用户名: 密码: 验证码:
CdSe量子点发光性质调控和高效胶体量子点发光二极管制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体量子点具有尺寸可调谐的光电子性质,已经被广泛地应用于发光二极管、太阳能电池和生物荧光标记。量子点合成技术经过二十多年的发展,人们已经可以合成各种高质量的纳米材料,其光致发光效率可以达到85%以上。由于量子点具有尺寸可调谐的发光、发光线宽窄、光致发光效率高和热稳定性等特点,因此以量子点作为发光层的量子点发光二极管(QD-LED)是极具潜力的下一代显示和固态照明光源。经过科研人员的努力,基于核/壳量子点的QD-LED性能得到了很大的提高,其外量子效率(EQE)从0.001%提高到7%,已经接近于有机发光二极管(OLED)的外量子效率。然而,核/壳量子点中的光物理过程和QD-LED的电致发光机理尚不清楚。因此,研究壳层结构对于量子点光致发光和电致发光性质的影响,对于优化QD-LED器件性能具有重要的意义。本论文主要研究了量子点壳层结构对于其变温发光性质、能量传递过程和电致发光性能的调控,取得的主要研究成果如下:
     1、研究了CdSe(核)CdS/ZnCdS/ZnS(多壳层)结构量子点从80 K到360 K的变温发光性质,理解了其辐射与无辐射弛豫过程在这个温度区间内的变化。随着CdSe量子点壳层结构的变化,其温度相关的无辐射过程从热激活的载流子被表面缺陷俘获演变为多个纵光学(LO)声子辅助的热逃逸过程。在包覆厚的CdS壳层和CdS/ZnCdS/ZnS多壳层结构的量子点中,发现光致发光强度随着温度的升高而升高,归因于CdSe/CdS界面局域载流子的热激活过程,其热激活能约为30 meV。实验结果表明多壳层结构可以有效的减少由表面或界面缺陷引起的无辐射复合,同时宽带隙的ZnS壳层可以将电子-空穴限制在量子点内,因此其具有高的发光量子效率和稳定性。
     2、通过稳态和时间分辨光谱研究了无机/有机混合薄膜中的CdSe核./壳结构量子点与电子传输材料(ETMs),1,3,5-tris(Nphenylbenzimidazol-2,yl) benzene (TPBI)之间的能量传递过程。TPBI的荧光寿命变短和量子点的荧光寿命变长,说明从供体到受体发生了能量传递。当量子点浓度很低的时候,从量子点周围的TPBI分子到量子点的能量传递达到最大,荧光寿命变长也达到最大。通过拟合得到不同壳层结构量子点周围参与能量传递的TPBI分子的激发态寿命,发现TPBI到包覆CdS/ZnCdS/ZnS多壳层量子点的能量传递速率与包覆薄的ZnS壳层的量子点相当,仅略小于包覆CdS壳层的量子点,归因于CdS与ZnCdS壳层的吸收能量与TPBI的发光能量相匹配,有利于能量传递。实验结果表明可以通过壳层的能级结构和厚度来控制有机分子到量子点的能量传递过程。
     3、通过稳态和时间分辨光谱研究了无机/有机混合薄膜中的CdSe核/壳结构量子点与空穴传输材料(HTMs),4,4',4''-Tris(carbazol-9- yl)-triphenylamine (TCTA)或N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'- biphenyl)-4,4'-diamin (TPD)之间的能量传递/电荷分离过程。包覆CdS壳层量子点在TCTA或TPD基质中的荧光寿命明显变短,归因于空穴传输材料对空穴的俘获能力,导致了电荷分离。然而CdSe/CdS/ZnCdS/ZnS核/多壳层量子点在空穴传输材料基质中的荧光寿命没有明显变化,说明多壳层结构有效的抑制了由空穴传输材料引起的电荷分离过程。拟合多壳层结构量子点在TCTA薄膜中的荧光衰减曲线得到,周围TCTA分子到量子点的能量传递效率为35.6%。实验结果表明空穴传输材料的能级结构与量子点的壳层结构共同调控了QD/HTMs混合薄膜中的能量传递/电荷分离过程。
     4、将单层量子点旋涂在热交联传输层上,制作了基于不同壳层结构量子点的有机/无机复合多层结构QD-LED。发现CdSe/CdS的QD-LED的外量子效率随着电流密度的增加迅速下降,同时其最大亮度也低于CdSe/ZnS的QD-LED。在包覆CdS和CdS/ZnCdS/ZnS壳层量子点的QD-LED中发现电致发光峰位相对于包覆ZnS壳层的量子点有较大的红移,归因于在电场下电子波函数扩散到壳层中。结果表明包覆宽带隙ZnS壳层的量子点有利于防止激子在电场下离化。
Semiconductor quantum dots (QDs) with size-tunable emission properties have been widely applied in light-emitting diodes (LEDs), photovoltaic cells, and biological labels. The photoluminescence (PL) quantum yield (QY) of QDs reaches 85%, after two decades’development of synthesis technology for QDs. QD based quantum dot light emitting diodes (QD-LEDs) have potential to be the next generation solid state lighting source for display and illumination due to its size-tunable emission wavelength, narrow emission full width at half maximum (FWHM), high PL QY and thermal stability. Recently, the performances of QD-LEDs have a great improvement, for example the external quantum efficiency (EQE) of QD-LEDs is increased from 0.001% to 7%, which approaches to that of organic light emitting diodes (OLEDs). However, the photo-physics processes of core/shell QDs and the electroluminescence (EL) mechanism of QD-LEDs are still not well understood. Therefore, the study for the effects of shell structures of core/shell QDs on the PL and EL mechanism is very important to optimize the performances of QD-LEDs. We study the temperature dependent PL properties of core/shell QDs, energy transfer/ charge separation of QD/ETM or HTM blend films and EL properties of the core/shell QDs. The original works are organized as follows:
