用户名: 密码: 验证码:
基于荧光淬灭作用的便携式溶解氧测量仪的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧气是人类生存和大部分化学反应不可或缺的成分,因此氧气的测量显得尤为重要。氧传感器在氧气的测量当中发挥着重要的作用,在环境保护、化工、医学、冶金和航空技术等领域有着广泛的应用。本文在新型光化学氧传感器的仪器开发方面进行了努力,发展了一种基于钌络合物荧光淬灭的便携式高性能全固态的溶解氧测量仪。
     仪器的氧敏感光极探头采用吸附在硅胶上的钌(Ⅱ)络合物嵌入硅橡胶中制备成的氧气敏感膜,最大激发/发射波长分别为472nm/610nm时,分子氧可有效地淬灭敏感膜的荧光,测试结果为当溶解氧浓度分别在0-2mg/L和2-8mg/L时,敏感膜具有典型的Stern—Volmer响应曲线;从低溶解氧浓度到高溶解氧浓度的T_(95)响应时间约为5秒,从高溶解氧浓度到低溶解氧浓度为1分钟;此光极膜具有极好的重现性和光化学稳定性。激发光源和检测器分别采用高亮度的发光二极管和高灵敏的光敏二极管。敏感层涂覆在高通滤光片上,充分的利用空间,设计了结构紧凑合理的光极,达到了小型化、全固态的目的。
     电路控制部分,硬件采用功能强大可编程的Microchip公司的PIC16F84系列芯片作为仪器的核心部件,计算、输出、控制功能均由此芯片完成,仪器还采用了稳定的数据放大、采集转换系统和大屏幕的液晶显示模块;软件部分,自编了汇编控制程序,程序包括单片机控制模块、采样模块、LCD输出控制模块、函数计算模块等。核心模块为函数计算模块,包括了测量子模块和校正子模块,其中的函数计算根据敏感膜的Stern—Vlomer响应曲线分析,将工作曲线分为两段。函数计算时取三个点(分别为0,2,8mg/L)的溶解氧浓度对应的电压值,求出每连续两点的斜率,由此函数可以求出任意测量范围内的未知样品的溶解氧浓度。控制软件中还加入了滤波程序,使数据更为稳定和平滑。
     软硬件构成便携式高性能全固态的溶解氧测量仪。仪器可以精确测出氧气的溶解度参数,测量精度为0.1 mg/L,而且可对水中溶解氧进行实时在线监测,使用寿命长达一年。此测量仪具有体积小、携带和使用方便、能耗低、测量迅速等优点。
     此外,还以四对溴苯基铂卟啉作为氧气传感器的响应性能进行了初步的试验。分子氧可以非常有效地淬灭四对溴苯基铂卟啉敏感膜的荧光,敏感膜的最大激发/发射波长为402/664nm。敏感膜的响应值非常好的符合Stern-Volmer方程。
    
     纯氮气和纯氧气的荧光强度比值*达到了 40倍。寿命大于 3个月。
The determination of molecular oxygen levels in solution is of great importance in environmental, biomedical, and industrial analyses. A hand held optode oxygen sensor has been fabricated, based on the fluorescence quenching of tris(4,7-diphenyl-l,10-phenanthroline) ruthenium(II) ditetrakis(4-chlorophenyl)borate in the presence of dissolved oxygen.
    The developed hand-held dissolved oxygen optosensor based on All- Solid- State electronics and fluorescence quenching of a highly oxygen-sensitive luminescence complex. The oxygen-sensitive optode membrane was fabricated from Ruthenium(U) complex adsorbed on silica gel particles and embedded in a silicone-rubber film. The maximum EX/EM wavelength of the membrane is 472/610 nm, respectively. Oxygen in the surrounding medium quenches the fluorescence and is quantified by means of the Stem-Volmer expression at range of 0-2 or 2-8 mg/L. A responding time of T95=5s was obtained from high dissolved oxygen (DO) concentration to low DO concentration. High reversibility and photo stability of the oxygen sensitive membrane is demonstrated. The optode Excitation was achieved with an ultra-bright blue 472 nm light-emitting diode (LED), with emission monitored by a highly sensitive silicon photo diode(PD). The LED excitation and photodiode detection are employed in a trapeziform plastic configuration, with the oxygen-sen
    sitive film coated on a 580nm long pass filter. The fluorescence intensity signal of the optode membrane was converted to the voltage signal, which was processed by a Single Chip Micyoco Controller microprocessor, PIC16F84. An assemble language program was developed for the unit control, data sampling, detection calculation and calibration. And the dissolved oxygen concentration was worked out and displayed on a liquid crystal display unit. The developed hand-held optosensor is pocketsize and low energy consuming, which provides on line dissolved oxygen measurement.
