用户名: 密码: 验证码:
改善干涉型光纤微弱磁场传感器性能的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弱磁场传感器具有广泛应用,包括导航、军事、航空、航天等领域。随着窄线宽激光光源、单模光纤及相关光器件性能的不断完善,不仅光纤传感器的种类在增加,其性能也在不断地提高。光纤微弱磁场传感器因其灵敏度高,被认为是替代传统纯电学检测手段的最有竞争力的技术。基于光纤干涉仪和磁致伸缩材料的干涉型光纤微弱磁场传感器是最有望走向实用的技术之一。因此,开展干涉型光纤微弱磁场传感器的研究具有重要意义。
     本论文主要研究高灵敏度和稳定性的迈克耳逊(Michelson)干涉型光纤微弱磁场传感器的若干关键问题,包括:干涉型光纤微弱磁场传感器理论与原理,干涉型光纤微弱磁场换能器的设计和实现,干涉型光纤微弱磁场传感器的解调技术、磁场探测能力、稳定性与温度特性等。
     首先,论文系统分析和总结了干涉型光纤传感器的基本理论和Michelson干涉型光纤微弱磁场传感器的工作原理,主要包括:磁致伸缩效应与光纤中光相位的调制原理、基于Michelson光纤干涉仪的干涉型光纤传感器的结构和原理、Michelson干涉型光纤磁场传感器相位检测原理与关键技术的实现、系统不稳定的原因及其解决措施等。
     其次,论文对偏振无关Michelson干涉型光纤微弱磁场换能器进行了深入系统的研究,在分析干涉型光纤微弱磁场传感器系统灵敏度基础上,提出了相应的设计和制作方案。在骨架设计与制作方面,分析和对比了不同材料、形状和结构磁场换能器的性能,确定了圆柱形作为换能器的基本结构,并使用胶木材料完成了换能器骨架的制作。在Michelson光纤干涉仪设计与制作方面,建立了偏振无关Michelson光纤干涉仪可见度的数学模型,对可见度的限制因素进行详细的数值分析。计算结果表明,干涉仪臂长差是其中最重要的一项因素。借助光学精密反射仪实现了对光纤干涉仪臂长差的精确测量和控制,能有效消除臂长差对可见度的影响,臂长差可以被控制在1 mm以内,在此基础上制作出了高可见度偏振无关Michelson光纤干涉仪。在换能器设计和制作方面,在对应力和负载效应问题进行深入分析的基础上,通过反复的实验比较,确定了粘贴剂的选取原则,给出了合理、有效的粘贴方式,形成了一套磁场换能器的制作方法和工艺,并完成了换能器的制作。
     接着,论文研究了两种传感信号检测技术:基于硬件电路的解调技术和软件解调技术。在硬件解调方面,主要是对传统锁定放大器电路进行改进,使之具有更好的检测性能。在软件解调方面,详细研究了偏振无关Michelson干涉型光纤磁场传感器的噪声来源,包括:环境噪声、光源噪声、热噪声、散弹噪声以及电噪声等,分析了这些噪声的特点及对光纤干涉仪输出信号光相位的影响,发现热噪声是限制光纤干涉仪最小可探测相位的最主要噪声。在此基础上,提出了一种基于软件解调和自适应谱线增强器的信号解调方案,给出了具体的实现方法。论文系统测试和分析了所研制的传感器在使用硬件解调方案时的系统性能,包括:换能器机械谐振频率与频率响应,传感器系统稳定性,输入光功率和交流激励磁场幅度与系统输出的关系,传感器系统灵敏度和分辨率,以及磁场换能器方向性等。实验结果表明,在没有任何磁屏蔽措施的普通实验环境下,该磁场传感器系统具有良好的稳定性和优异的微弱磁场探测能力,最低可探测磁场在1 Hz和5 Hz处约为0.10 nT/Hz1/2和0.04 nT/Hz1/2,与目前国内已报道的同类型磁场传感器相比,具有一定优越性。本文的检测技术工作是与课题组其他同学共同完成的。
     然后,针对干涉型光纤磁场传感器的实用化问题,论文对干涉型光纤微弱磁场传感器的温度特性进行了分析。以弹性波理论为切入点,推导了带状磁场换能器机械谐振频率的理论模型,给出了导致机械谐振频率随外界环境温度的变化而变化的各个因素,并通过模态分析找出了其中最主要的因素。通过一系列的实验,对换能器机械谐振频率、系统输出以及系统灵敏度的温度特性进行了测试,并拟合出了相应的温度特性函数,结果显示磁场换能器机械谐振频率以及传感器系统性能会受到外界环境温度的强烈影响。在实际应用中,为了减少环境温度对系统性能的影响,论文提出两种温度补偿的方案并进行了验证。
     最后,对论文工作进行了总结和展望。
The weak magnetic field sensors can be widely used in military affairs, aeronautics, spaceflight, and etc. With the progress and improvement of narrow linewidth laser sources, single-mode fiber and related fiber-optic devices, not only more types of fiber optic sensors have been developed but also the performances have been improved tremendously. Fiber-optic sensor detecting weak magnetic field is considered to be the most competitive alternative for traditional pure electrical detections because of its high sensitivity in theory. Fiber-optic interferometric sensors based on fiber-optic interferometer and magnetostrictive material is believed to be one of the sensing technologies that can be put into practical applications. Therefore, it is significant to carry out a study on fiber-optic interferometric sensors detecting weak magnetic field.