     1. The photoluminescence spectra of CdSe-core CdS/CdZnS/ZnS-multishellquantum dots were studied to understand the radiative and nonradiative relaxationprocesses in the temperature range from 80 to 360 K. The mechanism oftemperature-dependent nonradiative relaxation processes in the CdSe QDs withchanging the shell structures was found to evolve from thermal activation of carriertrapping by surface defects/traps in CdSe core QDs to the multiplelongitudinal-optical (LO) phonon-assisted thermal escape of carriers in the core/shellQDs. An increase in PL intensity with increasing temperature was clearly observed inthe core/shell QDs with a thick CdS monoshell and a CdS/ZnCdS/ZnS multishell. ThePL enhancement was considered to come from delocalization of charge carrierslocalized at the CdSe/CdS interface with the potential depth of 30 meV. Theexperimental results indicated that the improvement of PL quantum efficiency inCdSe-core CdS/CdZnS/ZnS-multishell QDs could be understood in terms of thereduction of nonradiative recombination centers at the interfaces and on the surface ofthe multishell, as well as the confinement of electrons and holes into the QDs by anouter ZnS shell.
     2. The steady-state and time-resolved photoluminescence spectroscopy wasused to study the energy transfer between CdSe core/shell quantum dots and1,3,5-tris(N-phenylbenzimidazol-2,yl) benzene (TPBI) in inorganic/organic blendfilms The shortening in PL lifetime of TPBI molecules and the resulting lengtheningin PL lifetime of the QDs demonstrated an efficient energy transfer process fromdonor to acceptor. The slowest PL decays of CdSe core/shell QDs observed in theblend films with low QD concentration were considered to result from the maximumenergy transfer process from the surrounding TPBI molecules of a QD to itself. ThePL decay curves of the core/shell QDs with a CdS, ZnS, and CdS/ZnCdS/ZnS shellswere simulated to obtain the excited state lifetimes of the surrounding TPBImolecules for understanding the effect of the shells on the energy transfer process. Itwas surprisingly found that the obtained energy transfer rate to a QD with a thickCdS/ZnCdS/ZnS multishell from the surrounding TPBI molecules with the maximumcontribution of the energy transfer was almost the same as that to a QD with a thinZnS monoshell and smaller than that to a QD with a CdS monoshell. Theexperimental results indicated the energy level alignment and the structure of shells inCdSe core/shell QDs determined the energy transfer efficiency from TPBI moleculesto the core/shell QDs.
     3. The steady-state and time-resolved photoluminescence spectroscopy was used to study the energy transfer/ charge separation processes in quantum dots and hole transporting materials (HTMs), 4,4',4''-Tris(carbazol-9-yl)-triphenylamine (TCTA) or N,N-diphenyl-N,N'- bis(3-methylphenyl)-(1,1'- biphenyl)-4,4'-diamin (TPD) blend films. Due to the hole capture ability of HTMs, the PL lifetime of CdS shell coated QDs embedding in TCTA or TPD matrix was significantly shortened. However, the PL lifetime of CdSe/CdS/ZnCdS/ZnS core/multi-shell QDs was not changed in HTMs matrix, indicating that the multi-shell suppressed the charge separation at QD/HTM interface. Fitting the PL decay profile of core/multi-shell QDs in TCTA with low QD concentration, the energy transfer efficiency from surrounding TCTA molecules to the central QD was obtained to 35.6%. The experimental results indicated the energy levels of HTMs and shell structure of QDs control the energy transfer/ charge separation in QD/HTMs blend films.