    A novel fluorescence oxygen sensor with Pt-T(p-Br)PPH2 as its sensing material and
    
    
    PVC polymer as support system is presented in the paper. When excited at the wavelength of 402nm and measured the emission at the wavelength of 664nm, the sensor shows a linear response to oxygen within the concentration range from 0 to 100% O2 with a ratio more than 40 of IN2 /IO2, where IN2 is the fluorescence intensity in 100% N2 and IO2, is the fluorescence intensity in 100% O2, respectively. The working curve is fit for the Stern-Volmer equation. The shell lifetime of the sensor was found to be longer than three months.
引文
[1] 大连理工大学无机化学教研室.无机化学.大连:高等教育出版社,1995
    [2] 王柯敏。光化学传感器理论与方法.长沙:湖南教育出版社,1995
    [3] 国家标准GB11913—89
    [4] 张悦,王建龙,李花子.生物传感器快速测定BOD在海洋监测中的应用.海洋环境科学,2001,20(1):51-55
    [5] Jirka A.M. and Carter M.J. Micro Semi-Automated Analysis of Surface and Waste-waters for Chemical Oxygen Demand. Anal. Chem., 1995, 47:1357-1402
    [6] 廖建萍,于珊.微波密封消解COD速测仪的应用及探讨.中国公共卫生,2001,5:18-20
    [7] 李群,杨振海,张业录等.密闭式分光光度法测定漂白废水COD(Cr).工业水处理,2001,5:8-11
    [8] Alan D. Adler, Frederick R. Longo, John D. Finarelli, et al. A Simplified Synthesis for meso- Tetraphenylporphin. J. Org. Chem., 1967, 32:476
    [9] Lindesy J.S, Schreiman I.C., Hsu H.C., et al. Investigation of the synthesis of ortho-substitued tetraphenylporphyrins. J. Org. Chem., 1989, 54:828-836
    [10] Areki Boudif, Michel Mcmenteau. Synthesisof a Porphyrin-2,3-diacrylic Acid using a New '3+1' Type Procedure, J.Chem. Soc., Chem. Commun., 1994, 2069-2070
    [11] 方允中,李文杰主编.自由基与酶.北京:科学技术出版社,1989:193-230
    [12] Skoog D.A. Fundamentals of Analytical Chemistry. 5th ed. New York:Saunder College Publishing, 1988, 344
    [13] Hitchman M. C. Measurement of Dissovled Oxygen. Wlley. New York, 1978, 130
    [14] Li X.M., Wang H.Y. Transient D.O. Measurement using a computerized membrane electrode. Horizons of Biochemi-cal Engineering. Aiba Sed. Tokyo:University of Tokyo Press,1987:213
    [15] Hyun C.K., Tamiya E., Takeuchi T., et al. A novel BOD sensor based on bacterial luminescence. Biotech. Bioeng., 1993, 41: 1107-1111.
