用户名: 密码: 验证码:
三轴光电跟踪系统跟踪策略和控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电跟踪系统是一个由光电探测、信号处理、控制系统、光学系统以及精密机架等多个部分组成的复杂系统。它以高于微波频率的光波为信息的载体,具有极高的时域、空域、频域分辨率,特强的抗电磁干扰能力,独有的夜间观察功能和良好的战场适应性。因此,光电跟踪系统是现代化战争中获取信息的重要手段,在低可观测性目标探测、高分辨率目标识别、精确制导、火控瞄准、飞行辅助和信息对抗等军事应用领域具有良好的应用前景。除军事应用领域,光电跟踪系统目前在激光通信、天文观测、航空摄影、靶场测试等民用领域也都取得了日益广泛的应用。
     因此,光电跟踪系统的研制受到世界各国的普遍关注。随着科学技术的迅速发展,光电跟踪系统无论是在军事领域还是在工业和科学研究领域都具有更加广泛的发展前景。同时,现代社会的发展也对光电跟踪系统的设计和研制提出了更高的要求,如高精度、高速度、强适应性等。特别是在军事应用领域,随着现代化武器的不断发展,以高分辨率和抗电子干扰为突出特点的军用光电跟踪系统已成为当今世界高技术军事装备研究的重点之一。如何最大限度地发挥出光电跟踪系统的优势,实现对全空间高速运动目标的快速捕获和高精度的稳定跟踪瞄准,是目前光电跟踪系统研究的重点和难点。
     为实现以上研究目标,在光电跟踪系统设计中,除了要有高性能的光电传感元件之外,跟踪快速性好、跟踪性能优越的跟踪策略,以及快速灵活、控制精度高的伺服系统也是不可或缺的关键。所以,对光电跟踪系统的跟踪策略和控制方法的研究已成为必然。
     本文以三轴光电跟踪系统为研究对象,基于系统的精确性和准确性,设计了三轴光电跟踪系统的跟踪策略,并在此基础上研究运动平台光电跟踪系统的跟踪策略;同时建立了三轴光电跟踪系统的机电动力学方程,设计了三轴光电跟踪系统的稳定控制方法;最后,实现了三轴光电跟踪系统实验装置的三轴联动全空间连续跟踪运动。主要内容如下:
     1.基于刚体定轴转动的四元数描述方法,在详细分析光电跟踪系统运动学特性的基础上,分别建立了两轴和三轴光电跟踪系统的运动学模型。分析了两轴光电跟踪系统跟踪盲区产生的原因。同时,研究了三轴光电跟踪系统的运动位置和速度之间的关系,并以此为基础,证明了三轴光电跟踪系统的无盲区全空间跟踪特性。最后,分析了光电跟踪系统偏距的产生对系统性能的影响。
     2.以三轴光电跟踪系统为研究对象,以实现系统的跟踪快速性为研究目标,基于摩尔-彭诺斯广义逆矩阵的特性,应用极小范数最小二乘解理论,设计了三轴光电跟踪系统的跟踪策略,实现了光电跟踪系统的全空间无盲区跟踪和三轴联动连续跟踪,提高了光电跟踪系统的跟踪快速性和跟踪性能。然后通过与现有的两轴跟踪策略以及三轴切换跟踪策略的跟踪结果进行比较,验证了所设计跟踪策略的有效性。
     3.以三轴光电跟踪系统为研究对象,设计了一种基于智能优化的三轴跟踪策略。通过分析系统中三轴转角之间的关系,将求解三轴角增量的三维函数优化问题简化为求解一维函数最优值问题。同时,设计了一种自适应差分进化算法,并将此算法应用于三轴光电跟踪系统的跟踪策略中,基于系统的跟踪准确性要求和应用适应性要求,实现了三轴光电跟踪系统的全空间无误差跟踪运动。然后通过与现有的两轴跟踪策略以及三轴切换跟踪策略的跟踪结果进行比较,验证了所设计跟踪策略的有效性。
     4.研究了运动平台三轴光电跟踪系统的跟踪策略,重点研究了车载和机载三轴光电跟踪系统的跟踪策略。将所设计的两种三轴跟踪策略应用于系统对运动目标的跟踪过程中,研究了两种跟踪策略的不同应用条件,并与现有的跟踪策略相比较,分析所设计的三轴跟踪策略的跟踪性能。
     5.应用拉格朗日-麦克斯韦方程,在考虑系统的传动齿隙和摩擦的基础上,建立了三轴光电跟踪系统的机电动力学模型,并以此为基础,研究了三轴光电跟踪系统的稳定控制方法。将模糊控制与PID控制相结合,并引入了自适应控制理论和参考模型控制理论,设计了三轴光电跟踪系统的基于参考模型的自适应模糊PID控制器,并通过仿真与PID控制器和模糊PID控制器相比较,以验证所设计的控制器的控制性能。
     6.分析了三轴光电跟踪系统实验装置的设计原理、结构组成、功能实现和专用软件介绍。在此基础上,将本文所设计的三轴跟踪策略应用于三轴光电跟踪系统实验装置的实际跟踪运动中,实现了三轴光电跟踪系统的三轴联动全空间无盲区连续跟踪运动,验证了本文研究的实际应用价值。
A photoelectric tracking system is a complex system which is composed by thephotoelectric detector, the signal processing system, the control system, the opticalsystem and the precise machine frame. The signal of the photoelectric tracking system iscarried by light-wave, which has a higher frequency than microwave. Therefore, thetactical performance of the photoelectric tracking system is constitutionally improved.The photoelectric tracking system has high resolution in frequency domain, timedomain and airspace. Furthermore, it has the excellent anti-electromagnetisminterference ability and adaptability on the battlefield. Then the photoelectric trackingsystem is one of the important means for gaining information in modern war, such asthe detection of weak observable target, the high-resolution target identification, theprecision guidance technology, the fire-control aim, the assistance of plane, and theinformation countermeasure. Besides the military domain, photoelectric tracking systemhas an increasingly extensive application in the civil area, such as laser communication,astronomical observation, aero photography, and the measurement of shooting range.
     Therefore, the design of the photoelectric tracking system has received attention.With the rapid development of science and technology, photoelectric tracking systemhas a better development prospect in the military domain and scientific research field. Inthe meantime, the development of modern society has a higher demand for the designand development of photoelectric tracking system, such as high-precision, high-speed,and high-adaptability. Especially in military domain, the military photoelectric trackingsystem is the emphasis of high-technology military research, which has high resolutionand excellent ant-jamming ability. The emphasis and difficulty in research is how totake the advantages of the photoelectric tracking system, and realize the stabilitytracking movement for the high-speed motion target in the whole space quickly andaccurately.
     For achieving the above research objectives, the tracking strategy with high speedand excellent tracking performance, and the servo system with more extensiveapplicability and high control stability are the points and key technologies in the designof photoelectric tracking system, besides the high performance photoelectric transducer.Then the research of tracking strategy and control method of photoelectric trackingsystem is inevitable.