     This dissertation presents some key issues in high sensitive and stable fiber-optic Michelson interferometric weak magnetic field sensors, including theory and principle of fiber-optic interferometric weak magnetic field sensor, design and implementation of fiber-optic interferometric transducer, the demodulation schemes, the ability in detecting magnetic field, the stability and the temperature dependence of the fiber-optic interferometric sensor developed, etc.
     Firstly, the dissertation systematically analyzes and summarizes the fundamentals of fiber-optic interferometric sensors and the operating principles of fiber-optic Michelson interferometric sensors, including the magnetostriction effect and the principle of optical phase modulation in optical fibers, the basic structure and principle of fiber-optic interferometric sensors based on fiber-optic Michelson interferometer, the principle and realization of key techniques of phase detection of fiber-optic Michelson interferometric sensors, the cause of system instability and corresponding solving method, etc.
     Secondly, the dissertation investigates the fiber-optic interferometric weak magnetic field transducer based on fiber-optic polarization- insensitive Michelson interferometer. Based on the analysis of the dependent factors of the system sensitivity, the designing and implementing schemes of the key components are presented. By comparison the performances of the most popular shapes and structures that are generally adopted in fiber-optic interferometric magnetic field transducers, a cylindrical bakelite transducer framework is chosen and implemented. The performance of fiber-optic Michelson interferometer is an important factor to determine the system sensitivity, therefore the mathematical model of visibility is established for the polarization- insensitive fiber-optic Michelson interferometers so that the limitation factors of visibility can be analyzed. Numerical analysis indicates that the fiber length difference between the interferometric arms is the primary factor that limits the visibility. With the help of the precision reflectometer, the fiber length difference between the interferometric arms can then be precisely measured and maintained to be less than 1 mm to ensure high visibility. Based on the analysis of stress and loading effects, appropriate adhesive and selected and bonding methods are studied. A set of comprehensive techniques on design and implementation of the magnetic field transducer are developed through lots of experimental comparison and experience accumulation.
     Thirdly, the dissertation studies two kinds of sensing signal detection techniques, the hardware circuit based demodulation technique and software demodulation technique. In hardware circuit based demodulation technique, the traditional lock-in amplification circuit is modified so that a better detection can be ensured. In software demodulation technique, the noise sources of polarization-insensitive fiber-optic Michelson interferometric sensor are studied, including environmental noise, optical source noise, thermal noise, shot noise and electronic noise, etc. Their characteristics as well as their influences on the optical phase of the output signal of fiber-optic interferometers are carefully analyzed. Thermal noise is found to be the major noise to decide the minimum detectable optical phase of fiber-optic interferometer. Accordingly, a sensing signal demodulation scheme based on software demodulation and adaptive line enhancer is presented and realized. By using hardware circuit based demodulation scheme, the dissertation systematically tests and analyzes the system performance of polarization-insensitive fiber-optic Michelson interferometric sensor developed, including the transducer’s mechanical resonant frequency and frequency response, system stability, the effect of input optical power and amplitude of AC dither magnetic field on system output, system sensitivity and resolution, and the directivity of magnetic field transducer, and etc. The results show that the fiber-optic Michelson interferometric magnetic field sensor has not only good stability but also excellent ability in detecting weak magnetic field. The minimum detectable magnetic field is about 0.10 nT/Hz1/2 and 0.04 nT/Hz1/2 at 1 Hz and 5 Hz, respectively, without any mumetal shield in the ordinary laboratory environment. This part of the dissertation is collaborated with the members of the research group that the author is engaged.