    
    
    [16] Preininger C., Klimant I., Wolfbeis O. S. Optical Fiber Sensor for Biological Oxygen Demand. Anal. Chem., 1994,66: 1841-1846
    [17] Li X. M., Ruan F. C., Ng W. Y., et al. Scanning optical sensor for the measurement of dissolved oxygen and BOD. Sensors Actuators B, 1994,21:143
    [18] Gab-Joo Chee, Yoko Nomura, Kazunori Ikebukuro, et al. Optical fiber biosensor for the determination of low biochemical oxygen demand. Biosensors and Bioelectronics, 2000,15(7-8): 371-376
    [19] Trettnak W., Gruber W., Reininger F., et al. Recent progress in optical oxygen sensor instrumentation. Sensors Actuators B, 1995, 299:219
    [20] Li M., Pacholski M. L., Bright F. V. Application of a Poly (hexafluoropropyl- co-tetrafluoroethylene) Thin Film Architecture for Aqueous O_2 Quantification. Appl. Spectrosc., 1995, 49:1809
    [21] Li X.M., Ruan F.C. Scanning optical sensor for the measurement of dissolved oxygen and BOD. Sensors and Actuators B: Chemical, 1994, 21(2): 143-149
    [22] Aisling K. McEvoy, Colette M. McDonagh and Brian D. MacCraith. Dissolved Oxygen Sensor Based on Fluorescence Quenching of Oxygen-sensitive Ruthenium complexes Immobilized in Sol-Gel-derived Porous Silica Coatings. Analyst, 1996,121:758-788
    [23] Fausto Alava-Moreno, María Jesús Valencia-González, Alfredo Sanz-Medel, et al. Oxygen Sensing Based on the Room Temperature Phosphorescence Intensity Quenching ofSome Lead-8- hydroxyquinoline Complexes. Analyst, 1997, 122(8): 807
    [24] Mcdonagh C., MacCraith B. D., and McEvoy A.K. Tailoring of Sol-Gel Films for Optical Sensing of Oxygen in Gas and Aqueous Phase. Anal.chem., 1998,70: 45-50.
    [25] Singer E., Duveneck G. L., Ehrat M., et.al. Fiber optic sensor for oxygen determination in liquids. Sensors and Actuators A: Physical, 1994, 42:542-546
    [26] Walt D.R., Barnard S.M. US patent, 5,244,636,1994
    
    
    [27] Rosenzweig Z., Kopelman R. Development of a Submicrometer Optical Fiber Oxygen Sensor. Anal. Chem., 1995, 67:2650-2654
    [28] Tan W., Shi Z., Kopelman R. Development of submicron chemical fiber optic sensors. Anal. Chem. 1992, 64:2985-2990
    [29] Tan W., Shi Z., Smith S., et al. Submicrometer Intracellular Chemical Optical Fiber Sensors, Science, 1992, 258:778-781
    [30] Raoul Kopelman, Weihong Tan. Near-Field Optics: Imaging Single Molecules. Science, 1993, 262:1382-1384.
    [31] Eric Betzig, Jay K. Trautman. Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit. Science, 1992,257: 189-195.
    [32] Ashok K. Malik, Werner Faubel. Photothermal and light emitting diodes as detectors for trace detection in capillary electrophoresis. Chem. Soc. Rev., 2000, 275-282
    [33] McCulloch S.,Uttamchandani D. Development of micro-optrodes using sol-gel immobilization. IEE Proc. Optoelectron., 1997, 144: 241-246
    [34] Shortreed M., Bakker E., Kopelman R. Miniature Sodium-Selective Ion-Exchange Optode with Fluorescent pH Chromoionophores and Tunable Dynamic Range. Anal. Chem., 1996, 68: 2656-2662.
    [35] Shortreed M., Kopelman R., Kuhn B. Fluorescent Fiber-Optic Calcium Sensor for Physiological Measurements. Anal.Chem., 1996, 68: 1414-1418.
    [36] Shortreed M., Monson E., Kopelman R. Lifetime Enhancement of Ultrasmall Fluorescent Liquid Polymeric Film Based Optodes by Diffusion-Induced Self-Recovery after Photobleaching. Anal.Chem., 1996, 68: 4015-4019.
    [37] Rosenzweig Z., Kopelman R. Development of a Submicrometer Optical Fiber Oxygen Sensor, Anal. Chem. 1995, 67: 2650-2654.
    [38] Rosenzweig Z., Kopelman R. Analytical Properties and Sensor Size Effects of a Micrometer-Sized Optical Fiber Glucose Biosensor. Anal.Chem., 1996, 68: 1408-1412.
    [39] Rosenzweig Z., Kopelman R. Micron Sized Glucose Sensors for In-Vitro Monitoring of Glucose in Interstitial Fluid. Sensors Actuators B, 1996, 35-36: 475-483.
    
    
    [40] Liu X., Tan W. Development of an optical fiber lactate sensor Mikrochim. Acta, 1999, 131: 129-135.
    [41] Barker S.L.R., Zhao Y., Marletta M.A., et al. Cellular Applications of a Sensitive and Selective Fiber-Optic Nitric Oxide Biosensor Based on a Dye-Labeled Heme Domain of Soluble Guanylate Cyclase. Anal. Chem., 1999, 71: 2071-2075.