     In this dissertation, a three-axis photoelectric tracking system is investigated. The tracking strategy of three-axis photoelectric tracking system is designed, and thetracking strategy of the photoelectric tracking system with motion platform is discussed.The dynamic equation of three-axis photoelectric tracking system is built, and thecontrol method of three-axis electromechanical dynamic system is designed. At last, thethree-axis linkage continuous tracking movement of three-axis photoelectric trackingequipment is realized in the whole space. The main work is organized as follows:
     1. The kinematical characteristics of two-axis tracking system and three-axistracking system are analyzed, and the kinematical equations are built by usingquaternion method. The blind tracking region of two-axis tracking system is analyzed.Then the relationship between the position and the speeds of three axes in three-axistracking system is researched, and the tracking character of three-axis tracking systemwithout tracking blind region in the whole space is proved. At last, the effects ofdeflection distance for the tracking capability are analyzed.
     2. Based on the character of Moore-Penrose generalized inverse matrix, a newtracking strategy of three-axis photoelectric tracking system is designed by using theminimum norm least squares solution. This tracking strategy realizes the three-axislinkage continuous tracking movement of the tracking system in the whole spacewithout the blind region, which improves the tracking speed and performance of thetracking system. Then the tracking strategy is compared with two-axis tracking strategyand three-axis switch tracking strategy for proving the efficiency of the trackingstrategy.
     3. A tracking strategy of three-axis tracking system is designed by using theintelligence optimization. Through the analysis of the relationship in the three axesangles, the three-variable optimization for solving the three axes angular increments issimplified as the single-variable optimization. For realizing the tracking accuracy andthe application adaptability of tracking system, a new adaptive differential evolution isdesigned for the tracking strategy of three-axis tracking system, and this trackingstrategy could track the target in the whole space without tracking error. Then thetracking strategy is compared with two-axis tracking strategy and three-axis switchtracking strategy for proving the effectiveness of the tracking strategy.
     4. The tracking strategy of three-axis tracking system with motion platform isresearched, including vehicle three-axis tracking system and airborne three-axis trackingsystem. The above two kind of three-axis tracking strategies are applied in the trackingprocess, and the application condition of these tracking strategies is discussed. Then thetracking performance of the strategy is analyzed by compared with other existing tracking strategies.
     5. Considering the backlash and friction in the tracking system, theelectromechanical dynamic model is established by using Lagrange-Maxwell Functions.Then the stability control method of three-axis photoelectric tracking system is designed,which is compounded with the fuzzy control method, PID control method, and themodel reference adaptive control theory. The control stability and performance areproved from the simulation by compared with PID control method and fuzzy PIDcontrol method.
     6. The designing principle and the structure of three-axis photoelectric trackingequipment are analyzed, and the functions and the software of equipment are introduced.Then the three-axis tracking strategies are applied to the tracking movement ofthree-axis photoelectric tracking equipment, and then the tracking equipment couldachieve the three-axis linkage continuous tracking movement of three-axis trackingsystem without the blind region in the whole space, which proves the practicalapplication value of the research.
引文
[1]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光电工程,1989,16(3):1-30.
    [2] David J H, James D. Modern control methods applied to a line-of-sightstabilization and tracking system[C]. Proceedings of the American ControlConference,1987:1491-1498.
    [3] Hilkert J M, David A. Adaptive control system techniques applied to inertialstabilization systems[J]. SPIE,1990,1306:190-206.
    [4] Xie D L, Yuan J H, Yan G H. Stabilization of line-of-sight for airborne O-Etracking and imaging system[J]. SPIE,1998,3365:191-201.
    [5] Hilkert J M. A comparison of inertial line-of-sight stabilization techniques usingmirrors[J]. SPIE,2004,5830:13-22.
    [6] Coudrain C, Sacleux B, Bruyant J P. Design and realization of the line of sightcontrol for one or several airborne optical imaging instruments[J]. SPIE,2005,5810:35-44.
    [7] Masten M K. Hilkert J M. Electromechanical system configurations for pointing,tracking and stabilization applications[J]. Electromechanical System Interactionwith Optical Design, SPIE,1987,779:75-87.
    [8] Tsuda N, Shimizu K. Two-axis pointing mechanism for earth observation systemusing heterodyne interferometry positioning sensor[J]. Current Developments inOptical Design and Engineering VII, San Diego, CA, USA,1998:169-176.
    [9] Kennedy P J, Kennedy R L. Direct versus indirect line-of-sight (LOS)Stabilization[J]. IEEE Transaction on Control Systems Technology,2003,11(1):3-15.
    [10] Hilkert J M. Inertially stabilized platform technology concepts and principles[J].Control Systems Magazine, IEEE,2008,28:26-46.
    [11]王连明.机载光电平台的稳定与跟踪伺服控制技术研究[D].长春:中国科学院长春光学精密机械与物理研究所博士论文,2002.
    [12]王习文.光电经纬仪跟踪飞机的3D计算机视觉研究[D].长春:中国科学院研究生院博士论文,2010.
    [13]胡浩军.运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D].长沙:国防科技大学博士论文,2005.
    [14]张宏生.光电跟瞄装置的目标捕获方法研究[D].西安:西安电子科技大学硕士论文,2009.
    [15]刘兴法,马佳光,徐智勇等.神经网络在光电跟踪系统引导中的应用[J].光电工程,2006,33(8):1-4.
    [16]李岷,马军.机载光电稳定平台检测技术的研究[J].光学精密工程,2006,14(5):847-852.
    [17]亓继.车载光电跟瞄系统控制技术的研究[D].西安:西安电子科技大学硕士论文,2010.
    [18]李岩,范大鹏.多环架视轴稳定跟踪结构的运动学分析[J].应用光学,2008,29(1):18-22.
    [19]何照才.国外靶场电影经纬仪现状[J].中国兵工学会第六届测试技术学会年会论文集,1992:152-161.
    [20] Lodaya M D, Bottone R. Moving target tracking using multiple sensors[J]. SPIE,4048:333-344.
    [21] Delgado R F. Photo-optical range instrumentation: a overview[J]. OpticalEngineering,1981,20(5):701-711.
    [22] Wu Shengxiong, Tong Hengwei, Xiong Rensheng, et al. A new kind of high speedcine-theodolite[J]. Acta Photonica Sinica,1989,18(1):35-41.
    [23] Wang Jianli, Chen Tao, Qi Chen, et al. Method to improve the capability ofelectro-optical theodolite to track fast-moving target[J]. SPIE,4564:238-244.
    [24] Krishna, Ramuhalli. Improved pointing accuracy using high-precision theodolitemeasurements[J]. SPIE,2812:199-209.