     4. The colloidal CdSe/CdS, CdSe/ZnS, and CdSe/CdS/CdZnS/ZnS core/shell quantum dots were fabricated in multilayer light-emitting diodes by spin coating a near monolayer of the core/shell QDs on cross-linkable hole transporting layers. It is found that CdSe/CdS QD-LEDs exhibit a faster decrease in EL quantum efficiency (2% at a brightness of 100 cd/m2) with increasing current density and lower maximum brightness than those of CdSe/ZnS QD-LEDs. A more significant redshift and spectral broadening of the EL observed in CdSe core/ shell QDs with a CdS or CdS/CdZnS/ZnS shell than with a ZnS shell indicate that the electron wave function can penetrate into the shell under electric field. The difference in device performance and EL spectra results from conduction band offsets between the CdSe cores and CdS or ZnS shells, suggesting the existence of the exciton ionization in the QD-LEDs.
引文
[1]. Baibieh M N, Broto J M, Fert A, et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices [J]. Phys. Rev. Lett. 1988, 61 (21): 2472-2475.
    [2]. Attenborough K, Hart R, Lane S J, et al. Magnetoresistance in electrodeposited Ni-Fe-Cu/Cu multilayers [J]. J. Mang. Mang. Mater., 1995, 148 (1-2): 335-336.
    [3]. Whiiney T M,Jiang J S,Searson P C, et al. Fabrication and Magnetic Properties of Arrays of Metallic Nanowires [J]. Seience 1993, 261 (5126): 1316-1319.
    [4]. L Piraux, George J M, Despres J F, et al. Giant magnetoresistance in magnetic multilayered nanowires [J]. Appl. Phys. Lett. 1994, 65 (19): 2484-2486.
    [5]. Liu K, Nagodawithana K, Pearson P C, et al. Perpendicular giant magnetoresistance of multilayered Co/Cu nanowires [J]. Phys. Rev. B 1995, 51 (11):7381-7384.
    [6]. Henglein A. Small-particle researchp?hysicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem. Rev. 1989, 89 (8): 1861–1873.
    [7]. Yoffe A D. Low dimensional systems quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-2-dimensional systems [J]. Adv. in Phys. 1993, 42 (2): 173–262.
    [8]. Yoffe A D. Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems [J]. Adv. in Phys. 2001, 50 (1): 1–208.
    [9]. Li X Q, Yan Y J. Quantum computation with coupled quantum dots embedded in optical microcavities [J]. Phy. Rev. B 2002, 65 (20): 205301-205305.
    [10]. Bera D, Qian L, Holloway P H. Phosphor Quantum Dots [M]. John WIley & Sons, Ltd: West Sussex, UK, 2008.
    [11]. Bera D, Qian L, Holloway P H. Semiconducting Quantum Dots for Bioimaging [M]. Informa Heathcare: New York, NY, USA, 2009, Vol. 191.
    [12]. Klimov V I. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: Implications for lasing and solar energy conversion [J]. J. Phys. Chem. B 2006, 110 (34): 16827–16845.
    [13]. Efros A L. Interband absorption of light in a semiconductor sphere [J]. Sov. Phys. Semicond. 1982, 16 (7): 772–775.
    [14]. Brus L E. A simple-model for the ionization-potential, electron-affinity, and aqueous redox potentials of small semiconductor crystallites [J]. J. Chem. Phys. 1983, 79 (11): 5566–5571.
    [15]. Wang Y, Herron N. Nanometer sized semiconductor clusters materials synthesis, quantum size effects, and photophysical properties [J]. J. Phys. Chem. 1991, 95 (2): 525–532.
    [16]. Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites [J]. J. Am. Chem. Soc. 1993, 115 (19): 8706–8715.
    [17]. Steigerwald M L, Brus L E. Semiconductor crystallites: a class of large molecules [J]. Acc. Chem. Res. 1990, 23, 183–188.
    [18]. Ogawa S, Hu K, Fan F R F, et al. Photoelectrochemistry of films of quantum size lead sulfide particles incorporated in self-assembled monolayers on gold [J]. J. Phys. Chem. B 1997, 101 (29): 5707–5711.
    [19]. Haram S K, Quinn B M, Bard A J. Electrochemistry of CdS nanoparticles: A correlation between optical and electrochemical band gaps [J]. J. Am. Chem. Soc. 2001, 123 (36): 8860–8861.
    [20]. Kucur E, Riegler J, Urban G A, et al. Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry [J]. J. Chem. Phys. 2003, 119 (4): 2333–2337.
    [21]. Bae Y, Myung N, Bard A J. Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles [J]. Nano Lett. 2004, 4 (6): 1153–1161.
    [22]. Poznyak S K, Osipovich N P, Shavel A, et al. Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution [J]. J. Phys. Chem. B 2005, 109 (3): 1094–1100.
    [23]. Inamdar S N, Ingole P P, Haram S K, et al. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry [J]. Chem. Phys. Chem. 2008, 9 (17): 2574–2579.