     Forthly, the dissertation experimentally investigates the temperature dependence of the performance in fiber-optic interferometric magnetic field sensors. The cause of temperature dependence is briefly described. The theoretic model of the mechanical resonant frequency is evolved from elastic wave theory for ribbon-like magnetic field transducers based on magnetostrictive material and optical fiber. The factors that are responsible for the ambient temperature induced change of the mechanical resonant frequency are discussed. Among these factors, the primary one is analyzed by using modal analysis. The temperature dependences of the transducer’s mechanical resonant frequency, the sensor system output, and the sensor system sensitivity are tested, and the corresponding temperature dependence functions are fitted through performing a series of experiments. The experimental results show that the magnetic field transducer’s mechanical resonant frequency and the sensor system performance are strongly affected by the ambient temperature. These results also indicate that essential measures must be applied to make the measurement of the fiber-optic interferometric weak magnetic field sensor be independent of ambient temperature. Accordingly two temperature compensation schemes are presented and experiments are conducted to verify the feasibility.
     Last, a conclusion and expectation are made for the dissertation.
引文
[1]靳伟;廖延彪;张志鹏,导波光学传感器:原理与技术[M],北京:科学出版社, 1998.
    [2] Mendez, A.; Morse, T. F.; Ramsey, K. A., Fiber optic electric-field microsensor, In Fiber Optic and Laser Sensors X[C], SPIE: Boston, MA, USA, 1993, 1795, 153-164.
    [3] Vohra, S. T.; Fabiny, L.; Bucholtz, F., Multiplexed fiber optic electric and magnetic field sensors, In Proceedings of SPIE - The International Society for Optical Engineering[C], 1994, 2294, 102-113.
    [4] Fabiny, L.; Vohra, S. T.; Bucholtz, F., Multiplexed low-frequency electric and magnetic field fiber optic sensors[J], Optical Fiber Technology, 1996, 2(1), 106-113.
    [5] Kersey, A. D.; Dandridge, A., Applications of fiber-optic sensors[J], IEEE Transactions on Components, Hybrids, and Manufacturing Technology [see also IEEE Trans. on Components, Packaging, and Manufacturing Technology, Part A, B, C], 1990, 13(1), 137-143.
    [6] Grattan, K. T. V.; Sun, T., Fiber optic sensor technology: an overview[J], Sensors and Actuators A: Physical, 2000, 82(1-3), 40-61.
    [7] Culshaw, B., Fiber optics in sensing and measurement[J], IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6), 1014-1021.
    [8] Dandridge, A., Fiber-optic sensors make waves in acoustics, control, and navigation[J], IEEE Circuits and Devices Magazine, 1990, 6(6), 12-19.
    [9] Ezekiel, S.; Smith, S. P.; Shahriar, M. S., et al., New opportunities in fiber-optic sensors[J], Journal of Lightwave Technology, 1995, 13(7), 1189-1192.
    [10] Singh, J. P.; Balasubramaniam, K.; Parfenov, A. V., et al., Optical fiber sensors and their applications, In Photonics 2000: International Conference on Fiber Optics and Photonics[C], SPIE: Calcutta, India, 2001, 4417, 99-106.
    [11] Li, A. Z., Optical fibre image sensor, In International Conference on Optical Fibre Sensors in China OFS(C) '91[C], SPIE: Wuhan, China, 1991, 1572, 548-551.
    [12] Bucholtz, F.; Dagenais, D. M.; Koo, K. P., et al., Recent developments in fiber optic magnetostrictive sensors, In Fiber Optic and Laser Sensors VIII[C], 1991, 1367, 226-235.
    [13] Yoshino, T., Recent progress and research trends in optical fibre sensors: the 11th Optical Fiber Sensors Conference[J], Optics & Laser Technology, 1997, 29(2), xii.
    [14] Yurek, A. M., Real world applications of interferometric fiber optic sensors, In Lasers and Electro-Optics Society Annual Meeting, 1992. LEOS '92, Conference Proceedings[C], 1992, 452-453.
    [15] Schroeder, R. J., The present and future of fiber optic sensors for the oilfield service industry:where is there a role?, In Optical Fiber Sensors Conference Technical Digest, 2002. OFS 2002, 15th[C], 2002, 1, 39-42.
    [16]廖延彪,光纤传感器的今日和发展[J],传感器世界, 2004, 2, 6-12.
    [17]何慧灵;赵春梅;陈丹等,光纤传感器现状[J],激光与光电子学进展, 2004, 41(3), 39-41.
    [18]黄刚;唐敏,全球背景下中国传感器产业和市场的发展[J],传感器世界, 1995, 7, 7-9.