    [25] Li Yunhao, Zhang Maojun, Wu Yangbing, et al. Camera tracking in virtualstudio[J]. SP1E,4553:143-148.
    [26]佟恒伟.靶场光测技术的发展与展望[J].光子学报,1994,23(3):310-314.
    [27]曹金贵.靶场光测设备发展趋势[J].光学机械,1981,3:9-14.
    [28]马佳光,尹义林.778光电经纬仪跟踪控制系统[J].光学工程,1986,1:50-59.
    [29]张立群.运动平台光电跟踪瞄准技术研究[J].光电技术应用,2005,20(4):8-11.
    [30]石利霞.机载光电对抗稳定平台目标跟踪干扰技术研究[D].长春:长春理工大学博士论文,2009.
    [31]庞新良.机载光电稳定平台数字控制关键技术研究[D].长沙:国防科学技术大学博士论文,2007.
    [32]蒋鸿旺.舰用光电跟踪仪的发展特点和趋势[J].应用光学,1995,16(2):1-5.
    [33] Zhao Zhiming, Yuan Xiaoyang. Backstepping designed sliding mode control for atwo-axis tracking system[C].5th IEEE Conference on Industrial Electronics andApplications,2010:1593-1598.
    [34] Yu Jinying, Zhao Keding, Cao Jian. Application of one-degree-of-freedom QFTtracking controller to hydraulic simulator design[C].1st International Symposiumon Systems and Control in Aerospace and Astronautics.2006:545-548.
    [35] Yu J Y, Zhao K D. Grey-box identification for three-axis hydraulic simulator[J].Journal of Chinese Inertial Technology,2005,5:78-81.
    [36] Guelman M, Kogan A, Kazaria A, et al. Acquisition and pointing control forinter-satellite laser communications[J]. IEEE Transactions on Aerospace andElectronic Systems,2004,40:1239–1248.
    [37]徐小琴,孙华燕,李松涛.星载光电跟踪系统的组成及其性能指标设计[J].光学仪器,2005,27(3):46-50.
    [38]刘伟,胡以华,王恩宏等.星载光电跟踪关键技术研究[J].红外与激光工程,2007,36(增刊):67-70.
    [39]陆培国,寿少峻.舰载光电系统高精度跟踪控制技术[J].应用光学,2006,27(6):476-483.
    [40]沈永良,徐亚飞.舰载平台下的光电跟踪技术[J].火力与指挥控制,2008,33(7):13-15.
    [41]张海洋,苏秀琴,郝伟等.舰载光电经纬仪预测跟踪技术研究[J].光子学报,2008,37(9):1878-1882
    [42]李焱,陈涛,曹立华等.舰载光电设备跟踪掠海目标的控制[J].光学精密工程,2010,18(4):935-942.
    [43]孙隆和,卢广山.机载光电探测、跟踪、瞄准系统技术分析及发展研究[J],电光与控制,1995,58(2):1-10。
    [44]贾平,张葆.航空光电侦察平台关键技术及其发展[J].光学精密工程,2003,11(1):82-88.
    [45]刘兴运,安成斌,黄富元等.机载红外搜索跟踪技术研究[J].激光与红外,2001,31(5):273-276.
    [46]吉侗柏.地平式光测跟星系统天顶盲区及跟踪算法研究[D].长春:中国科学院研究生院博士论文,2003.
    [47] Tomizuka M. Zero phase error tracking algorithm for digital control[J]. ASMETransactions Journal of Dynamic System, Measurement and Control,1987,109:65–68.
    [48]董小萌,张平.两轴稳定平台的过顶盲区问题[J].北京航空航天大学学报,2007,33(7):811-815.
    [49]蒋力,苏秋萍.目标过顶的程序跟踪控制技术[J].现代电子技术,2005,8:42-44.
    [50]刘兴法,马佳光,苏赋.三轴光电跟踪系统的实时引导[J].光电工程,2006,33(12):1-4.
    [51]刘兴法.三轴光电跟踪系统对地平式天顶盲区出入点的判定方法[J].应用光学,2008,29(4):488-492.
    [52]刘兴法,马佳光,岑明.天顶附近三轴光电跟踪系统Z轴运动状态分析[J].光子学报,2008,37(10):2067-2071.
    [53]倪谷炎,华卫红,姜宗福等三轴跟踪平台算法研究[J].国防科技大学学报,2005,25(1):115-118.
    [54]张大兴,贾建援,张爱梅等.基于粒子群算法的三轴跟瞄装置跟踪策略研究[J].仪器仪表学报,2009,39(9):1841-1845.
    [55]李岩.光电稳定跟踪装置误差建模与评价问题研究[D].长沙:国防科技大学博士论文,2008.
    [56]冯兴强.光电经纬仪的快速捕获与稳定跟踪控制系统[D].成都:电子科技大学硕士论文,2004.
    [57] Pu Y G, Qi L. Nonlinear friction grey sliding mode control for gyro stabilizedplatform[J]. Systems Engineering and Electronics,2008,30:1328-1332.
    [58] Xia J Z, Menq C H. Precision tracking control of non-minimum phase systemswith zero phase error [J]. International Journal of Control,1995,61(4):791–807.
    [59] Lo C C. Three-axis contouring control based on a trajectory coordinate basis[J].JSME international journal. Series C, Mechanical Systems, Machine Elementsand Manufacturing,1998,41(2):242–247.
    [60] Xie Yue, Vilathgamuwa D M, Tseng K J. Robust adaptive control of a three-axismotion simulator with state observers[J]. IEEE/ASME Transactions onMechatronics,2005,10(4):437-448.
    [61] Sun Dong, Shao Xiaoyin. A model-free cross-coupled control for positionsynchronization of multi-axis motions: theory and experiments[J]. IEEETransactions on Control Systems Technology,2007,15(2):306-314.
    [62]陈益.具有目的域的光电稳定跟踪系统满意控制策略[D].南京:南京理工大学博士论文,2010.
    [63]马利伟.基于光纤陀螺的光电平台稳定控制研究[D].哈尔滨:哈尔滨工业大学硕士论文,2007.
    [64]徐智勇,袁家虎,黄祖华等.精确修正光电经纬仪中的系统误差方法研究[J].光电工程,1998,25(Sup):55-58.
    [65]白廷柱,邹正峰,芦汉生等.光电跟踪定位系统统计跟踪率误差测试研究[J],北京理工大学学报,2001,21(5):618-621.
    [66]王连明,葛文奇,李杰.跟踪系统中跟踪延迟的自适应预测补偿方法[J].光电工程,2002,29(4):13-16.
    [67]王家骐,金光,颜昌翔.机载光电跟踪测量设备的目标定位误差分析[J].光学精密工程,2005,13(2):105-116.
    [68]王辉华,刘文化,张世英等.舰载光电跟踪系统跟踪误差源分析[J].电光与控制,2007,14(2):100-103.