    [42] Cullum B. M., Griffin G. D., Miller G. H., Vo-Dinh T. Intracellular Measurements in Mammary Carcinoma Cells Using Fiber-Optic Nanosensors. Anal. Biochem. 1999,277:25-32
    [43] Heather A. Clark, Raoul Kopelman, Ron Tjalkens, et al. Optical Nanosensors for Chemical Analysis inside Single Living Cells. 2. Sensors for pH and Calcium and the Intracellular Application of PEBBLE Sensors. Anal. Chem., 1999, 71 (21): 4837-4843
    [44] Hao Xu, Jonathan W. Aylott, Raoul Kopelman, et al. A real-time ratiometric method for the determination of molecular oxygen inside living cells using Sol-gel-based spherical nanosensors with applications to rat C6 Gliomas. Anal.chem., 2001,73: 4124-4133.
    [45] McNamara K. P., Rosenzweig Z. Dye-Encapsulating Liposomes as Fluorescence-Based Oxygen Nanosensors. Anal. Chem., 1998; 70(22): 4853-4859.
    [46] Betzig E., Trautman J. K., Harris T. D., et al. Breaking the Diffraction Barrier: Optical Microscopy of a Nanometric Scale. Science, 1991, 251 (5000): 1468-1470.
    [47] 何晓晓,王柯敏,谭蔚泓等.基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用.《科学通报》,2001,46(16):1353-1356
    [48] 何晓晓,王柯敏,谭蔚泓等.基于氨基化SiO_2纳米颗粒的新型基因载体.《科学通报》,2002,47,接收待刊
    [49] Clarke Y., Xu W., Demas J. N. Lifetime-Based pH Sensor System Based on a Polymer-Supported Ruthenium(Ⅱ) Complex. Anal. Chem., 2000, 72(15): 3468-3475
    [50] Jain A., Xu W., Demas J. N., et al. Binding of Luminescent Ruthenium(Ⅱ) Molecular Probes to Vesicles. Inorg. Chem., 1998, 37(8): 1876-1879
    [51] LouAnn Sacksteder, Maria Lee, Demas J. N., et al. Highly luminescent Ruthenium(Ⅰ) complexes as molecular probes: intra-and intermolecular excited-state interactions. J. Am. Chem. Soc., 1993, 115(18): 8230-8238.
    
    
    [52] Seth W. Snyder, Scott L. Buell, Demas J. N., et al. Interactions of ruthenium(Ⅱ) photosensitizers with surfactant media. J. Phys. Chem., 1989, 93(13): 5265-5271.
    [53] Ayala N. P., Demas J. N., DeGraff B. A. Exciplexes of (.alpha.-diimine)ruthenium(Ⅱ) photosensitizers with silver(Ⅰ). 2. Mixed water-acetonitrile solvent. J. Phys. Chem., 1989, 93(10): 4104-4109.
    [54] Scott L. Buell, Demas J. N. Heterogeneous preparation of singlet oxygen using an ion-exchange-resin-bound tris(2,2′-bipyridine) ruthenium(Ⅱ) photosensitizer. J. Phys. Chem.; 1983, 87(23): 4675-4681.
    [55] Demas J. N., Addington J. W. Luminescence quenching of the tris(2,2′-bipyridine) ruthenium(Ⅱ) and tris(1,10-phenanthroline) ruthenium(Ⅱ) cations. J. Am. Chem. Soc., 1976, 98(19): 5800-5806.
