈之下的地幔柱,并在上升过程中与大陆岩石圈相互作用,受到了不同程度的地壳混染,可能产生于60-80km深的尖晶石-石榴子石过渡带,源区的部分熔融程度可能较高。
     (4)毛堂群火山岩锆石测年结果显示,该区域存在与扬子克拉通内部和陆缘区时代相同的830~780Ma岩浆事件记录,指示了区域内存在晋宁期基底岩系,表明毛堂群所属的南秦岭武当地区是扬子克拉通北缘的组成部分。
     (5)区域地层对比表明毛堂群与武当山群和耀岭河群不具有简单的相似可比性。毛堂群姚营寨组形成时代与峡东莲沱组底部相当,更完整地记录了扬子克拉通南华纪初期的区域拉张-沉积事件;马头山组与峡东南沱组不能直接对比,可能代表发生于扬子克拉通北缘的另一次重要的构造-岩浆事件。
     (6)毛堂群裂谷火山活动是波及中亚-东亚(包括中国中-西部和华南)、澳大利亚、北美、非洲南部和南极的一次全球性的由地幔柱活动引发的裂谷火山事件群的组成部分。这次具有全球规模的裂谷火山事件群应当就是Rodinia超大陆裂解过程的响应。
     (7)扬子陆块北缘在760±10Ma时,被动裂谷开始启动,于600Ma左右,裂谷活动趋于结束,出现稳定的陆源碎屑沉积和大量的浅水碳酸岩沉积,被动大陆边缘形成,扬子克拉通新元古代陆内裂解结束。
The Maotang group in the northern margin of the Yangtze block recorded important information of Rodinia breakup. These data could be helpful in constraining the breakup process of the Yangtze block, and thus make great significance in understanding the evolution of Yangtze block.
     In comprehensive analysis of field observation, SHRIMP and LA-ICP-MS zircon U-Pb dating and whole rock geochemistry data, we could obtain the following conclusions:
     1. Maotang group was formed in rifting envirenment of the inner continent during middle Neoproterozoic. The magmatic activity continnued for a long period, and ended at about 600Ma.
     2. The felsic volcanic formation from Maotang group was characterized by crust source, with primitive rocks possibly derived from the remelting of the upper crust; the basic volcanic formation, Maotang group was characterized by mantle source, and was indicated to be the production of mantle plume contaminated by crust in various degree during ascending. The mantle plume could be sourced from the transition zone from spinel phase to garnet phase, with a relative high degree of paritial melting.
     3. Zircon dating of the vocanic rocks from Maotang group indicate that this area exist a similar magmatic event to the inner and margin of the Yangtze block at 830~780Ma. This indicates the existence of the basement of the Jinningian in this area, which suggest that the area from the south part of the Qinling to the Wudang where the Maotang group occurred should be a part of the north margin of the Yangtze block.
     4. Regional stratigraphic correlation indicates that the Maotang group, Wudangshan group and Yaolinghe group could be correlated. The Yaoyingzhai formation of Maotang group is similar to the Liantuo formation in the Xiadong area, and recorded more information of the extension and sedimentation event of the Yangtze block at the beginning of the Neoproterozoic Nanhua Period. The Maotoushan foramtion could not be correlated with the Nantuo foramtion in the Xiadong area, and could represent another tectonic-magmatic event in the north margin of the Yangtze block.
     5. The vocanic event indicated by the Maotang formation is a part of the globle rifting and volcanic activity event which is thought to be triggered by mantle plume and affect areas such as Middle Asia-East Asia (including the middle and west part of China and the South China), Austrilia, north America, the south part of the Africa and Antarctic.
     6. The passive rifting in the north margin of the Yangtze block began at 760±10Ma and finished at about 600Ma. The appearence of stable land clastic sedimentation and carbonate deposition in shallow water indicate the formation of the passive continental margin and the finish of the Yangtze block breakup in Neoproterozoic.