    [69]刘廷霞.光电跟踪系统复合轴伺服控制技术的研究[D].北京:中国科学院研究生院博士论文,2005.
    [70]张智永.光电稳定伺服机构的关键测控问题研究[D].长沙:国防科技大学博士论文,2006.
    [71] Liu Zhigang, Wang Junzheng, Zhao jiangbo. Cross-coupled control for Three-axisturntable target tracking system[C]. Control Conference,2007:77-81
    [72]王忠山,曾鸣,苏宝库.数字伺服系统中微分控制律的实现[J].电机与控制学报,2006,10(3):336-340.
    [73]薛开,王平,王文斌等.基于多轴运动控制器的二轴转台控制系统[J].哈尔滨工程大学学报,2006,27(4):570-573.
    [74]赵长德,徐力.用于瞄准线稳定和跟踪的计算机控制系统[J].电光与控制,1997,3:20-25.
    [75]黄永梅,张桐,马佳光等.高精度跟踪控制系统中电流环控制技术研究[J].光电工程,2005,32(1):16-19.
    [76]毕永利,刘洵.机载多框架陀螺稳定平台速度稳定环设计[J].光电工程,2004,31(2):16-18.
    [77]姬伟,李奇.陀螺稳定平台伺服系统非线性特性补偿控制[J].电气传动,2005,25(7):31-34.
    [78]骆顺奇.光电桅杆瞄准稳定最优控制系统[J].舰船光学,1999,2:1-4.
    [79] Peter J K, Phonda L K, Ian A. Adaptive compensation for pointing and trackingsystem application[C]. Proceedings of the1999IEEE International Conference onControl Application Hawai’I, USA,1999:82-91.
    [80] Pablo O A,Raman K M, Bradley B. New generation high speed turret and pseudobang-bang controller[C]. Proceedings of the American control conference,2001,6:2561-2566.
    [81]黄永梅,傅承毓.模糊控制对精密实时跟踪控制系统性能的改善[J].光电工程,1999,26(l):16-17.
    [82]柴瑞娟,孟妹娟.模糊控制理论在雷达天控系统中的应用[J].电光与控制,2002,9(2): l-3.
    [83]李军伟,赵克定,吴盛林.一种基于模糊补偿的自适应控制在液压转台中的应用[J].航空学报,2003,24(l):72-74.
    [84]牟客,卢广山.模糊控制在机载光电跟踪系统中的应用[J].电光与控制,2001,84(4):15-20.
    [85]耿延洛,姜长生,张宏.机载光电跟踪系统基于遗传算法的模糊控制器优化设计研究[J].南京航空航天大学学报,2001,33(4):360-365.
    [86]阎洁,唐建中,史维祥等. FUZZY控制在舰载雷达稳定平台伺服系统中的应用[J].兵工学报,1999,20(2):182-185.
    [87]卢广山,姜长生,张宏.机载光电跟踪系统模糊控制的优化设计与仿真[J].航空学报,2002,23(1):85-87.
    [88]卢广山.高精度机载光电跟踪系统的自适应算法研究[J].西北工业大学学报,2002,20(4):563-566.
    [89] Krishna M, Rajeev M, Hari B. Fuzzy controller for line-of-sight stabilizationsystems[J]. Optical Engineering,2004,43(6):1394-1400.
    [90]郦小敏,王卫红,王宗学.基于RBFN的伺服系统前馈控制器设计和仿真研究[J].航空学报,2003,24(3):266-268.
    [91]宋中民,陈兴林,段广仁等.神经网络在转台控制系统设计中的应用[J].系统仿真学报,2004,16(4):647-650.
    [92]石红生,卢广山.一种新型状态观测器的陀螺稳定平台中的应用[J].电光与控制,1999,1:24-28.
    [93]王连明,葛文奇.陀螺稳定平台速度环的一种神经网络自适应控制方法[J].光电工程,2001,28(4):9-12.
    [94]黄显林,尹航.高精度陀螺稳定跟踪系统神经网络预测控制[J].系统工程与电子技术,2000,22(12):63-65.
    [95] Lin Chunliang, Hsiao Yi Hsing. Adaptive feed forward control for disturbancetorque rejection in seeker stabilizing loop[J]. IEEE Transactions on ControlSystems Technology,2001,1:108-121.
    [96]孙宜标,金石,王成元.直接驱动环形永磁力矩电机μ-H∞速度控制器设计[J].中国电机工程学报,2007,27(3):35-39.
    [97]刘富春,姚郁,傅绍文.仿真转台系统非脆弱鲁棒控制器设计[J].电机与控制学报,2006,10(5):517-521.
    [98]魏宗康,徐强.平台稳定回路H∞鲁棒控制设计[J].中国惯性技术学报,2001,9(3):1-8.
    [99]刘珊中,孙隆和,车宏.机载光电跟瞄平台建模及其H∞稳定控制[J]系统仿真学报,2008,20(6):1518-1522.
    [100] Marathe R, Krishna M. H∞Control law for line-of sight stabilization for mobileland vehicles[J]. Optical Engineering,2002,41(11):2935-2944.
    [101]于金盈,许宏光,赵克定等.全阶滑模变结构解耦控制器在液压转台设计中的应用[J].航空学报,2005,26(3):376-379.
    [102] Yuri B Shtessei. Sliding mode stabilization of three axis inertial platform[C].IEEE proceeding of26thsoutheastern symposium on system theory,1994:54-58.
    [103]伍小芹,黄德鸣.平台稳定回路的变结构控制[J].海南大学学报(自然科学版),2001,19(2):132-135.
    [104] Haessig D, James D. Modern control methods applied to a line-of sightstabilization and tracking system[C]. Proceedings of the American ControlConference,1987:1491-1498.
    [105] William J B, Steven P T. Optimal motion stabilization control of an electro-opticalSight System[C]. SPIE, Acquisition, Tracking, and Pointing III Proceedings,1482:116-120.
    [106] Bo Li, David Hullender. Self-tuning controller for nonlinear inertial stabilizationsystem[C]. IEEE Transactions on Control Systems Technology,1998,6(3):428-434.
    [107] Horton M J. Fuzzy logic extended rule set for multi-target tracking[J]. SPIE,2468:106-117.
    [108] Allen J S, Nguyen E M. Design of an automatic focus control unit using fuzzylogic[J]. SPIE,2755:363-374.
    [109] Miller M D, Dummond O E. Comparison of methodologies for mitigatingcoordinate transformation bias in target tracking[J]. SPIE,2000,4048:414-427.
    [110] Kumar A, Shalom Y B, Oran E. Precision tracking based on segmentation withoptimal layering for imaging sensors[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence,1995,17(2):182-188.
    [111] Li Tianze, Wang Shuyun, Zhang Xia. Space tracking system and its keytechnological analyses[C].5th International Conference on WirelessCommunications, Networking and Mobile Computing,2009:1-4.