    [56] Demas J. N., Arthur W. Adamson. Tris (2,2′-bipyridine) ruthenium(Ⅱ) sensitized reactions of some oxalato complexes. J. Am. Chem. Soc.; 1973; 95(16): 5159-5168
    [57] Yulong Xu, Kui Yao, Xiaohua Zhou, et.al. Platinum-titania oxygen sensors and their sensing mechanisms. Sensors and Actuators B, 1993, 14(1-3): 492-494
    [58] Donckt E. Vander, Camerman B., Herne R., et al. Fibre-optic oxygen sensor based on luminescence quenching of a Pt(Ⅱ) complex embedded in polymer matrices. Sensors and Actuators B, 1996, 32(2): 121-127
    [59] Dmitri B. Papkovsky, Gelii V. Ponomarev, Wolfgang Trettnak, et.al. Phosphorescent Complexes of Porphyrin Ketones: Optical Properties and Application to Oxygen Sensing. Anal. Chem. 1995,67:4112-4117
    [60] Hartman P., Trettnak W. Effects of Polymer Matrices on Calibration Functions of Luminescent Oxygen Sensors Based on Porphyrin Ketone Complexes. Anal. Chem., 1996,68,2615-2820
    [61] Andrew Mills and Anne Lepre. Controlling the Response Charateristics of Luminescent Porphyrin Plastic Film Sensors for Oxygen. Anal. Chem., 1997,69:4653-4659
    
    
    [62] Sacksteder L., Demas J.N., DeGraff B.A. Design of oxygen sensors based on quenching of luminescent metal complexes: Effect of ligand size on heterogeneity. Anal.Chem., 1993,65: 3480
    [63] Xu W., Kneas K. A., Demas J. N., et al. Oxygen Sensors Based on Luminescence Quenching of Metal Complexes: Osmium Complexes Suitable for Laser Diode Excitation. Anal. Chem., 1996; 68(15): 2605-2609
    [64] Andrew Mills, Anne Lepre, Brian R. C, et al. Use of Luminescent Gold Compounds in the Design of Thin-Film Oxygen Sensors. Anal. Chem., 1997,69:2842
    [65] Costa-Fernández J. M., Diaz-García M. E. and Sanz-Medel A. Sol-gel immobilized room-temperature phosphorescent metal-chelate as luminescent oxygen sensing material. Anal. Chim. Acta, 1998, 360:17-26
    [66] L(?)bbers D. W. and Opitz N. Opticl fluorescence sensors for continuous measurement of chemical concentrations in biological systems. Sensors Actuators B, 1983, 4:641-654
    [67] Ashutosh Sharma and Otto S. Wolfbeis. Unusually efficient quenching of the fluoroscence of an energy transfer-based optical sensor for oxygen. Anal.Chim.Acta, 1998, 212:261-265
    [68] Otto S. Wolfbeis, Hermann E. Posch, and Herbert W. Kroneis, Fiber optical fluorosensor for determination of halothane and or oxygen. Anal. Chem., 1985,57:2556
    [69] Potyrailo R.A., Hieftje G.M., Radislav A. Potyrailo, et al. Oxygen detection by fluorescence quenching of tetraphenylporphyrin immobilized in the original cladding of an optical fiber. Anal.Chim.Acta, 1998, 370:1-8
    [70] Gerhard Sprintschnik, Hertha W. Sprintschnik, Pierre P. Kirsch, et al. Photochemical reactions in organized monolayer assemblies. Ⅲ. Photochemical cleavage of water: a system for solar energy conversion using monolayer-bound transition metal complexes. J. Am. Chem. SOC., 1975, 98, 2337; Photochemical reactions in organized monolayer assemblies. 6. Preparation and photochemical reactivity of surfactant ruthenium(Ⅱ) complexes in monolayer assemblies and at water-solid interfaces. J. Am.Chem.SOC., 1977, 99, 4947.
    
    
    [71] Gaines G.L. Jr. characteristics of Ruthenium(Ⅱ) complexes in monolayer excited state quenched by MV~(2+), J. Phys. Chem., 1979,83:3088-91
    [72] Valenty S. J., Behnken P. E. Determination of tris(2,2′-bipyridyl)ruthenium(Ⅱ) derivatives by reverse phase paired-ion high performance liquid chromatography. Anal. Chem. 1978, 50, 834-837.