引文
[1]蔡志勇,罗洪,熊小林,等.武当群上部变沉积岩组时代归属问题:单锆石U-Pb年龄的制约[J].地层学杂志, 2006, 30(1): 60~63
    [2]陈晋镳,秦正永,王寿琼,等.武当群地质特征.天津:天津科技翻译出版公司,1991.130
    [3]郝杰,李日俊,刘小汉.东秦岭陡岭古岛弧和武当古弧后盆地及其地质意义.中国区域地质,1996,(1): 44~51
    [4]河南省地质矿产局.河南省区域地质志.北京:地质出版社,1989. 111~114
    [5]李怀坤,陆松年,陈志宏,等.南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学.地质通报,2003,22(10): 775~781
    [6]梁传茂.扬子地台北缘晚元古代地层、岩相及构造演化:[博士学位论文].北京:中国地质大学(北京),1987
    [7]林广春,李献华,李武显.川西新元古代基性岩墙群的SHRIMP锆石U-Pb年龄、元素和Nd-Hf同位素地球化学:岩石成因与构造意义.中国科学D辑:地球科学, 2006, 36(7): 630~645
    [8]凌文黎,任邦方,段瑞春,等.南秦岭武当山群、耀岭河群及基性侵入岩锆石U-Pb同位素年代学及其地质意义.科学通报,2007年,52(12): 1445~1456
    [9]刘鸿允,郝杰,李曰俊,等.中国中东部晚前寒武纪地层与地质演化.北京:科学出版社,1999. 63~76
    [10]柳小明,高山,凌文黎,等.扬子克拉通35亿年碎屑锆石的发现及其地质意义.自然科学进展, 2005, 15(11): 1334~1337
    [11]陆松年,李怀坤,陈志宏,等.秦岭中-新元古代地质演化及对RODINIA超级大陆事件的响应.北京:地质出版社,2003. 1~24
    [12]马国干,李华芹,张自超.华南地区震旦纪时限范围的研究.中国地质科学院宜昌地质矿产研究所所刊, 1984, 8: 1~30
    [13]邱检生、王德滋、曾家胡,等.鲁西中生代富钾火山岩及煌斑岩微量元素和Nd-Sr同位素地球化学.高校地质学报,1997,3(4): 384~395
    [14]苏春乾,胡建民,李勇南.秦岭地区存在两种不同构造属性的耀岭河群.岩石矿物学杂志,2006,25(4): 287~298
    [15]孙景贵,胡受奚,凌洪飞.胶东金矿区高钾-钾质脉岩地球化学与俯冲-壳幔作用研究[J].岩石学报,2000,16(3): 401~412
    [16]王团华,毛景文,谢桂青,等.小秦岭-熊耳山地区中基性岩墙的Sr、Nd、Pb同位素组成及其大地构造意义.地质学报,2008,82(11): 1580~1591
    [17]徐红,徐光平.胶东煌斑岩的地球化学特征及成因探讨.岩石矿物学杂志,2000,19(1): 36~44
    [18]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001. 155~240
    [19]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001. 643~644
    [20]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001. 803~805
    [21]张宗清,张国伟,傅国民,等.秦岭变质地层年龄及其构造意义.中国科学D辑:地球科学, 1996,26(3): 216~222
    [22]张宗清,张国伟,唐索寒,等.武当群变质岩年龄.中国地质,2002,29(2): 117~125
    [23]张宗清,张国伟,唐索寒.南秦岭变质地层同位素年代学.北京:地质出版社,2002. 1~3
    [24]张宗清,张国伟,唐索寒.南秦岭变质地层同位素年代学.北京:地质出版社,2002. 206~216
    [25]周鼎武,张成立,刘良,等.武当地块基性岩墙群的Sm-Nd定年及其相关问题讨论.地球学报,1998,19(1): 25~30
    [26]Hugh R. Rollison.岩石地球化学(杨学明,杨晓勇,陈双喜).合肥:中国科学技术大学出版社,2000. 178~269
    [27]Campbell I H. Identification of ancient mantle plumes∥Ernst R E, Buchan K L. Mantle plumes: their identificationthrough times. Boulder, Special Paper, 352, CO:GeologicalSociety of America, 2001: 5~21
    [28]Campbell I H. The mantle s chemical structure: insights from the melting products of mantle plume∥Jackson I NS. The Earth s mantle: composition, structure and evolu-tion. Oxford, UK: Cambridge University Press, 1998. 259~310
    [29]Condie K C. Mantle plumes and their record in earth history. Oxford, UK: Cambridge University Press, 2001. 1~306
    [30]Condie K C. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos, 2005, 70: 491~504
    [31]Cox K G. A model for flood basalt volcanism. J Petrol,1980,21: 629~650.