    [112]黄一,吕俊芳,卢广山.机载光电跟瞄平台稳定与跟踪控制方法研究[J].飞机设计,2003,3:38-42.
    [113]范大鹏,张智永,范世珣等.光电稳定跟踪装置的稳定机理分析研究[J].光学精密工程,2006,14(8):673-680.
    [114]宁大勇,高云国.车载光电跟踪设备高精度控制方法及仿真[J].光电工程,2008,35(11):8-12.
    [115]王晓军,贾继强,王俊善.机载三轴稳定平台跟踪方法研究与仿真[J].计算机仿真,2008,25(5):51-54.
    [116]黄永梅,马佳光,付承毓.目标速度预测在光电跟踪控制系统中的应用[J].红外与激光工程,2004,33(5):477-481.
    [117]吴晗平,易新建,杨坤涛.机械结构因素对光电跟踪伺服系统性能的影响[J].应用光学,2004,25(3):11-14.
    [118]柳井莉,陈方斌,王红红等.基于自适应算法的光电跟踪转台摩擦补偿方法研究[J].应用光学,2010,31(4):533-536.
    [119] Fjellstad O E, Fossen T I. Position and attitude tracking of AUV's: a quaternionfeedback approach[J]. IEEE Journal of Oceanic Engineering,1994,19(4):512-518.
    [120] Joshi S M, Kelkar A G, Wen J T. Robust attitude stabilization of spacecraft usingnonlinear quaternion feedback[J]. IEEE Transactions on Automatic Control,1995,40(10):1800-1803.
    [121] Wu Y X, Hu X P, Hu D W, et al. Strapdown inertial navigation system algorithmsbased on dual quaternions[J]. IEEE Transactions on Aerospace and ElectronicSystems,2005,41(1):110-132.
    [122] Wu Y X, Hu X P, WU M P, et al. Strapdown inertial navigation using dualquaternion algebra: error analysis[J]. IEEE Transactions on Aerospace andElectronic Systems,2006,42(1):259-266.
    [123] Han D P, Wei Q, Li Z X. Kinematic control of free rigid bodies using dualquaternions[J]. International Journal of Automation and Computing,2008,5(3):319-324.
    [124] Kristiansen R, Nicklasson P J, Gravdahl J T. Satellite attitude control byquaternion-based backstepping[J]. IEEE Transactions on Control SystemsTechnology,2009,17(1):227-232.
    [125] Suh Y S. Orientation estimation using a quaternion-based indirect Kalman filterwith adaptive estimation of external acceleration[J]. IEEE Trans. Instrumentationand Measurement,2010,59(12):3296-3305.
    [126]李桃生.四元数矩阵的特征值与特征向量[J].华中师范大学学报(自然科学版),1995,29(4):407-411.
    [127]陈万春,肖也伦,赵丽红等.四元数核心矩阵及其在航天器姿态控制之中的应用[J].航空学报,2000,9(5):389-392.
    [128]周江华,苗育红,李宏等.四元数在刚体姿态仿真中的应用研究[J].飞行力学,2000,18(4):28-31.
    [129]曾凡,朱建太.刚体姿态仿真方法研究[J].航空计算技术,2003,33(3):14-18.
    [130]刘俊峰.三维转动的四元数表述[J].大学物理,2004,23(4):39-43.
    [131]王亚锋,孙富春,张友安.一种应用四元数的快速传递对准方法[J].中国惯性技术学报,2006,14(4):1-6.
    [132]刘忠,梁晓庚,曹秉刚等.基于四元数的空间全空间算法研究[J].西安交通大学学报,2006,40(5):618-620.
    [133]毛克诚,孙付平.捷联惯导系统四元数转换误差分析[J].测绘科学技术学报,2006,23(4):284-286.
    [134]王博,缪玲娟,汪顺亭. GPS姿态测量中四元数迭代算法的改进[J].北京理工大学学报,2007,27(6):521-526.
    [135]王不了,冯良贵.四元数的实矩阵表示[J].国防科技大学学报,2010,32(4):165-168.
    [136]祝乔,汪旭东,崔家瑞.基于四元数的航天器姿态非线性控制器[J].信息与控制,2012,41(2):170-173.
    [137]马韬,陈杰,陈文颉.对偶四元数捷联惯性导航系统初始对准方法[J].北京理工大学学报,2012,32(1):56-61.
    [138]刘兴法,马佳光,刘顺发等.视轴偏角对三轴光电跟踪系统跟踪过程的影响[J].光电工程,2005,32(5):4-8.
    [139]刘兴法,马佳光,陈洪斌等.偏距对改进X-Y双轴式光电跟踪系统跟踪性能的影响[J].光电工程,2006,33(5):1-5.
    [140]徐征峰,陈洪斌,刘顺发.视轴偏心三轴跟踪机架指向精度分析[J].光电工程,2007,34(4):12-16.
    [141] Adi Ben-Israel, Thomas N E Greville. Generalized inverse theory andapplications[M]. New York: John Wiely,1974.
    [142] Mishra B. Algorithmic algebra[M]. NewYork: Springer-Verlag,1993.
    [143]戴华.矩阵论[M].北京:科学出版社,2002.
    [144]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [145]方保镕,周继东,李医民.矩阵论[M].北京:清华大学出版社,2004.
    [146]陈永林.广义逆矩阵的理论与方法[M].南京:南京师范大学出版社,2005.
    [147] Medhat A Rakha. On the moore-penrose generalized inverse matrix[J]. AppliedMathematics and Computation,2004,158(1):185-200.
    [148] Yuan Wangui, Liao Zuhua. The generalized moore-penrose inverses of matricesover rings[C]. The Proceedings of the Seventh International Conference on MatrixTheory and Applications, Liverpool World Academic Union,2006:289-292.
    [149]邹红星,王殿军,戴琼海等.行(或列)对称矩阵的QR分解[J].中国科学(A辑),2002,32(9):842-849.
    [150]周笋,吉国力.基于改进BP算法的广义逆矩阵求解方法[J].厦门大学学报(自然科学版),2003,42(3):386-389.
    [151]朱超,曹丽琼,陈果良.几类广义逆矩阵的若干性质[J].华东师范大学学报(自然科学版),2006,3:26-31.
    [152]安凯,宋黎定,马佳光.卫星姿态滑模变结构控制的广义逆方法[J].光电工程,2007,34(5):1-4.
    [153]鲁铁定,宁津生,周世健等.最小二乘配置的QR分解解法[J].辽宁工程技术大学学报(自然科学版),2009,28(4):550-553.
    [154]袁晖坪,王行荣,李庆玉.行(列)反对称矩阵的满秩分解和广义逆[J].数学杂志,2009,29(4):513-518.
    [155]刘国海,张懿,魏海峰等.多输入多输出非线性系统的最小二乘支持向量机广义逆控制[J].控制理论与应用,2012,29(4):492-496.