    [73] MacCraith B.D., McDonagh C.M., OKeeffe G., et.al. Fibre optic sensor based on fluorescence quenching of evanescent-wave excited ruthenium complexes in sol-gel derived porous coatings. Analyst, 1993,118 (4): 385-388
    [74] Kerry P.M., Xueping L. Fiber-optic oxygen sensor based on the fluorescence quenching of tris (5-acrylamido, 1,10 phenanthroline) ruthenium chloride. Anal. Chim. Acta, 1998,361: 73
    [75] Ignacy G., Gryczynski Z. Polarization-based oxygen sensor. Analyst, 1999,124:1041
    [76] Paul Hartmann, Marc J.P. Leiner, Petra Kohlbacher. Photobleaching of a ruthenium complex in polymers used for oxygen optodes and its inhibition by singlet oxygen quenchers. Sensors and Actuators B, 1998, 51:196-202
    [77] Han Chuang and Mark. A. Arnold Linear calibration function for optical oxygen sensors based on quenching of ruthenium fuorescence. Anal. Chim. Acta, 1998,368:83-89
    [78] David Garca-Fresnadillo, Mara Dolores Marazuela, Mara Cruz Moreno-Bondi, et al. Luminescent Nafion Membranes Dyed with Ruthenium(Ⅱ) Complexes as Sensing Materials for Dissolved Oxygen. Langmuir, 1999, 15: 6451-6459
    [79] Eylon Yavin, Lev Weiner, Rina Arad-Yellin, et al. Controlling the Energy and Electron Transfer in a Novel Ruthenium Bipyridyl Complex: An ESR Study. J. Phys. Chem. A 2001, 105: 8018-8024
    [80] Daniel S. Tyson, Kevin B. Henbest, Jason Bialecki, et al. Excited State Processes in Ruthenium(Ⅱ)/Pyrenyl Complexes Displaying Extended Lifetimes. J. Phys. Chem. A, 2001, 105:8154-8161
    
    
    [81] David A. Chang-Yen, Yuri Lvov, Michael J. McShane, et al. Electrostatic self-assembly of a ruthenium-based oxygen sensitive dye using polyion-dye interpolyelectrolyte formation. Sensors and Actuators B, 2002, 87:336-345
    [82] Kneas K. A., Demas J. N., Nguyen B. Method for Measuring Oxygen Diffusion Coefficients of Polymer Films by Luminescence Quenching. Anal. Chem. 2002, 74(5): 1111-1118
    [83] Jiao Xiang-Dong, Huang Jin-Wang, Ji Liang-Nian,et al. Molecular stereochemistry of m-oxo -bis[5,10,15,20-tetra(4-chlorophenyl) porphyrinatoiron(Ⅲ)]: a model compound of cytochrome P450. J. Inorg. Biochem., 1997, 65, 229
    [84] Hartman P., Leine M.E. Luminescence Quenching Behavior of an Oxygen Sensor Based on a Ru(Ⅱ) Complex Dissolved in Polystyrene. Anal. Chem., 1995, 67:88-93
    [85] Gonen Ashkenasy, Albena Ivanisevic, Rami cohen, et al. Assemlies of "Hinged"Iron-porphyrins as Potential Oxygen sensors. J.Am.chem. Soc. 2000,122:1116-1122
    [86] Sebastien Richeter, Christophe Jeandon, Jean-Paul Gisselbrecht. Sythesis and Optical and Electochemical Properties of Porphyrin Dimers Linked by Metal Ions. J.Am. Chem. Soc., 2002,124: 6168-6179
    [87] Sang-Kyung Lee and Ichiro Okura. Optical Sensor for Oxygen Using a Porphyrin-doped Sol-Gel Glass. Analyst, 1997,122: 81-84
    [88] Yoko Suzuki, Hiroyuki Nishide, and eishun Tsuchide. Membrances of the Picket Fence Cobalt Porphyrin Complexed with Polys:selective Optical Response to oxygen. Macromolecules, 2000,33:2530-2534
    [89] Stephen Roosli, Erno Pretsch, Werner E. Morf. Selective optical response to oxygen of membranes based on immobilized cobalt(Ⅱ) porphyrins. Anal. Chim. Acta, 1997,338:119-125
    [90] Dmitri B. Rapkovski, Alexander N. Ovchinnikov. Complexes Of The Phosphorescence Porphyrin Dyes with Hydrophilic Carriers: Optical Properties and Sensing Application. Anal. Lette., 1997,30(4): 699-716