    [19] Kersey, A. D., A review of recent developments in fiber optic sensor technology[J], Optical Fiber Technology, 1996, 2(3), 291-317.
    [20]艾艳辉;赵治平,非声探测技术面面观[J],水雷战与舰船防护, 2003, 3.
    [21]申会堂;张玉敏,海洋中的探测新技术[J],舰船科学技术, 2001, 3, 61-64.
    [22]刘进,使用极低频电磁场探测浅水水雷的可行性研究[J],水雷战与舰船防护, 2000, 2.
    [23]傅金祝,现代水雷的非触发引信[J],水雷战与舰船防护, 1997, 3.
    [24]薛志英,光纤微弱磁场传感器技术[D],成都:电子科技大学硕士学位论文, 2001.
    [25] Rempt, R. D.; Ramon, C., Detection of cardiac magnetic field with fiber-optic magnetic gradiometer[J], IEEE Photonics Technology Letters, 1993, 5(1), 112-113.
    [26] Bosselmann, T., Electric and magnetic field sensing for high-voltage applications, In Proceedings of SPIE - The International Society for Optical Engineering[C], 1997, 3099, 305-316.
    [27] Bucholtz, F.; Villarruel, C. A.; Kirkendall, C. K., et al., Fibre optic magnetometer system for undersea applications[J], Electronics Letters, 1993, 29(11), 1032-1033.
    [28] Lenz, J.; Edelstein, S., Magnetic sensors and their applications[J], IEEE Sensors Journal, 2006, 6(3), 631-649.
    [29] SokolKutylovskij, O. L., Magnetic-field sensors based on amorphous alloys for high-sensitivity low-frequency measurements[J], Sensors and Actuators A: Physical, 1997, 62(1-3), 496-500.
    [30] Culshaw, B., Optical fiber sensor technologies: opportunities and-perhaps-pitfalls[J], Journal of Lightwave Technology, 2004, 22(1), 39-50.
    [31] Giallorenzi, T.; Bucaro, J.; Dandridge, A., et al., Optical fiber sensor technology[J], IEEE Journal of Quantum Electronics, 1982, 18(4), 626-665.
    [32] Kirkendall, C. K.; Dandridge, A., Overview of high performance fibre-optic sensing[J], Journal of Physics D: Applied Physics, 2004, 37(18), R197-R216.
    [33] Kersey, A. D.; Dandridge, A., An overview of the navy fiber optic sensor program, In Lasers and Electro-Optics Society Annual Meeting, 1990. LEOS '90. Conference Proceedings., IEEE[C], 1990, 180-185.
    [34] Lenz, J. E., A review of magnetic sensors[J], Proceedings of the IEEE, 1990, 78(6), 973-989.
    [35] Inaudi, D.; Casanova, N., SMARTEC: bringing fiber optic sensors into concrete applications,In Optical Fiber Sensors Conference Technical Digest, 2002. OFS 2002, 15th[C], 2002, 1, 27-30.
    [36]夏荣民;陈国平;张美敦等,医学中的光纤干涉仪[J],北京生物医学工程, 2002, 21(1), 49-51.
    [37] Law, C. T.; Bhattarai, K.; Yu, D. C., Fiber-optics-based fault detection in power systems[J], IEEE Transactions on Power Delivery, 2008, 23(3), 1271-1279.
    [38] Iramina, K.; Ueno, S., High spatial resolutional measurement of biomagnetic fields[J], IEEE Transactions on Magnetics, 2007, 43(6), 2477-2479.
    [39] Barjenbruch, U., New kind of highly sensitive magnetic sensors with wide bandwidth[J], Sensors and Actuators A: Physical, 1998, 65(2-3), 136-140.
    [40] Herng-Er, H.; Shou-Yen, H.; Jen-Tzong, J., et al., Biomagnetic measurements with HTS SQUID magnetometers in moderate shielded environments[J], IEEE Transactions on Applied Superconductivity, 2003, 13(2), 381-384.
    [41] Yariv, A.; Winsor, H. V., Proposal for detection of magnetic fields through magnetostrictive perturbation of optical fibers[J], Optics Letters, 1980, 5(3), 87-89.
    [42]罗先和;张广军;骆飞等,光电检测技术[M],北京:北京航空航天大学出版社, 1995.
    [43] Koo, K. P.; G. H. Sigel, J., Characteristics of fiber-optic magnetic-field sensors employing metallic glasses[J], Optics Letters, 1982, 7(7), 334-336.