    [24]. Kucur E, Bucking W, Giernoth R, et al. Determination of defect states in semiconductor nanocrystals by cyclic voltammetry [J]. J. Phys. Chem. B 2005, 109 (43): 20355–20360.
    [25]. Bawendi M G, Wilson W L, Rothberg L, et al. Electronic-structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters [J]. Phys. Rev. Lett. 1990, 65 (13): 1623–1626.
    [26]. Efros A L, Rosen M, Kuno M, et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states [J]. Phys. Rev. B 1996, 54 (7): 4843–4856.
    [27]. Efros A L, Rosen M. The electronic structure of semiconductor nanocrystals [J]. Annu. Rev. Mater. Sci. 2000, 30: 475–521.
    [28]. Wang Q, Kuo Y C, Wang Y W, et al. Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots [J]. J. Phys. Chem. B 2006, 110 (34): 16860–16866.
    [29]. Efros A L, Rosen M. Random telegraph signal in the photoluminescence intensity of a single quantum dot [J]. Phys. Rev. Lett. 1997, 78 (6): 1110–1113.
    [30]. Stefani F D, Knoll W, Kreiter M, et al. Quantification of photoinduced and spontaneous quantum-dot luminescence blinking [J]. Phys. Rev. B 2005, 72 (12): 125304-125310.
    [31]. Kuno M, Fromm D P, Hamann H F, et al. Nonexponential "blinking" kinetics of single CdSe quantum dots: A universal power law behavior [J]. J. Chem. Phys. 2000, 112 (7): 3117–3120.
    [32]. van Sark W, Frederix P, van den Heuvel D J, et al. Time-resolved fluorescence spectroscopy study on the photophysical behavior of quantum dots [J]. J. Fluoresc. 2002, 12 (1): 69–76.
    [33]. Stefani F D, Zhong X H, Knoll W, et al. Memory in quantum-dot photoluminescence blinking [J]. New J. Phys. 2005, 7 (1): 197.
    [34]. Issac A, von Borczyskowski C, Cichos F. Correlation between photoluminescence intermittency of CdSe quantum dots and self-trapped states in dielectric media [J]. Phys. Rev. B 2005, 71 (16): 161302-161305.
    [35]. Gfroerer T H. Photoluminescence in analysis of surface and interfaces [M]. John Wiley & Sons Ltd.: Chichster, UK, 2000, 9209–9231.
    [36]. Djurisic A B, Leung Y H, Choy W C H, et al. Visible photoluminescence in ZnO tetrapod and multipod structures [J]. Appl. Phys. Lett. 2004, 84 (14): 2635–2637.
    [37]. Djurisic A B, Leung Y H. Optical properties of ZnO nanostructures [J]. Small 2006, 2 (8-9): 944–961.
    [38]. Xu P S, Sun Y M, Shi C S, et al. The electronic structure and spectral properties of ZnO and its defects [J]. Nucl. Instrum. Methods Phys. Res. Sect. B 2003, 199: 286–290.
    [39]. Yang H, Holloway P H, Cunningham G, et al. CdS: Mn nanocrystals passivated by ZnS: Synthesis and luminescent properties [J]. J. Chem. Phys. 2004, 121 (20): 10233–10240.
    [40]. Lee J D. Concise Inorganic Chemistry [M]. Blackwell Science: Noida, India, 2005, 1032.
    [41]. Yang P, Lu M K, Xu D, et al. ZnS nanocrystals co-activated by transition metals and rare-earth metals–a new class of luminescent materials [J]. J. Lumin. 2001, 93 (2): 101–105.
    [42]. Qu S C, Zhou W H, Liu F Q, et al. Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution [J]. Appl. Phys. Lett. 2002, 80: 3605–3607.
    [43]. Suyver J F, Wuister S F, Kelly J J, et al. Synthesis and photoluminescence of nanocrystalline ZnS : Mn2+ [J]. Nano Lett. 2001, 1 (8): 429–433.
    [44]. Bhargava R N, Gallagher D, Hong X, et al. Optical-Properties of Manganese-Doped Nanocrystals of ZnS [J]. Phys. Rev. Lett. 1994, 72 (3): 416–419.
    [45]. Bol A A, Meijerink A. Long-lived Mn2+ emission in nanocrystalline ZnS : Mn2+ [J]. Phys. Rev. B 1998, 58 (24), 15997-16000.
    [46]. Su F H, Fang Z L, Ma B S,et al. Pressure dependence of Mn2+ luminescence in differently sized ZnS : Mn nanoparticles [J]. J. Phys. Chem. B 2003, 107 (29): 6991–6996.
    [47]. Khosravi A A, Kundu M, Kuruvilla B A, et al. Manganese-doped zinc-sulfide nanoparticles by aqueous method [J]. Appl. Phys. Lett. 1995, 67 (17): 2506–2508.