    [91] Velasco G., Schnell J. Ph. and Croset M. Thin solid state electrochemical gas sensors. Sensors Actuators, 1982,2:371-84
    
    
    [92] Saji K., Takahashi H., Kondo H., et.al. Yttria: metal-oxide-semiconductor oxygen sensors. Proceedings of the Forth Sensor Symposium,Japan, 1984, 147-51
    [93] Lonothesis E.M., Park K., MeitzlerA.H., et.al. Design of oxygen sensors based on 3/CoO and CoOl-x. Appl. Phys. Lett., 1975,26: 209-11
    [94] Partk K., Logothesis E.M. Ultrathin AlOx-TiOy Film Formation by Controlled Oxidation of Titanium Deposited on Polycrystalline Aluminum Surfaces. J. Electroch. Soc., 1977,124: 1443-6
    [95] Tien T.Y.,Stadler H.L.,Gibbons E.F., Zacmanidis P.T. Selenium and Oxygen. Matrix Infrared Spectra and Density Functional Calculations of SexOy Molecules. Am. Cream. Soc. Bull. 1975,54:280-5
    [96] Kondo H., Takahashi H., Takenuchi T., et al. Proceeding of the Third Sensor Symposium, Japan,1983:185-90
    [97] BeieH. -J., Gnrich A. Oxygen gas sensors based on CeO_2 thick and thin films. Sensors Actuators B, 1991,4:393-9
    [98] Chunying Yu, Yasuhiro Shimizu and Hiromichi Arai, Mg-DOPED SrTiO_3 as a lean-burn oxygen sensor, Sensors Actuators B, 1988,14:309-18
    [99] Klimant I., Wolfbeis O.S. Oxygen-Sensitive Luminescent Materials Based on Silicone-Soluble Ruthenium Diimine Complexes. Anal.Chem., 1995,67:3160
    [100] Demas J.N., Degraff B.A. Modeling of Luminescence Quenching-Based Sensors: Comparison of Multisite and Nonlinear Gas Solubility Models. Anal.Chem., 1995,67:1377-80
    [101] Mills A. Optical sensors for oxygen: a log-gaussian multisite-quenching model. Sensors Actuators B, 1998,51:69-76
    [102] Mingqi Bai and Seitz W. R. A Fibre Optic sensor for water in organic solvents based on polymer swelling. Talanta, 1994,41: 993-999
    [103] McDonagh C., MacCraith B.D., and McEvoy A.K. Tailoring of Sol-Gel Films for Optical Sensing of Oxygen in Gas and Aqueous Phase. Anal. Chem. 1998, 70:45-50
    [104] Murtagh M.T. and Shahriari M.R. A study of the effects of Organic Modification and processing technique on the Luminescence quenching Behavior of Sol-Gel Oxygen sensors Based on a Ru(Ⅱ) Complex. Chem. Mater., 1998, 10:3862-3969
    
    
    [105] Martin M.F. Choi, Dan Xiao. Oxygen-sensitive reverse-phase optode membrane using silica gel-adsorbed ruthenium(Ⅱ) complex embedded in gelatin film, Anal. Chim Acta, 1999,387: 197-205
    [106] McDonagh C., Kolle C., McEvoy A.K., et al. Phase fluorometric dissolved oxygen sensor, Sensors and Actuators B, 2001,74: 124-130
    [107] Paul Hartmann and Werner Ziegler. Lifetime Imaging of Luminescent Oxygen Sensors Based on All-Solid-State Technology. Anal. Chem. 1996,68:4512-4514
    [108] Nemoto T.; Togawa T. An instrument for the long-term continous measurement of oxygen uptake, Frontiers of Medical and Biological Engineering:the International Journal of the Japan Society of Medical Electroics and Biological Engineering, 1989,1:99-106
    [109] Kugimiya I., Inada Y., Yanaguchi N. Development of an ultra-long life oxygen sensor and a new oxygen meter. Masui. The Japanese Journal of Anesthesology, 1986,35:1140-1143
    [110] Watkins A.N., Wenner B. R., Jordan J.D., et al. Portable, Low-Cost, Solid-State Luminescence-Based O2 Sensor. Appl. Spectrosc., 1998, 52(5): 750