    [44] Bucholtz, F.; Dagenais, D. M.; Villarruel, C. A., et al., Demonstration of a fiber optic array of three-axis magnetometers for undersea application[J], IEEE Transactions on Magnetics, 1995, 31(6), 3194-3196.
    [45] Bucholtz, F.; Koo, K. P.; Dandridge, A., Effect of external perturbations on fiber-optic magnetic sensors[J], Journal of Lightwave Technology, 1988, 6(4), 507-512.
    [46] Bucholtz, F.; Dagenais, D. M.; Koo, K. P., High-frequency fibre-optic magnetometer with 70 fT/Hz1/2 resolution[J], Electronics Letters, 1989, 25(25), 1719-1721.
    [47] Bucholtz, F.; Villarruel, C. A.; Davis, A. R., et al., Multichannel fiber-optic magnetometer system for undersea measurements[J], Journal of Lightwave Technology, 1995, 13(7), 1385-1395.
    [48] Bucholtz, F.; Koo, K.; Sigel, G., et al., Optimization of the fiber/metallic glass bond in fiber-optic magnetic sensors[J], Journal of Lightwave Technology, 1985, 3(4), 814-817.
    [49] Bucholtz, F.; Wang, G.; Kirkendall, C. K., et al., Undersea performance of eight-element fibre optic magnetometer array[J], Electronics Letters, 1994, 30(23), 1974-1975.
    [50] Lee, K.-S.; Kang, H. S.; Park, M. Y., Fiber optic magnetostrictive transducers for magnetic field sensing[J], Optical Engineering, 1995, 34(12), 3577-3582.
    [51] Nader-Rezvani, N.; Claus, R. O.; Sarrafzadeh, A. K., Low-frequency fiber optic magneticfield sensors[J], Optical Engineering, 1992, 31(1), 23-27.
    [52] Jarzynski, J.; Cole, J. H.; Bucaro, J. A., et al., Magnetic field sensitivity of an optical fiber with magnetostrictive jacket[J], Applied Optics, 1980, 19(22), 3746-3748.
    [53] Nikitin, P. I.; Kasatkin, S. I.; Muravjov, A. M., et al., Magnetic field sensors based on thin film multi-layer structures[J], Sensors and Actuators A: Physical, 2003, 106(1-3), 26-29.
    [54] Lee, K.-S.; Lee, Y. S.; Suh, S. J., Magnetostrictive transducers for optical fiber magnetic field sensors, In Proceedings of SPIE - The International Society for Optical Engineering[C], 1994, 2292, 57-65.
    [55] Larson, D. C.; Bibby, Y. W.; Tyagi, S., Metallic-glass-coated optical fibers as magnetic-field sensors, In International Conference on Optical Fibre Sensors in China OFS(C) '91[C], SPIE: Wuhan, China, 1991, 1572, 517-522.
    [56] Oh, K. D.; Ranade, J.; Arya, V., et al., Optical fiber Fabry-Perot interferometric sensor for magnetic field measurement[J], IEEE Photonics Technology Letters, 1997, 9(6), 797-799.
    [57] Davino, D.; Visone, C.; Ambrosino, C., et al., Magnetic field sensors employing fiber Bragg grating and magneto-elastic active material, In Magnetics Conference, 2006. INTERMAG 2006. IEEE International[C], 2006, 884-884.
    [58] Sepúlveda, B.; Armelles, G.; Lechuga, L. M., Magneto-optical phase modulation in integrated Mach-Zehnder interferometric sensors[J], Sensors and Actuators A: Physical, 2007, 134(2), 339-347.
    [59] Mora, J.; Martínez-León, L.; Díez, A., et al., Simultaneous temperature and ac-current measurements for high voltage lines using fiber Bragg gratings[J], Sensors and Actuators A: Physical, 2006, 125(2), 313-316.
    [60] Kamada, O.; Nakaya, T.; Higuchi, S., Magnetic field optical sensors using Ce:YIG single crystals as a Faraday element[J], Sensors and Actuators A: Physical, 2005, 119(2), 345-348.
    [61]李守荣;姚寿铨,磁力共振在磁致伸缩光纤磁场传感器中的应用[J],北京大学学报(自然科学版), 2002, 38(3), 329-333.
    [62]吕凤军;斯永敏;刘吉延;,干涉型光纤磁场传感器的研究[J],传感器技术, 2004, 23(8), 32-34.
    [63]王奇峰,光纤磁场传感器换能器及系统研究[D],成都:电子科技大学硕士学位论文, 2005.