    [48]. Beermann P A G, McGarvey B R, Muralidharan S, et al. EPR spectra of Mn2+ doped ZnS quantum dots [J]. Chem. Mater. 2004, 16 (5): 915–918.
    [49]. Eaton D F. Reference materials for fluorescence measurement [J]. Pure Appl. Chem. 1988, 60 (7), 1107–1114
    [50]. Bera D, Qian L, Sabui S, et al. Photoluminescence of ZnO quantum dots produced by a sol-gel process [J]. Opt. Mater. 2008, 30 (8): 1233–1239.
    [51]. Bera D, Qian L, Holloway P H. Time-evolution of photoluminescence properties of ZnO/MgO core/shell quantum dots [J]. J. Phys. D 2008, 41 (18): 182002.
    [52]. Xie R G, Kolb U, Li J X, et al. Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals [J]. J. Am. Chem. Soc. 2005, 127 (20): 7480–7488.
    [53]. Li L, Pandey A, Werder D J, et al. Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission [J]. J. Am. Chem. Soc. 2011, 133 (5): 1176-1179.
    [54]. Chason E, Picraux S T, Poate J M, et al. Ion beams in silicon processing and characterization [J]. J. Appl. Phys. 1997, 81 (10): 6513–6561.
    [55]. Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev. 2005, 105 (4): 1025–1102.
    [56]. Spanhel L, Haase M, Weller H, et al. Photochemistry of colloidal semiconductors .20. Surface modification and stability of strong luminescing CdS particles [J]. J. Am. Chem. Soc. 1987, 109 (19): 5649–5655.
    [57]. Sashchiuk A, Lifshitz E, Reisfeld R, et al. Optical and conductivity properties of PbS nanocrystals in amorphous zirconia sol-gel films [J]. J. Sol-Gel Sci. Technol. 2002, 24 (1): 31–38.
    [58]. Hoener C F, Allan K A, Bard A J, et al. Demonstration of a shell core structure in layered CdSe-ZnSe small particles by xray photoelectron and Auger spectroscopies [J]. J. Phys. Chem. 1992, 96 (9): 3812–3817.
    [59]. Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal-surfaces with self-assembled monolayers [J]. J. Am. Chem. Soc. 1992, 114 (13): 5221–5230.
    [60]. Kortan A R, Hull R, Opila R L, et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media [J]. J. Am. Chem. Soc. 1990, 112 (4): 1327–1332.
    [61]. Karanikolos G N, Alexandridis P, Itskos G, et al. Synthesis and size control of luminescent ZnSe nanocrystals by a microemulsion-gas contacting technique [J]. Langmuir 2004, 20 (3): 550–553.
    [62]. Qu L H, Peng Z A, Peng X G. Alternative routes toward high quality CdSe nanocrystals [J]. Nano Lett. 2001, 1 (6), 333–337.
    [63]. Qu L H, Peng X G. Control of photoluminescence properties of CdSe nanocrystals in growth [J]. J. Am. Chem. Soc. 2002, 124 (9): 2049–2055.
    [64]. Bakueva L, Musikhin S, Hines M A, et al. Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer [J]. Appl. Phys. Lett. 2003, 82 (17): 2895–2897.
    [65]. Battaglia D, Peng X G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent [J]. Nano Lett. 2002, 2 (9): 1027–1030.
    [66]. Frank F C, van der Merwe J H. One-dimentional dislocations. I. Static theory [M]. Proc. Roy. Soc. London 1949, 198, 205.
    [67]. Volmer M, Weber A. Keimbildung in ubersettigten gebilden [J]. Z. Phys. Chem. 1926, 119: 277-301.
    [68]. Stranski I N, Krastanow V L. Sitzungberichte der akademie der wissenschaften in wien [M]. Akad. Wiss. Lit. Mainz Math.-Natur. KI. IIb 1939, 146, 797.
    [69]. Eaglesham D J, Cerullo M. Dislocation-free stranski-krastanow growth of Ge on Si(100) [J]. Phys. Rev. Lett. 1990, 64 (16): 1943–1946.
    [70]. Kim Y G, Joh Y S, Song J H, et al. Temperature dependent photoluminescence of ZnSe/ZnS quantum dots fabricated under the Stranski-Krastanov mode [J]. Appl. Phys. Lett. 2003, 83 (13): 2656–2658.
    [71]. Coe-Sullivan S. Optoelectronics: Quantum dot developments [J]. Nat. Photonics 2009, 3: 315–316.
    [72]. Muller C D, Falcou A, Reckefuss N, et al. Multi-colour organic light-emitting displays by solution processing [J]. Nature 2003, 421 (6925): 829–833.
    [73]. Meerheim R W K, He G, Pfeiffer M, et al. Highly efficient organic light emitting diodes (OLED) for displays and lighting [J]. Proc. SPIE Int. Soc. Opt. Eng. 2006, 6192: 1–16.