    [111] Glen W., McLaughlin, Katie Braden, et al. Microfabricated solid-state dissolved oxygen sensor. Sensors and Actuators B 2002,83:138-148
    [112] Huixian Zhu, Tai-chi Lo, Ralf Lenigk,et al. Fabrication of a novel oxygen sensor with CMOS compatible process. Sensors and Actuators B, 1998, 46:155-159
    [113] 张虹、何永亮、张宝贵等.一种新型溶解氧测定仪的研制.南开大学学报(自然科学),1999,32(4):81—84
    [114] 阮复昌、李向明、莫炳禄等.一种新的溶氧计及其在线标定方法.仪器仪表学报,1998,19:511—515
    [115] 张瑞菊,俞梅.具有敏感膜的MIS型固态氧传感器的研制.医疗设备信息,1999,2:13—15
    [116] 王跃华,徐圣普,崔云莉.用于检测血氧饱和度的光电传感器.医疗装备,1999,10:1—2
    
    
    [117] Wolfbeis Otto S. Fiber-Optic Chemical Sensors And Biosensors. Anal. Chem., 2000,72: 81-89
    [118] Mascini M. Biosensors for medical applications. Sensors and Actuators B, 1992, 6(1-3): 79-82
    [119] Arief Budi Witarto. From Bench to Business: The Story of Glucose Sensor. Proceeding of the 9th scientific meeting, ISSN 0918-7685:5-8
    [120] http://sonho.dayoo.com/otherproduct/yldbxszyq.htm
    [121] Martin M.F. Choi and Dan Xiao. Linear calibrtion of luminescence quenching-based optical sensor for trace oxygen analysist. Analyst 1999,124:695-698
    [122] 莫远尧,赵莉,鲁勗琳等,基于荧光熄灭的钌络合物高性能溶解氧光极的研制.化学传感器,2002,3
    [123] Cram D., Angew J. The design of molecular hosts, guests, and their complex, Chem. Int. Ed. Eng, 1988,27: 1009-1020
    [124] 傅军,童沈阳.水溶性卟啉在分析化学上的应用.分析化学,1981,9(1),68-73
    [125] Amomura K. Spectrophototetric determination of copper with α, β, γ, δ- tetraphenylporphyrin. Anal.Chim.Acta., 1975,74(1): 53~57
    [126] Li X., Harrison D. Measurement of concentration profiles inside a nitrition selective electrode memberance. J. Anal. Chem., 1991,63: 2168-2170
    [127] O'Regan B., Gratzal M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films, Nature, 1991,353: 737-739
    [128] ZurerP. UN unites call warming a health risk. Chem.& Eng.News, 1996,29(4): 10~11
    [129] Tsuchida E. Liposomal heme as oxygen carrier under semi-physiological conditions. J.Chem. Soc., Dalton. Trans. 1984,5:147~1151
    [130] Horrocks, W.D. Lanthan porphyrin of heme protems. Insertion of ytterbium mesoporphyrin x into apomyoglobin. Biochem. Biophys. Res. Commun., 1975,64:317~322
    [131] 李和平.一些含氮杂环卟啉的合成及其生物活性的研究.博士学位论文.长沙:湖南大学化学化工学院,2000
    
    
    [132] Epstein H. 著.沈询等译.光生物学.北京:科学出版社,1984
    [133] Timothy D. Lash, Pushpa Chandrasekar, Synthesis of tetrapheny-tetra- acenaphtho-porphyrin: A New Highly Conjugated Porphyrin System with Remarkably Red-Shifted Eletronic Absortion. J. Am. Chem. Soc., 1996,118:8767~8768
    [134] Eaton K., Douglas P. Effect of humidity on the response characteristic of luminescence PtOEP thin film optical oxygen sensors. Sensors and Actuators B, 2002,82: 94-104.
    [135] Yutaka Amao, Keisuke Asai, Tokuji Miyashita, et al. Novel optical oxygen sensing material: platinum porphyrin- styrene-pentafluorostyrene copolymer film. Anal. Commun., 1999,12:367-369
    [136] Alan D. Adler, Frederick R. Longo, John D. Finarelli, et al. A Simplified Synthesis for meso-Tetraphenylporphin. J. Org. Chem. 1967, 2:476
    [137] Lindesy J.S, Schreiman I.C., Hsu H.C., et al. Investigation of the synthesis of ortho-substitued tetraphenylporphyrins. J. Org. Chem., 1989, 54:828~836
    [138] Areki Boudif, Michel Mcmenteau. Synthesisof a Porphyrin-2,3-diacrylic Acid using a New '3+1' Type Procedure, J.Chem.Soc., Chem. Commun., 1994, 2069~2070

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700