    [64]王杨,光纤磁场传感器信号处理研究[D],成都:电子科技大学硕士学位论文, 2005.
    [65]周晓军;刘永智,光纤微弱磁场传感技术研究进展[J],半导体光电, 1997, 18(1), 1-5.
    [66]周晓军;林水生;刘文达等,光纤微弱磁场传感器软件解调方法[J],电子科技大学学报, 2003, 32(3), 261-263.
    [67]李守荣,光纤直流微弱磁场传感器研究[D],上海:上海大学硕士学位论文, 1999.
    [68]倪明环,偏振无关光纤Michelson干涉型微弱磁场传感器信号处理[D],成都:电子科技大学硕士学位论文, 2006.
    [69]于彦明,偏振无关光纤Michelson干涉型微弱磁场传感器研究[D],成都:电子科技大学硕士学位论文, 2006.
    [70]张学亮;周晓军;胡永明等,全保偏光纤地磁传感器[J],中国激光, 2005, 32(11), 1515-1518.
    [71]张学亮;倪明;孟洲等,全保偏光纤直流磁场传感系统[J],光电工程, 2005, 32(8), 89-92.
    [72]于彦明;周晓军;倪明环,偏振无关光纤迈克耳孙干涉型磁场传感器研究[J],激光与光电子学进展, 2006, 43(5), 35-38.
    [73]刘吉延;斯永敏;刘阳等,超磁致伸缩薄膜/光纤的制备及其磁探测性能[J],传感器技术, 2004, 23(10), 18-21.
    [74]张学亮;倪明;孟洲等,基于铽镝铁换能器的全保偏光纤磁场传感系统[J],国防科技大学学报, 2005, 27(3), 30-33.
    [75]张学亮;倪明;孟洲等,磁致伸缩材料被覆保偏光纤磁场传感研究[J],压电与声光, 2006, 28(4), 384-386, 389.
    [76] Meng, Z.; Zhang, X. L.; Dong, F. Z., et al., Experimental research on all polarization maintaining fibre magnetostrictive sensor[J], Journal of Optics A: Pure and Applied Optics, 2005, 7(6), S352-S355.
    [77] Li, M. F.; Zhou, J. F.; Xiang, Z. Q., et al., Giant magnetostrictive magnetic fields sensor based on dual fiber Bragg gratings, In Networking, Sensing and Control, 2005. Proceedings. 2005 IEEE[C], 2005, 490-495.
    [78]沈震强,用于弱磁场测量的光纤光栅法布里-珀罗干涉仪研究[D],西安:西北工业大学硕士学位论文, 2007.
    [79]姚寿铨;李守荣,灵敏稳定的光纤弱磁场传感器[J],上海大学学报(自然科学版), 2000, 6(2), 203-206.
    [80] Kersey, A. D.; Marrone, M. J.; Dandridge, A., et al., Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control[J], Journal of Lightwave Technology, 1988, 6(10), 1599-1609.
    [81] Frigo, N. J.; Dandridge, A.; Tveten, A. B., Technique for elimination of polarisation fading in fibre interferometers[J], Electronics Letters, 1984, 20(8), 319-320.
    [82]周效东;杜春仁;汤伟中,偏振态调制的消偏振衰落干涉型光纤传感器[J],中国激光, 1996, 23(6), 500-506.
    [83] Kersey, A. D.; Marrone, M. J.; Davis, M. A., Polarisation-insensitive fibre optic Michelson interferometer[J], Electronics Letters, 1991, 27(6), 518-520.
    [84]张翼;陈建平;薛青等, Michelson干涉型光纤弱磁场传感器信号检测电路研究[J],半导体光电, 2006, 27(2), 221-224.
    [85] Jackson, D. A.; Priest, R.; Dandridge, A., et al., Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber[J], Applied Optics, 1980, 19(17), 2926-2929.
    [86] Jackson, D. A.; Dandridge, A.; Sheem, S. K., Measurement of small phase shifts using a single-mode optical-fiber interferometer[J], Optics Letters, 1980, 5(4), 139.
    [87] Grattan, K. T. V.; Meggitt, B. T., Optical fiber sensor technology[M], London: Chapman & Hall, 1995.
    [88] Culshaw, B.; Dakin, J.;李少慧等译,光纤传感器[M],武汉:华中理工大学出版社, 1997.
    [89]蓝信钜,激光技术[M],第二版,北京:科学出版社, 2005.
    [90] Hocker, G. B., Fiber optic acoustic sensors with composite structure: an analysis[J], Appled Optics, 1979, 18(21), 3679-3683.
