用户名: 密码: 验证码:
爆轰法制备纳米氧化铝—金刚石复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米氧化铝作为磨料在抛光应用中占据这非常重要的位置,但硬度不够导致抛光效率低,使用寿命短。纳米金刚石拥有非常好的导热性能、硬度非常高、耐磨损,但生产成本很高。纳米三氧化二铝导热性差,属于半导体材料,高温稳定性好,具有一定硬度和耐磨性,生产成本低廉。假如能使这两种材料形成纳米复合材料,将带来极大的经济效益和研究价值。
     本文以纳米金刚石、硝酸铝为主要原料,加入硼酸等添加剂,与一定比例的黑索金混合制成混合炸药,采用爆轰的形式制备纳米复合材料。对爆轰产物进行XRD衍射分析、TEM分析及比表面积分析来确定产物成份、形貌及比表面积等。结果表明:XRD分析中显示,不同实验配方中都有α-氧化铝和Y氧化铝,溶胶凝胶法制备出的产物中纳米金刚石含量最多,α-氧化铝颗粒平均直径在43nm左右;制备出的纳米复合材料外观成球型,透过TEM可以看到这种复合材料的结构是外层包裹着内层,颗粒直径在50nm~150nm之间,且具有较好的分散性;根据比表面积分析,黑索金比例一定时,提高混合炸药中纳米金刚石与氢氧化铝的比例所得爆轰产物的比表面积增加,平均孔径近乎不变;纳米金刚石与氢氧化铝的比例一定时,提高混合炸药中黑索金的比例所得爆轰产物比表面积急剧减小,平均孔径增大。对比了XRD衍射分析、TEM分析和比表面积分析的结果,溶胶凝胶法中纳米金刚石与氢氧化铝比例为9:12,黑索金占混合炸药84%所得实验产物最好,纳米复合材料含量最多,颗粒直径相对均匀,分散性好。
     对各实验混合炸药的爆热、爆温和爆压进行了计算,获得了各实验产物的爆轰生成环境,为以后这方面的实验奠定一定的基础。这些数据为晶粒生长提供参考,为从事爆轰合成纳米材料方面的研究人员提供一定经验参考。
     本文用爆轰法制备出的纳米复合材料,颗粒分布均匀,结合紧密,比表面积分析中没有微孔产生,且分散性好。该方法设备简单,操作方面,成本相对低廉,有大规模生产及应用到其他纳米复合材料研究上的潜力。
Alumina is very important as abrasive in applications of polishing, but hardness isn't high enough leading to low efficiency of polishing and service life short. Nano-diamond has very good thermal conductivity, high hardness and wear resistance, but high costs of production. Thermal conductivity of alumina is poor, belonging to semiconductor materials, and alumina owns high temperature stability, certain hardness and resistance to wear. Cost of production of alumina is cheap. If we can make nano-compound material of alumina and diamond, it would bring great benefits of economic and high value of research.
     In this paper, nano-compound material were prepared by detonation method, in which the RDX were mixed with nitric acid aluminum, boric acid and so on. The detonation products were characterized by XRD(X-ray Diffraction) and TEM(Transmission Electron Micrioscope). The results indicated that α-alumina and γ-alumina exist in every kind of detonation products from XRD. The content of Nano-diamond is most in detonation products prepared by sol-gel. Average pore diameter of α-alumina is43nm; Observed by TEM, the shape of nano-compound material is spherical and has good dispersity, of which structure is made of outer package lining, of which the diameter is between50nm and150nm.Observed by BET, specific surface area and of detonation products will increase and average pore diameter is invariant along with the ratio of nano-diamond and alumina heightening when the ratio of RDX is invariant in explosives; specific surface area of detonation products will decrease and average pore diameter will heighten along with the ratio of RDX heightening in explosives when the ratio of nano-diamond and alumina is invariant. Following the results of XRD,TEM and BET, the detonation product is most conforms to the requirements when the ratio of nano-diamond and aluminium hydroxide is9to12and the ratio of RDX is84%in explosives, and nano-compound material is at most. The diameter of this detonation product is relatively uniform, which has excellent decentralization. By calculating the explosion heat, explosion temperature and explosive pressure of the explosives, we have obtained the parameters of detonation environment of experiments, and laid the foundation about nanometer composite materials made by detonation synthesis. These data provide reference for growth of grain in the explosion, and provides certain experience for researchers who study nanometer material by detonation synthesis.
     In this paper, nano-compound material, made by detonation synthesis, has uniform distribution and good dispersity, and combines closely, and has little micro pore by analysis of specific surface area. This method had advantages of simple technology process, fast synthesis and low-cost equipment, and had potential of mass products and application to study of other nano materials.
引文
[1]胡海霞.纳米自清洁羊绒针织服装的研究与开发[D].西安:西安工程大学,2007.
    [2]谢冰.纳米氧化铝的制备及应用[J].江西化工,2004(1):20-24.
    [3]李瑞勇.纳米氧化铝的爆轰合成及其晶型和尺寸的控制研究[D].大连:大连理工大学,2006.
    [4]苏毅.陶瓷粉体的制备技术[J].云南化工,1997(2):40-44.
    [5]吕世杰.滑块式六含八大腔体高压装置的温压标定及高压合成金刚石新触媒的发现[D].西安:西安交通大学,2010.
    [6]乔志军.纳米金刚石石墨化转变以及纳米金刚石铜复合材料的制备与性能[D].天津:天津大学,2007.
    [7]文潮.炸药爆轰合成纳米金刚石的研发历史与现状[J].超硬材料工程,2009,21(2):51-54.
    [8]V. V. Danilenko. Synthesis and Sintering of diamonds by Exp lo-sion [J]. Energoatom izdat, Mo scow,2003.
    [9]A. M. S taver and A. I. L yamk in. In Utradisperse Materials, Pro-duction and Properties [J]. Krasnoyarsk,1990, p3.
    [10]周刚.利用炸药中的碳爆轰合成超微金刚石的研究[D].北京:北京理工大学,1995.
    [11]李世才.炸药爆轰合成超微金刚石的研究[D].北京:北京理工大学,1996.
    [12]陈权.炸药爆轰合成超微金刚石的理论及应用问题研究[D].北京:北京理工大学,1998.
    [13]仝毅.爆轰法超微金刚石的制备与应用技术研究[D].北京:北京理工大学机电工程学院,2000.
    [14]李晓杰,李瑞勇,马玉馨等.工业炸药线型聚能切割器的研制[J].工程爆破,2004,10(4):5-7.
    [15]李晓杰,王金相,张越举等.爆炸粉末烧结颗粒间摩擦引起的界面温升研究[J].高压物理学报,2004,18(2):97-102.
    [16]何江华.光滑粒子流体动力学方法在二维爆轰中的模拟应用[D].哈尔滨:哈尔滨工业大学,2009.
    [17]陈宜虎.爆炸荷载作用下钢框架动力响应有限元分析[D].桂林:桂林理工大学,2009.
    [18]郑敏,王作山.爆炸合成纳米α-氧化铁[J].硅盐酸学报,2005.33(8):930-933.
    [19]G H C Magnus, V A lexandre. A methodology for replacement of conventional steel by microalloyed steel in bus tubular structures [J]. Materials and Design,2008,29(2):539-545.
    [20]中国力学学会工程爆破专业委员会.爆破工程[M].北京:冶金出版社,1996.
    [21]盛锡铭.“化学反应与热量”学习指要[J].数理化学习高中版,2010(8):104-108.
    [22]北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用[M].北京:国防工业出版社,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700