    [156] Storn R,Price K. Differential evolution: a simple and efficient heuristic for globaloptimization over continuous spaces[J]. Journal of global optimization,1997,11(4):341-359.
    [157] Storn R. On the usage of differential evolution for function optimization[C].Proceedings of the Biennial Conference of the North American Fuzzy InformationProcessing Society. Piscataway: IEEE,1996:519-523.
    [158] Storn R. Designing nonstandard filters with differential evolution[J]. IEEE SignalProcessing Magazine,2005,22(1):103-106.
    [159] I. L. Lopez Cruz, L.G. Van Willigenburg, G. Van Straten. Optimal control ofnitrate in lettuce by a hybrid approach: Differential evolution and adjustablecontrol weight gradient algorithms[J]. Computers and Electronics in Agriculture,2003,40(1-3):179-197.
    [160] Chiou J P, Chang C F, Su C T. Ant direction hybrid differential evolution forsolving large capacitor placement problems[J]. IEEE Transactions on PowerSystems,2004,19(4):17941800.
    [161] Kannan S, Slochanal S M R, Padhy N P. Application and comparison of metheuristic techniques to generation expansion planning problem[J]. IEEETransactions on Power Systems,2005,20(1):466-475.
    [162] Qin A K, Suganthan P N. Self-adaptive Differential evolution algorithm fornumerical optimization[C]. Proceedings of Congress on EvolutionaryComputation. New Jersey: IEEE,2005:1785-1791.
    [163] Luis V S Q, Carlos A C C. An algorithm based on differential evolution formulti-objective problems[J]. International Journal of Computational IntelligenceResearch,2005,1(2):151-169.
    [164] Tan K C, Yang Y J, Goh C K. A distributed cooperative co-evolutionary algorithmfor multi-objective optimization[J]. IEEE Transactions on EvolutionaryComputation,2006,10(5):527-549.
    [165] Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters indifferential evolution: A comparative study on numerical benchmark problems[J].IEEE Transactions on Evolutionary Computation,2006,10(6):646-657.
    [166] Zamuda A,Brest J,Boskovic B,et al. Differential evolution for multiobjectiveoptimization with self adaptation[C]. IEEE Congress on EvolutionaryComputation,2007:3617-3624.
    [167] Huang F, Wang L, He Q. An effective co-evolutionary differential evolution forconstrained optimization[J]. Applied Mathematics and Computation,2007,186(1):340-356.
    [168] Wang Y, Cai Z X, Guo G Q, et a.l Multi-objective optimization and hybridevolutionary algorithm to solve constrained optimization problems[J]. IEEE Transon Systems, Man, and Cybernetics (B),2007,37(3):560-575.
    [169] Wang Y, Cai Z, Zhou Y, et al An Adaptive trade-off model for constrainedevolutionary optimization[J]. IEEE Transactions on Evolutionary Computation,2008,12(1):80-92.
    [170] Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm withstrategy adaptation for global numerical optimization[J]. IEEE Transactions onEvolutionary Computation,2009,13(2):398-417.
    [171]刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729.
    [172]黄章俊,王成恩,马明旭.一种求解约束优化问题的改进差分进化算法[J].东北大学学报(自然科学版),2009,30(7):936-939.
    [173]戈剑武,祁荣宾,钱锋等.一种改进的自适应差分进化算法[J].华东理工大学学报(自然科学版),2009,35(4):600-605.
    [174]赵云涛,王京,宋勇等.具有转换函数的均匀差分进化算法及性能分析[J].控制理论与应用,2009,26(9):1014-1018.
    [175]牛大鹏,王福利,何大阔等.多目标混沌差分进化算法[J].控制与决策,2009,24(3):361-370.
    [176]常俊林,李亚朋,马小平等.基于改进差分进化算法的PID优化设计[J].控制工程,2010,17(6):807-810.
    [177]李庆良,雷虎民,邵雷等.一种基于差分进化算法的多模型建模方法[J].控制与决策,2010,25(12):1866-1869.
    [178]谭跃,谭冠政,涂立.具有局部搜索策略的差分进化算法[J].计算机工程与应用,2009,45(7):56-58.
    [179]卢峰,高立群.基于多种群的自适应差分进化算法[J].东北大学学报(自然科学版),2010,31(11):1538-1541.
    [180]姚峰,杨卫东,张明等.改进自适应变空间差分进化算法[J].控制理论与应用,2010,27(1):32-38.
    [181]葛延峰,金文静,高立群等.多种群并行的自适应差分进化算法[J].东北大学学报(自然科学版).2011,32(4):481-484.
    [182] Feoktistov V, Janaqi S. Generalization of the strategies in differential evolution[C].Proceedings of the18th International Parallel and Distributed ProcessingSymposium. Santa Fe,2004:165-170.
    [183] Bergey P K, Ragsdale C. Modified differential evolution: A greedy randomstrategy for genetic recombination[J]. Omega,2005,33(3):255-265.
    [184] Kaelo P, Ali M M. A numerical study of some modified differential evolutionalgorithms[J]. European J of Operational Research,2006,169(3):1176-1184.
    [185] Lee M H, Han C H, Chang K S. Dynamic optimization of a continuous polymerreactor using a modified differential evolution algorithm[J]. Industrial&Engineering Chemistry Research,1999,38(12):4825-4831.
    [186] Fan H Y, Lampinen J. A trigonometric mutation operation to differential evolution[J]. Journal of Global Optimization,2003,27(1):105-129.
    [187] Chiou J P, Chang C F, Su C T. Variable scaling hybrid differential evolution forsolving network reconfiguration of distribution systems[J]. IEEE Transactions onPower Systems,2005,20(2):668-674.
    [188] Liu J, Lampinen J. A fuzzy adaptive differential evolution algorithm[J]. SoftComputing,2005,9(6):448-462.
    [189]吴亮红,王耀南,袁小芳等.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):898-902.
    [190]高岳林,刘俊梅.一种带有随机变异的动态差分进化算法[J].计算机应用,2009,29(10):2719-2722.
    [191]杨卫东,姚峰,张明.基于自适应交叉概率因子的差分进化算法及其应用[J].信息与控制,2010,39(2):187-193.
    [192] Wang F S, Jing C H, Tsao G T. Fuzzy-decision-making problems of fuel ethanolproduction using a genetically engineered yeast[J]. Industrial&EngineeringChemistry Research,1998,37(8):3434-3443.
    [193] Lin Y C, Hwang K S, Wang F S. A mixed-coding scheme of evolutionaryalgorithms to solve mixed-integer nonlinear programming problems[J].Computers&Mathematics with Applications,2004,47(8/9):1295-1307.
    [194] Zaharie D. Control of population diversity andadaptation in differential evolutionalgorithms[C]. The9th International Conference on Soft Computing. Mendel,2003:41-46.