    [32]Ernst R E, Buchan K L, Campbell I H. Frontiers in large igneous province research. Lithos,2005, 79: 271~297
    [33]Ernst R E, Buchan K L. Recognizing mantle plumes in the geological record. Rev Earth Planet Sci,2003, 31: 469~523
    [34]Fitton J G, James D, Leeman W P. Basic magmatism associated with the Late Cenozoic extension in the western United States: compositional variations in space and time. J Geophys Res, 1991, 96: 13693~13711
    [35]Frey F A, Garcia M O, Wise W S, et al. The evolution of Mauna Kea volcano, Hawaii:petrogenesis of tholeiitic and alkali basalts. J Geophys Res,1993,96: 14347~14375
    [36]Hardarson B S, Fitton J G. Increased mantle melting beneath Snaefellsjokull volcano during late Pleistocene glaciation.Nature, 1991,353: 62~64
    [37]Keppler H. Constraints from partitioning experiments on the composition of subduction-zone fluids.Nature, 1996, 380: 237~240
    [38]Kieffer B, Arndt N, Lapierre H, et al. Flood and shield basalts from Ethiopia: magmas from the African superwell. J Petrol, 2004, 45(4): 793~834
    [39]Li X H, Li Z X, Wingate M T D, et al. Geochemistry of the 755 MaMundine Well dyke swarm, north western Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia?. Precambr Res,2006, 146: 1~15
    [40]Li X H. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: Timing of Neoproterozoic Jinning: orogeny in SE China and implications for Rodinia Assembly. Precambr Res,1999, 97: 43~57
    [41]Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambr Res, 2003, 122: 85~109
    [42]Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia:did it start with a mantle plume beneath South China.Earth Planet Sci Lett, 1999, 173: 171~181
    [43]Li Z X, Zhang L, Powell C M. South China in Rodinia: Part of themissing link between Australia-East Antarctica and Laurentia?. Geology, 1995, 23: 407~410
    [44]Li Z X, Zhang L, Powell C. M. Positions of the East Asiancratons in the Neoproterozoic supercontinent Rodinia. Australia J Earth Sci,1996, 43(6): 593~604
    [45]Miyashiro A. Classification, characteristics and origin of ophiolites. J Geol, 1975, 83: 249~281
    [46]Pearce J A. Trace element characteristics of lavas from destructive plate boundaries∥Thorps R S.Andesites. New York: John Wiley and Sons,1982. 525~548
    [47]Peate D W, Hawkesworth CJ, Mantovani M S M. Chemical stratigraphy of the parana lavas(South America):classification of magma-types and their spatial distribution. Bull Volcanol,1992,55: 119~139
    [48]Saunders A D, Storey M, Kent R W,et al. Consequences of plume-lithosphere interaction∥Storey B C, Alabaster T, Pankhurst R J. Magmatism and the causes of continental break-up. London: Geol Soc Spec Pub,1992. 41~60
    [49]Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes∥Saunders A D, Norry M J. Magmatism in the ocean basin. London:Geol Soc Spec Pub,1989. 313~345
    [50]Thompson R N, Morrison M A, Hendry G L,et al. An assessment of the relative roles of a crust and mantle in magma genesis: an elemental approach. Phil Trans R Soc Lond,1984, A310: 549~590
    [51]Wang J, Liu B J, Pan G T. Neoproterozoic rifting history of south China: significance to Rodinia breakup. J MineralPetrol,2001, 21(3): 135~145
    [52]Wang J. Neoproterozoic rifting history of south China: Sig-nificance to Rodinia breakup.Beijing: Geological Publishing House, 2000. 1~146
    [53]White W M, Patchett P J. Hf-Nd-Sr and incompatible elementabundances in island arcs: Implications for Magma origins and crust-Mantle evolution. Earth Planet Sci Lett, 1984, 67: 167~185
    [54]Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements.Chem Geol,1977,20: 325~343
    [55]Wu R X, Zheng Y F, Wu Y B, et al. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambr Res, 2006, 146: 179~212
    [56]Xia L Q, Xia Z C, Xu X Y. Properties of Middle-Late Prot-erozoic volcanic rocks in South Qinling and the Precambriancontinental break-up. Science in China:Series D, 1996,39(3): 256~265
    [57]Xia L Q, Xia Z C, Xu X Y. The confirmation of continentalflood basalt of the Proterozoic Xixiang Group in South Qinlingand its geological implications. Geological Review, 1996,42(6): 513~522
    [58]You G F , Castillo P R, Gieskes J M, et al. Trace element behaviour in hydrothermal experiments:implications for fluid processes at shallow depths in subduction zones. Earth Planet Sci Lett,1996,140: 41~52
    [59]Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry. Geostan Geoanal Res, 2004, 28:353~370
    [60]Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambr Res, 2007, 152: 27~47
    [61]Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth SciRev, 2003, 62: 105~161
    [62]Zheng Y F, Wu Y B, Chen F K, et al. Zircon U-Pb and oxygen iso-tope evidence for a large-scale 18O depletion event in igneousrocks during the Neoproterozoic. Geochim Cosmochim Acta, 2004,68: 4159~4179
    [63]Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem Geol, 2006, 231: 135~158
    [64]Zhou M F, Yan D P, Wang C, et al. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmaticevent in South China. Earth Planet Sci Lett, 2006, 248: 271~285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700