    [74]. Adachi C, Baldo M A, Thompson M E, et al. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J]. J. Appl. Phys. 2001, 90 (10): 5048–5051.
    [75]. Gu G, Garbuzov D Z, Burrows P E, et al. Highexternal-quantum-efficiency organic light-emitting devices [6]. Opt. Lett. 1997, 22 (6): 396–398.
    [76]. Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature 1994, 370: 354-357.
    [77]. Dabbousi B O, Bawendi M G, Onitsuka O, et al. Electroluminescence from CdSe quantum-dot/polymer composites [J]. Appl. Phys. Lett. 1995, 66 (11): 1316-1318.
    [78]. Schlamp M C, Peng X, Alivisatos A P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer [J]. J. Appl. Phys. 1997, 82 (11): 5837-5842.
    [79]. Mattoussi H, Radzilowski L H, Dabbousi B O, et al. Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals [J]. J. Appl. Phys. 1998, 83 (12): 7965-7975.
    [80]. Coe S, Woo W K, Bawendi M, et al. 1.Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature 2002, 420: 800-803.
    [81]. Zhao J L, Bardecker J A, Munro A M, et al. Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer [J]. Nano Lett. 2006, 6 (3): 463-467.
    [82]. Sun Q, Wang Y A, Li L S, et al. Bright, multicoloured light-emitting diodes based on quantum dots [J]. Nat. Photonics 2007, 1: 717-722.
    [83]. Cho K S, Lee E K, Joo W J, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes [J]. Nat. Photonics 2009, 3: 341–345.
    [84]. Kim T H, Cho K S, Lee E K, et al. Full-colour quantum dot displays fabricated by transfer printing [J]. Nat. Photonics 2011, 5: 176–182
    [85]. Mueller A H, Petruska M A, Achermann M, et al. Multicolor Light-Emitting Diodes Based on Semiconductor Nanocrystals Encapsulated in GaN Charge Injection Layers [J]. Nano Lett. 2005, 5, 1039-1044
    [86]. Caruge J M, Halpert J E, Wood V, et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers [J]. Nat. Photonics 2008, 2: 247-250.
    [87]. Achermann M, Petruska M A, Koleske D D, et al. Nanocrystal-Based Light-Emitting Diodes Utilizing High-Efficiency Nonradiative Energy Transfer for Color Conversion [J]. Nano Lett. 2006, 6 (7): 1396-1400.
    [88]. Huynh W U, Dittmer J J, Alivisatos A P. Hybrid Nanorod-Polymer Solar Cells [J]. Science 2002, 295: 2425-2427.
    [89]. Sun B Q, Marx E, Greenham N C. Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers [J]. Nano Lett. 2003, 3 (7): 961-963.
    [90]. Bruchez M, Moronne M, Gin P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels [J]. Science 1998, 281: 2013-2016.
    [91]. Dabbousi B O, Rodriguez V J, Mikulec F V, et al. (CdSe)ZnS Core?Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites [J] J. Phys. Chem. B 1997, 101 (46): 9463-9475.
    [92]. Zhang Y L, Jing P T, Zeng Q H, et al. Photoluminescence Quenching of CdSe Core/Shell Quantum Dots by Hole Transporting Materials [J] J. Phys. Chem. C 2009, 113 (5): 1886-1890.
    [93]. Valerini D, CretíA, Lomascolo M, et al. Temperature dependence of the photoluminescence properties of colloidal CdSe∕ZnS core/shell quantum dots embedded in a polystyrene matrix [J]. Phys. Rev. B 2005, 71 (23): 235409-235414.
    [94]. Morello G, De Giorgi M, Kudera S, et al. Temperature and Size Dependence of Nonradiative Relaxation and Exciton?Phonon Coupling in Colloidal CdTe Quantum Dots [J] J. Phys. Chem. C 2007, 111 (16): 5846-5849.
    [95]. Al Salman A, Tortschanoff A, Mohamed M B, et al. Temperature effects on the spectral properties of colloidal CdSe nanodots, nanorods, and tetrapods [J] Appl. Phys. Lett. 2007, 90 (9): 093104-093106.
    [96]. Wuister S F, van Houselt A, de Mello D C, et al. Temperature Antiquenching of the Luminescence from Capped CdSe Quantum Dots [J]. Angew. Chem. Int. Ed. 2004, 43 (23): 3029-3033.
    [97]. Babentsov V, Riegler J, Schneider J, et al. Deep level defect luminescence in cadmium selenide nano-crystals films [J] J. Crystal Growth 2005, 280 (3-4): 502-508.
    [98]. Ramvall P, Tanaka S, Nornura S, et al. Confinement induced decrease of the exciton-longitudinal optical phonon coupling in GaN quantum dots [J] Appl. Phys. Lett. 1999, 75 (13): 1935-1937.