    [195] Cheng S L, Hwang C. Optimal approximation of linear systems by a differentialevolution algorithm[J]. IEEE Transactions on Systems, Man and Cybernetics: A,2001,31(6):698-707.
    [196] Sun J Y, Zhang Q F, Tsang E P K. DE/EDA: A new evolutionary algorithm forglobal optimization[J]. Information Sciences,2005,169(3/4):249-262.
    [197] Zaharie D. A multipopulation differential evolution algorithm for multimodaloptimization[C]. The10th Int Conf on Soft Computing. Mendel,2004:16-18.
    [198] Qing A Y. Electromagnetic inverse scattering of multiple perfectly conductingcylinders by differential evolution strategy with individuals in groups (GDES)[J].IEEE Transactions on Antennas and Propagation,2004,52(5):1223-1229.
    [199] Plagianakos V P, Vrahatis M N. Parallel evolutionary training algorithms for“hardware-friendly” neural networks[J]. Natural Computing,2001,1(2/3):307-322.
    [200] Chiou J P, Chang C F, Su C T. Ant direction hybrid differential evolution forsolving large capacitor placement problems[J]. IEEE Transactions on PowerSystems,2004,19(4):1794-1800.
    [201] Hrstka O, Kucerova A. Improvements of real coded genetic algorithms based ondifferential operators preventing premature convergence[J]. Advances inEngineering Software,2004,35(3/4):237-246.
    [202] Wang F S, Chiou J P. Optimal control and optimal time location problems ofdifferential-algebraic systems by differential evolution[J]. Industrial&Engineering Chemistry Research,1997,36(12):5348-5357.
    [203]方强,陈德钊,俞欢军等.基于优进策略的差分进化算法及其化工应用[J].化工学报,2004,55(4):598-602.
    [204]李颖.脑电逆问题求解的数值计算方法研究[D].天津:河北工业大学,2003:66-68.
    [205] Zaharie D. Critical values for the control parameters of differential evolutionalgorithms[C].8th International Mendel Conference on Soft Computing.2002:62-67.
    [206] Karaboga D, Okdem S. A Simple and global optimization algorithm forengineering problems: differential evolution algorithm[J]. Turk Journal ElectricalEngineering,2004,12(1):53-60.
    [207] Chang C S, Du D. Further improvement of optimization method for mass transitsignaling block-layout design using differential evolution[J]. IEEE Proceedings onElectric Power Applications,1999,146(5):559-569.
    [208]周辉仁,唐万生,王海龙.基于差分进化算法的多旅行商问题优化[J].系统工程理论与实践,2010,30(8):1471-1476.
    [209] George D M, Vassilis P P, Michael N V. Neural net-work-based colonoscopicdiagnosis using on-line learning and differential evolution[J]. Applied SoftComputing,2004,(4):369-379.
    [210] Iionen J, Kamarainen J K, Lampinen J. Differential evolution training algorithmfor feed-forward neural networks[J]. Neural Processing Letters,2003,(17):93-105.
    [211] Abbass H A. An evolutionary artificial neural networks approach for breast cancerdiagnosis [J]. Artificial Intelligence in Medicine,2002,25(3):265-281.
    [212] Liu B, Wang L, Jin Y H, et al. Designing neural networks using hybrid particleswarm optimization[C]. Lecture Notes in Computer Science. Berlin: Springer,2005:391-397.
    [213]王刚,高阳,夏洁.基于差异进化算法的人工神经网络快速训练研究[J].管理学报,2005,2(4):450-454.
    [214] Hassan Y, Heikki H, Azita S. Application of differential evolution in systemidentification of a servo-hydraulic system with a flexible load[J]. Mechatronics,2008,18(9):513–528
    [215] Aydin S, Temeltas H. Fuzzy-differential evolution algorithm for planningtime-optimal trajectories of a unicycle mobile robot on a predefined path[J].Advanced Robotics,2004,18(7):725-748.
    [216] Joshi R, Sanderson A C. Minimal representation multisensor fusion usingdifferential evolution[J]. IEEE Transactions on Systems, Man and Cybernetics: A,1999,29(1):63-76.
    [217]冯琦,周德云.基于微分进化算法的时间最优路径规划[J].计算机工程与应用,2005,(12):74-75.
    [218] Doyle S, Corcoran D, Connell J. Automated mirror design using an evolutionstrategy[J]. Optical Engineering,1999,38(2):323-333.
    [219]宋立明,李军,丰镇平.跨音速透平扭叶片的气动优化设计研究[J].西安交通大学学报,2005,39(11):1277-1281.
    [220]张吴明,钟约先.基于改进差分进化算法的相机标定研究[J].光学技术,2004,30(6):720-723.
    [221]杨晓明,邱清盈,冯培恩等.盘式制动器的全性能优化设计[J].中国机械工程,2005,16(7):630-633.
    [222] Caorsi S, Massa A, Pastorino M, et al. Optimization of the difference patterns formonopulse antennas by a hybrid real/integer-coded differential evolutionmethod[J]. IEEE Transations on Antennas and Propagation,2005,53(1):372-376.
    [223] Li Y, Rao L Y, He R J, et al. A novel combination method of electrical impedance-tomography inverse problem for brain imaging[J]. IEEE Transactions onMagnetics,2005,41(5):1848-1851.
    [224] Yang S W, Gan Y B, Qing A Y. Moving phase center antenna arrays withoptimized static excitations[J]. Microwave and Optical Technology Letters,2003,38(1):83-85.
    [225] Chakraborti N, Deb K, Jha A. A genetic algorithm based heat transfer analysis of abloom re-heating furnace[J]. Steel Research,2000,71(10):396-402.
    [226] Lee M H, Han C H, Chang K S. Dynamic optimization of a continuous polymerreactor using a modified differential evolution algorithm[J]. Industrial&Engineering Chemistry Research,1999,38(12):4825-4831.
    [227] Chaitali M, Kapadi M, Suraishkumar G K, et al. Productivity improvement inxanthan gum fermentation using multiple substrate optimization[J].Biotechnology Progress,2003,19(4):1190-1198.
    [228] Kapadi M D, Gudi R D. Optimal control of fed-batch fermentation involvingmultiple feeds using differential evolution[J]. Process Biochemistry,2004,39(11):1709-1721.
    [229] Wang F S, Jing C H, Tsao G T. Fuzzy-decision-making problems of fuel ethanolproduction using a genetically engineered yeast[J]. Industrial&EngineeringChemistry Research,1998,37(8):3434-3443.
    [230] Chiou J P, Wang F S. Hybrid method of evolutionary algorithms for static anddynamic optimization problems with application to a fed-batch fermentationprocess[J]. Computers&Chemical Engineering,1999,23(9):1277-1291.
    [231] Kannan S, Slochanal S, Padhy N. Application and comparison of metaheuristictechniques to generation expansion planning problem[J]. IEEE Transactions onPower Systems,2005,20(1):466-475.