    [91]张思玉;周敦忠;周尚文,光学近代物理[M],兰州:甘肃教育出版社, 1994.
    [92]周晓军;刘永智,带光环行器的光纤Michelson干涉仪,中国,发明专利, 02113431.6[P], 2003.
    [93] Marrone, M. J.; Kersey, A. D.; Villarruel, C. A., et al., Elimination of coherent Rayleigh backscatter induced noise in fibre Michelson interferometers[J], Electronics Letters, 1992, 28(19), 1803-1804.
    [94] Dandridge, A.; Tveten, A.; Giallorenzi, T., Homodyne demodulation scheme for fiber optic sensors using phase generated carrier[J], IEEE Journal of Quantum Electronics, 1982, 18(10), 1647-1653.
    [95] Koo, K. P.; Tveten, A. B.; Dandridge, A., Passive stabilization scheme for fiber interferometers using (3 x 3) fiber directional couplers[J], Applied Physics Letters, 1982, 41(7), 616-618.
    [96]邢建东,工程材料基础[M],北京:机械工业出版社, 2004.
    [97] Livingston, J. D., Magnetomechanical properties of amorphous metals[J], Physica Status Solidi (A) Applied Research, 1982, 70(2), 591-597.
    [98] Picon, L. L.; Bright, V. M.; Kolesar, E. S., Detecting low-intensity magnetic fields with a magnetostrictive fiber optic sensor, In Aerospace and Electronics Conference, NAECON , Proceedings of the IEEE 1994 National[C], 1994, 2, 1034-1039.
    [99] Koo, K. P.; Dandridge, A.; Tveten, A., et al., A fiber-optic DC magnetometer[J], Journal of Lightwave Technology, 1983, 1(3), 524-525.
    [100] Dagenais, D. M.; Bucholtz, F.; Koo, K. P., Elimination of residual signals and reduction of noise in a low-frequency magnetic fiber sensor[J], Applied Physics Letters, 1988, 53(16), 1474-1476.
    [101] Fabiny, L.; Vohra, S. T.; Bucholtz, F., High-resolution fiber-optic low-frequency voltage sensor based on the electrostrictive effect[J], IEEE Photonics Technology Letters, 1993, 5(8), 952-953.
    [102]李昕彤;廖延彪,干涉型光纤传感器直流相位跟踪检测系统的改进[J],激光杂志, 2003, 24(4), 16-17.
    [103]吴宿松;赵宏声;方宁等,微弱信号的检测方式及在光纤干涉仪中的应用[J],武汉工业大学学报, 1996, 18(3), 44-47.
    [104] Stowe, D.; Moore, D.; Priest, R., Polarization fading in fiber interferometric sensors[J], IEEE Journal of Quantum Electronics, 1982, 18(10), 1644-1647.
    [105]李然山,偏振模色散概念及基本理论简介[J],现代有线传输, 1999, (2), 22-26.
    [106]周效东;杜春仁;汤伟中,偏振态调制的消偏振衰落干涉型光纤传感器[J],中国激光, 1996, 23(6), 500-504.
    [107]李志能;沈梁;叶险峰,干涉型光纤传感器的分集消偏振衰落技术的信号处理[J],光电工程, 2002, 29(1), 55-58.
    [108]李智忠;张学亮;孟洲等,全保偏M-Z型光纤磁场传感系统实验研究[J],光电子激光, 2004, 15(10), 1168-1161.
    [109]罗键,系统灵敏度理论导论[M],西安:西北工业大学出版社, 1990.
    [110] Wang, X.; Chen, S. Y.; Du, Z. G., et al., Experimental study of some key issues on fiber-optic interferometric sensors detecting weak magnetic field[J], IEEE Sensors Journal, 2008, 8(7), 1173-1179.
    [111] Udd, E., Fiber optic sensors: an introduction for engineers and scientists[M], New York: Johns Wiley & Sons, Inc., 1991.
    [112]赵建林,高等光学[M],北京:国防工业出版社, 2002.
    [113] Hong, J. X.; Chen, J. P.; Wang, Y. P., et al., A simplified fiber-optic in-line method to measure the electro-optic coefficient of corona poled polymers[J], Journal of Polymer Research, 2005, 12(2), 89-92.
    [114]李毛和;张美敦,光纤干涉仪臂长的测量[J],光子学报, 1999, 28(8), 740-743.
    [115] Skontorp, A.; Guérin, J. M., Adhesively bonded optical sensors: Stress transfer and durability, In Proceedings of SPIE - The International Society for Optical Engineering[C], 2002, 4694, 218-229.