    [99]. Wan J Z, Brebner J L, Leonelli R, et al. Temperature dependence of free-exciton photoluminescence in crystalline GaTe [J]. Phys. Rev. B 1993, 48 (8): 5197-5201.
    [100]. Lee J, Koteles E S, Vassell M O. Luminescence linewidths of excitons in GaAs quantum wells below 150 K [J]. Phys. Rev. B 1986, 33 (8): 5512-5516.
    [101]. Baranov A V, Rakovich Y P, Donegan J F, et al. Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots [J]. Phys. Rev. B 2003, 68 (16): 165306-165312.
    [102]. Lange H, Artemyev M, Woggon U, et al. Experimental investigation of exciton-LO-phonon couplings in CdSe/ZnS core/shell nanorods [J]. Phys. Rev. B 2008, 77 (19): 193303-193306.
    [103]. Takagahara T. Electron-phonon interactions and excitonic dephasing in semiconductor nanocrystals [J]. Phys. Rev. Lett. 1993, 71 (21): 3577-3580.
    [104]. Schnitt-Rink S, Miller D A B, Chemla D S. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites [J]. Phys. Rev. B 1987, 35, 8113-8125.
    [105]. Klimov V, Bolivar P H, Kurz H. Ultrafast carrier dynamics in semiconductor quantum dots [J]. Phys. Rev. B 1996, 53 (3): 1463-1467.
    [106]. Yang W, Lowe-Webb R R, Lee H, et al. Effect of carrier emission and retrapping on luminescence time decays in InAs/GaAs quantum dots [J]. Phys. Rev. B 1997, 56 (20): 13314-13320.
    [107]. Efros A L, Rosen M. Perpendicular magnetization in ultrathin electrodeposited cobalt films [J]. Phys. Rev. B 1998, 58 (12): 7120-7128.
    [108]. Meulenberg R W, Lee J R I, Wolcott A, et al. Determination of the Exciton Binding Energy in CdSe Quantum Dots [J]. ASC Nano 2009, 3 (2): 325-330
    [109]. Ithurria S, Guyot-Sionnest P, Mahler B, et al. Mn2+ as a Radial Pressure Gauge in Colloidal Core/Shell Nanocrystals [J] Phys. Rev. Lett. 2007, 99 (26): 265501-265504.
    [110]. Chen Y F, Vela J, Htoon H, et al.“Giant”Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking [J] J. Am. Chem. Soc. 2008, 130 (15): 5026-5027.
    [111]. Wong P S, Liang B L, Dorogan V G, et al. Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure [J] Nanotechnology 2008, 19: 435710.
    [112]. Mu X D, Ding Y J, Ooi B S, et al. Investigation of carrier dynamics on InAs quantum dots embedded in InGaAs/GaAs quantum wells based on time-resolved pump and probe differential photoluminescence [J]. Appl. Phys. Lett. 2006, 89 (18): 181924-181926.
    [113]. Jones M, Lo S S, Scholes G D. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics [J] Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (9): 3011-3016.
    [114]. Wang X Y, Ren X F, Kahen K, et al. Non-blinking semiconductor nanocrystals [J]. Nature 2009, 459: 686-689.
    [115]. Basko D M, Agranovich V M, Bassani F, et al. Energy transfer from a semiconductor quantum dot to an organic matrix [J] Eur. Phys. J. B 2000, 13: 653-659.
    [116]. Kagan C R, Murray C B, Nirmal M, et al. Electronic Energy Transfer in CdSe Quantum Dot Solids [J] Phys. Rev. Lett. 1996, 76 (9): 1517-1520.
    [117]. Kagan C R, Murray C B, Bawendi M G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids [J] Phys. Rev. B 1996, 54 (12): 8633- 8643.
    [118]. Crooker S A, Hollingsworth J A, Tretiak S, et al. Spectrally Resolved Dynamics of Energy Transfer in Quantum-Dot Assemblies: Towards Engineered Energy Flows in Artificial Materials [J] Phys. Rev. Lett. 2002, 89 (18): 186802-186805.
    [119]. Achermann M, Petruska M A, Kos S, et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well [J] Nature 2004, 429: 642-646.
    [120]. Anni M, Manna L, Cingolani R, et al. F?rster energy transfer from blue-emitting polymers to colloidal CdSe/ZnS core shell quantum dots [J] Appl. Phys. Lett. 2004, 85 (18): 4169-41711
    [121]. Lakowicz J R. Principles of Fluorescence Spectroscopy [M]. 3rd ed. Springer-Verlag Berlin Heidelberg 2006, pp 443-527.
    [122]. Anikeeva P O, Madigan C F, Coe-Sullivan S A, et al. Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor [J]. Chem. Phys. Lett. 2006, 424 (1-3): 120-125.