    [232] Chang Y P, Wu C J. Optimal multiobjective planning of large-scale passiveharmonic filters using hybrid differential evolution method considering parameterand loading uncertainty[J]. IEEE Transactions on Power Delivery,2005,20(1):408-416.
    [233] Crutchley D A, Zwolinski M. Globally convergent algorithms for DC operatingpoint analysis of nonlinear circuits[J]. IEEE Transactions on EvolutionaryComputation,2003,7(1):2-10.
    [234]辜承林.机电动力系统分析[M].武汉:华中理工大学,1998.
    [235] Nordin M, Gutman P O. Controlling mechanical systems with backlash—asurvey[J], Automatica,2002,38:1633-1649.
    [236]张大兴.三轴ATP运动平台若干关键问题研究[D].西安:西安电子科技大学博士论文,2008.
    [237] Rastko R S, Frank L L,Neural net backlash compensation with Hebbian tuningusing dynamic inversion[J]. Automatica,2001,37:1269-1277.
    [238] Denis Gc, Krishnaswamy S. Adaptive friction compensation for precisionmachine tool drive[J]. Control Engineering Practice,2004,12:1451-1464.
    [239] Suraneni S, Kar I N, Ramana Murthy O V, et al. Adaptive stick–slip friction andbacklash compensation using dynamic fuzzy logic system[J]. Applied SoftComputing,2005,6:26-37.
    [240]翟百臣.直流PWM伺服系统低速平稳性研究[D].长春:中国科学院研究生院博士论文.2005.
    [241]孙增圻.智能控制理论与技术[M].北京:清华大学出版社,1997.
    [242]张化光,何希勤.模糊自适应控制理论及其应用[M].北京:北京航空航天大学出版社,2002.
    [243]刘金琨.先进PID控制MATALB仿真[M].北京:电子工业出版社,2004.
    [244] Gao Z Q, Trautzsch T A, Dawson J G. A stable self-tuning fuzzy logic controlsystem for industrial temperature regulation[J]. IEEE Transactions on IndustryApplications,2002,38(2):414-424.
    [245] Ho S J, Shu L S, Ho S Y. Optimizing fuzzy neural networks for tuning PIDcontrollers using an orthogonal simulated annealing algorithm OSA[J]. IEEETransactions on Fuzzy System,2006,14(3):421-434.
    [246] Li Hanxiong, Zhang Lei, Cai Kaiyuan, et al. An improved robust fuzzy-PIDcontroller with optimal fuzzy reasoning[J]. IEEE Transactions on Systems, Man,and Cybernetics, Part B,2005,35(6):1283–1294.
    [247] Rubaai A, Castro-Sitiriche M J, Ofoli A R. Design and implementation of parallelFuzzy PID controller for high-performance brushless motor drives, an integratedenvironment for rapid control prototyping[J]. IEEE Transactions on IndustryApplications,2008,44(4):1090-1098.
    [248] Rubaai A, Castro-Sitiriche M J, Ofoli A R. DSP-based laboratory implementationof hybrid Fuzzy-PID controller using genetic optimization for high-performancemotor drives[J]. IEEE Transactions on Industry Applications,2008,44(6):1977-1986.
    [249] Meza J L, Santibanez V, Soto R, et al. Fuzzy self-tuning PID semiglobal regulatorfor robot manipulators[J]. IEEE Transactions on Industrial Electronics,2012,59(6):2709–2717.
    [250] Amer A F, Sallam E A, Elawady W M. Fuzzy pre-compensated fuzzy self-tuningfuzzy PID controller of3DOF planar robot manipulators[C].2010IEEE/ASMEInternational Conference on Digital Object Identifier:599-604.
    [251] Sinthipsomboon K, Hunsacharoonroj I, Khedari J, et al. A hybrid of fuzzy andfuzzy self-tuning PID controller for servo electro-hydraulic system[C].20116thIEEE Conference on Industrial Electronics and Applications (ICIEA),2011:220–225.
    [252] Tang K S, Kim F M, Chen G R, et al. An optimal fuzzy PID controller[J]. IEEETransactions on Industrial Electronics,2011,48(4):757-765.
    [253] Wei Wei, Shuxiang Guo. A microfluidic system with fuzzy PID controller[C].2011IEEE/ICME International Conference on Complex Medical Engineering(CME),2011:47-52.
    [254]钱翔宇,尹义林.智能PID控制器在光电经纬仪系统中的应用研究[J].光电工程,2000,27(1):12-21.
    [255]侯宏录,周德云,王伟等.模糊PID控制在光电跟踪控制系统中的应用[J].光电工程,2006,33(5):12-16.
    [256]高嵩,朱峰,肖秦琨等.机载光电跟踪系统的模糊自整定PID控制[J].西安工业大学学报,2007,27(4):312-316
    [257]姬伟,李奇.自适应模糊PID控制器在跟踪器瞄准线稳定系统中的应用[J].控制理论与应用,2008,25(2):278-283.
    [258]陈益,薄煜明,邹卫军.模糊自适应PID控制在高精度光电跟踪伺服系统中的应用[J].火炮发射与控制学报,2008,4:33-36.
    [259]熊皑,范永坤,吴钦章.变结构PI控制器的设计及其在光电跟踪系统中的应用[J].光学精密工程,2010,18(8):1855-1861.
    [260]周涛,朱景成.机载光电跟踪平台伺服系统自抗扰控制[J].光电工程,2011,38(4):31-36.
    [261]刘国荣.模型参考模糊自适应控制[J].控制理论与应用,1996,13(1):92-97.
    [262]刘国荣,万百五.一类非线性MIMO系统的直接自适应模糊鲁棒控制[J].控制理论与应用,2002,19(5):693-698.
    [263]刘国荣,万百五.一类非线性MIMO系统的间接自适应模糊鲁棒控制[J].控制理论与应用,2002,17(增刊):676-680.
    [264]吴振顺,姚建均,岳东海.模糊自整定PID控制器的设计及其应用[J].哈尔滨工业大学学报,2004,36(11):1578-1580.
    [265]高宪文,赵亚平.模糊自适应PID在焦炉控制中的仿真[J].东北大学学报(自然科学版),2006,27(10):1067-1070.
    [266]丁永生,应浩.解析模糊控制理论:模糊控制系统的结构和稳定性分析[J].控制与决策,2000,15(2):129-135.
    [267]赵延东,于锡纯.模糊控制器的稳定性分析[J].控制与决策,2002,17(5):631-634.
    [268]陈宝贤,吴蓉晖,陈燕.模糊PID无源稳定性分析[J].湖南大学学报(自然科学版),2003,30(6):102-104.
    [269]修智宏,任光. TS-PID模糊控制器的IO稳定性分析[J].系统工程与电子技术,2004,26(4):509-513.
    [270]朱峰,过晓芳.模糊PID控制系统稳定性分析[J].科技信息,2008,9:4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700