    [116] Nau, G. M.; Sudarshanam, V. S.; Claus, R. O., Static-strain sensitivity optimization of fiber optic extrinsic Fabry-Perot interferometric strain gauge, In Proceedings of SPIE - The International Society for Optical Engineering[C], 1993, 1918, 248-255.
    [117]薛青;陈建平;张翼, et al., Michelson干涉型光纤磁场传感器稳定性研究[J],光纤与电缆及其应用技术, 2006, (2), 19-21.
    [118]曾庆勇,微弱信号检测[M],第二版,杭州:浙江大学出版社, 1994.
    [119]朱虹;林君;王智宏等,参考信号频率自调整的锁定放大器的设计应用[J],仪器仪表学报, 2004, 25(4), 66-68.
    [120] Dagenais, D. M.; Bucholtz, F.; Koo, K. P., et al., Demonstration of 3 pT/Hz1/2 at 10 Hz in a fibre-optic magnetometer[J], Electronics Letters, 1988, 24(23), 1422-1423.
    [121] Kay, A.,运算放大器电路中固有噪声的分析与测量. http://www.hshaudio.com/Article/ShowArticle.asp?ArticleID=570, 2008.
    [122]王晓扬,干涉型光纤微弱电场传感器研究[D],上海:上海交通大学硕士学位论文, 2008.
    [123] Shi, C. H.; Chen, J. P.; Li, X. W., et al., Directivity of the magnetostrictive fiber-optic interferometric transducers[J], IEEE Sensors Journal, 2006, 6(5), 1191-1194.
    [124]宋微微,降低干涉型光纤传感器本底噪声方案的研究[D],哈尔滨:哈尔滨工程大学硕士学位论文, 2007.
    [125] Wanser, K. H., Fundamental phase noise limit in optical fibres due to temperature fluctuations[J], Electronics Letters, 1992, 28(1), 53-54.
    [126] Bucholtz, F.; Colliander, J. E.; Dandridge, A., Thermal noise spectrum of a fiber-optic magnetostrictive transducer[J], Optics Letters, 1991, 16(6), 432-434.
    [127] Haykin, S., Adaptive Filter Theory[M], The Fourth Edition, NJ: Prentice Hall, 2002.
    [128]姚天任;孙洪,现代数字信号处理[M],武汉:华中科技大学出版社, 1999.
    [129] Meirovitch, L., Fundamentals of vibrations[M], New York: Mcgraw-Hill, 2001.
    [130] Cullity, B., Introduction to magnetic materials[M], MA: Addison-Wesley Publishing Company, Reading, 1972.
    [131] O'Handley, R. C., Modern magnetic materials: principles and applications[M], New York: John Wiley & Sons, Inc., 2000.
    [132] Ong, K. G.; Mungle, C. S.; Grimes, C. A., Control of a Magnetoelastic Sensor Temperature Response by Magnetic Field Tuning[J], IEEE Transactions on Magnetics, 2003, 39(5 II), 3319-3321.
    [133] Mungle, C.; Grimes, C. A.; Dreschel, W. R., Magnetic field tuning of the frequency-temperature response of a magnetoelastic sensor[J], Sensors and Actuators A: Physical, 2002, 101(1-2), 143-149.
    [134] Schmidt, S.; Grimes, C. A., Elastic modulus measurement of thin films coated onto magnetoelastic ribbons[J], IEEE Transactions on Magnetics, 2001, 37(4 I), 2731-2733.
    [135] Raikar, U. S.; Lalasangi, A. S.; Kulkarni, V. K., et al., Temperature dependence of bending loss in single mode communication fiber: Effect of fiber buffer coating[J], Optics Communications, 2007, 273(2), 402-406.
    [136] Maier, R. R. J.; MacPherson, W. N.; Barton, J. S., et al., Temperature dependence of the stress response of fibre Bragg gratings[J], Measurement Science and Technology, 2004, 15(8), 1601-1606.
    [137]宋秀玲,热敏电阻与光敏电阻[J],科技情报开发与经济, 2006, 16(16), 256-258.
    [138]程相波,红外传感器的温度漂移和非线性补偿技术研究[J],北京工业职业技术学院学报, 2007, 6(1), 8-12.
    [139] Ong, K. G.; Tan, E. L.; Grimes, C. A., et al., Removal of temperature and earth's field effects of a magnetoelastic pH sensor[J], IEEE Sensors Journal, 2008, 8(4), 341-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700