    [123]. St?ferle T, Scherf U, Mahrt R F. Energy Transfer in Hybrid Organic/Inorganic Nanocomposites [J]. Nano Lett. 2009, 9 (1): 453-456.
    [124]. Lutich A A, Jiang G X, Susha A S, et al. Energy Transfer versus Charge Separation in Type-II Hybrid Organic?Inorganic Nanocomposites [J] Nano Lett. 2009, 9 (7): 2636-2640.
    [125]. Huang H, Dorn A, Nair G P, et al. Bias-Induced Photoluminescence Quenching of Single Colloidal Quantum Dots Embedded in Organic Semiconductors [J] Nano Lett. 2007, 7 (12): 3781-3786.
    [126]. Zhang S P, Liu Y Q, Yang Y Q. Energy and Charge Transfer Dynamics Between Alq3 and CdSeS Nanocrystals [J] Journal of Nanosci. Nanotech. 2010, 10 (3): 2164-2168.
    [127]. von Grünberg H H. Energy levels of CdSe quantum dots: Wurtzite versus zinc-blende structure [J]. Phys. Rev. B 1997, 55 (4): 2293-2302.
    [128]. Yu W W, Qu L H, Guo W Z, et al. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals [J]. Chem. Mater. 2003, 15 (14): 2854-2860.
    [129]. CretíA, Zavelani-Rossi M, Lanzani G, et al. Role of the shell thickness in stimulated emission and photoinduced absorption in CdSe core/shell nanorods [J] Phys. Rev. B 2006, 73 (16): 165410-165413.
    [130]. Greenham N C, Peng X G, Alivisatos A P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity [J] Phys. Rev. B 1996, 54 (24): 17628–17637.
    [131].黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].复旦大学出版社,第1版, 2005年
    [132]. Mori T, Obata K, Miyachi K, et al. Fluorescence Lifetime of Organic Thin Films Alternately Deposited with Diamine Derivative and Aluminum Quinoline [J]. Jan. J. Appl. Phys. 1997, 36: 7239-7244.
    [133]. Sharma S N, Pillai Z S, Kamat P V. Photoinduced Charge Transfer between CdSe Quantum Dots and p-Phenylenediamine [J] J. Phys. Chem. B 2003, 107 (37): 10088–10093
    [134]. Coe-Sullivan S, Steckel J S, Woo W K, et al. Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting [J] Adv. Funct. Mater. 2005, 15 (7): 1117-1124.
    [135]. Niu Y H, Munro A M, Cheng Y J, et al. Improved Performance from Multilayer Quantum Dot Light-Emitting Diodes via Thermal Annealing of the Quantum Dot Layer [J] Adv. Mater. 2007, 19 (20): 3371-3376.
    [136]. Steckel J S, Snee P, Coe-Sullivan S, et al. Color-Saturated Green-Emitting QD-LEDs [J] Angew. Chem. Int. Ed. 2006, 45 (35): 5796-5799.
    [137]. Cheng Y J, Liu M S, Zhang Y, et al. Thermally Cross-Linkable Hole-Transporting Materials on Conducting Polymer: Synthesis, Characterization, and Applications for Polymer Light-Emitting Devices [J] Chem. Mater. 2008, 20 (2): 413-422.
    [138]. Zhao J L, Zhang J Y, Jiang C Y, et al. Electroluminescence from isolated CdSe∕ZnS quantum dots in multilayered light-emitting diodes [J] J. Appl. Phys. 2004, 96 (6): 3206-3210.
    [139]. Empedocles S A, Bawendi M G. Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots [J]. Science 1997, 278: 2114-2117.
    [140]. Muller J M, Lupton P G, Lagoudakis F S, et al. Wave Function Engineering in Elongated Semiconductor Nanocrystals with Heterogeneous Carrier Confinement [J] Nano Lett. 2005, 5 (10): 2044-2049.
    [141]. Rothenberg M, Kazes E, Shaviv E, et al. Electric Field Induced Switching of the Fluorescence of Single Semiconductor Quantum Rods [J] Nano Lett. 2005, 5 (8): 1581-1586.
    [142]. Woo W K, Shimizu K T, Jarosz M V, et al. Reversible Charging of CdSe Nanocrystals in a Simple Solid-State Device [J] Adv. Mater. 2002, 14 (15): 1068 -1071.
    [143]. Huang A, Dorn G P, Bulovic N V, et al. Bias-Induced Photoluminescence Quenching of Single Colloidal Quantum Dots Embedded in Organic Semiconductors [J] Nano Lett. 2007, 7 (12): 3781-3786.
    [144]. Jiang X Z, Liu S, Liu M S, et al. Perfluorocyclobutane-Based Arylamine Hole-Transporting Materials for Organic and Polymer Light-Emitting Diodes [J] Adv. Funct. Mater. 2002, 12 (11-12): 745-751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700